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Haull operators om a category of spaces of continuous functions
on Hauvsdorff spaces*

by
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Abstract. We define and study the notion of a hull operator on a category of
spaces of continuous functions on Hausdorff spaces which we call Funsp. Both funetion
space convex hull and function space affine hull are examples of hull operators. We show
that the class of hull operators isin 1-1 correspondence with a subclass of all bicategory
structures on Funsp. An application of the Freyd-Isbell theorem gives that a sub-
category of Funsp is Py-reflective in Funsp if it is closed under the formation of prod-
nets and Ig-subobjects, where (I, Pg) is the bicategory structure corresponding to
the hull operator @. Furthermore, if f is «/-extendable, it is also #-extendable, where
# is the smallest Pg-veflective subeategory of Fungp which contains all the objects
in &,

Introduetion. In [4], Ky Fan generalized the notion of convexity
to a function space setting. For X a Hausdorff space and H a linear space
of continuous real-valued functions on X, Ky Fan defined an H-convex
subset of X to be an intersection of sets of the form {zeX: f(») > a},
where feH. (The conditions on X and H in Ky Fan’s definition were more
general than this, but we do not need such generality for this paper.)
The definition of H-convexity leads, in the usual way, to the idea of the
H-convex hull of an arbitrary subset of X. (That is, the H-convex hull
of 8§ = X is the intersection of all H-convex subsets of X that contain §.)
The concept of the closed affine hull of a subset of a linear topological
space can also be formulated in & more general function space setting.

In this paper, we introduce and study the notion of an abstract
brull operator (Definition 2.1) on a certain category of spaces of continuous
funetions on Hausdortf spaces. In addition to numerous other examples,
both function space convex hull and function space affine hull satisty
our axioms for a hull operator.

The axioms that we select for the definition of a hull operator are
motivated, in part, by P. Hammer’s paper [9] and H. Herrlich’y paper

* This work constitutes part of the author’s Ph.D. thesis written under the
direction of Professor Marvin W. Grossman at Temple University.
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[11], where each generalizes the concept of topological closure. In [11}
Herrlich defines an abstract limit operator on the category of topological
spaces. Our axiomatization of a hull operator is in the spirit of Herrlich’s
notion of a limit operator and in fact, certain limit operators induce hull
operators.

Our approach to the study of hull operators is, for the most part,
category theoretic.. Categories of spaces of continuous functions on
Hausdorff spaces have been studied by Grossman (see [6]).

- Tor the basic results and terminology of category theory we refor
the reader to [5], [10], [16], [18], and [19].

The category Funsp. We will denote by Funsp the category whose
class of objects is all pairs (X, H), where X is a topological THausdorft
space, and H is a linear subspace of BC(X) (the continuous, hounded,
real-valued functions on X), such that H contains the constant functions
and separates the points of X, and where a morphism f: (X, H)-+(¥, K)
in Funsp is a continuous function from X into ¥ with the property that
Kf c H, where Kf = {kof: keK}. This type of category was first con-
sidered by Grossman (see [6]).

DeriNiTION 1.1. Suppose (X, H)eob Funsp and S is a subset of X
The H-affine hull of § iy the set {weX: for all heH, h(S) = 0 implies
h(a) = 0}. We denote the H-affine hull of § by H-att 8. § is said to be
H-affine if it is equal to its H-affine hull. Since the functions in H are
continuous, it is clear that H-aff § is closed in X.

If X is a subset of a locally convex linear topological Hauscorff
space F, and H is the restriction of the continuous affine functions on
E to X, then for § < X the H-aff § coincides with the closed affine hull
(in the geometric sense) of § in B intersected with X. The H-affine hull
in the geometric setting has been studied by many authors. See Ellis [3]
and the references there.

Proposition 1.3 below is due to Grossman ([6] and [8]). The charac-
terization of an epimorphism in terms of affine hull is basic to our deve-
lopment of the notion of a hull operator on Funsp.

Since (X, H)eob Funsp implies H separates points, the following
lemma is immediate. .

Lemwa 1.2. Let a, f: (Xy, Hy)~(X,, H,) be morphisms in Funsp.
If a and B agree on 8 < X,, then o and B agree on Hi-aff 8. -

The following theorem characterizes monomorphisms, epimorphisms,
and isomorphisms in Funsp. '

ProPosITION 1.3 (Grossman[6], p. 8,and [8)). Let a: (Xy, Hy)— (X, Hy)
be a.morphism in Funsp. Then:

1) a s a monomorphism in Fungp if and only if a is a 1-1 function
Sfrom X, into X,.
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2) a is an epimorphism in Funsp if and only if Hy-aff a(X,) = X,.

3) a is an isomorphism in Funsp if and only if a is a homeomorphism
from X, onto X, and H,u = H,.

Proof. 1) and 3) are straightforward. By Lemma 1.2, it is enough to
show that if a: (X,, H,)—(X,, H,) is an epimorphism, then H,-aff «(X,)
= X,. Suppose there is an ®¢X, with z¢H,-aff a(X,). Let heH, be
such that h(a(X,)) = 0 and h(x) # 0. Consider the morphism h: (X, H,)
—([a, b], Ala,b]), where a =infh(X,), b =suph(X,), and Al[a,b]
denotes the continuous affine functions on [a, b]. Then ha = ga, where
g = 0. Thus, « is not an epimorphism. =

Remark. Grossman showed in [8] that Theorem 2.1 and consequently
Theorem 2.4 in [6] are not valid. He pointed out that in the proof of
Theorem 2.1 it is incorrectly stated that if « is an epimorphism in the
category Compconv, then « is an onto map. He showed that the above
characterization of an epimorphism in Fungp is the correct one for the
subcategory of objects whose underlying space is compact. As was indi-
cated in [8], the same arguments show that in the category Compconv
a morphism o: K,—K, is an epimorphism if and only if A4(K,)-
aff a(K,) = K,, where A(XK,) denotes all continuous affine functions on
K,. For example, ¢: [0,1]-[0,2], where ¢ is the inclusion map, is an
epimorphism in Compeconv.

ProrosirioN 1.4. Funsp is well-powered and co-well-powered.

Proof. Fix (X, H)eob Funsp, and let f: (X, H)—>(Y, B) be an epi-
morphism. Define p: B—Bf by p(b) = bf. Since B-aff f(X) =¥, pis 1-1.
Hence card B¥ = card (Bf)* < card H¥ (where B, (Bf)*, H* are the
vector spaces duals of B, (Bf), H). Define G: Y->B¥ by G,-b = b(y).
Since B separates the points of ¥, Gis1-1. Consequently card ¥ < card H*.

.Thus, Funsp is eo-well-powered.

Let (X, H)eob Funsp. A representative set of monomorphisms ig
{t: (¥, K)—»(X, H)}, where ¥ < X, the topology on Y is stronger than
the relative topology on X, 4 is the inclusion, and H|Y = K < BC(Y).
So Funsp is also well-powered.

It P = B (F is the class of all epimorphisms in Funsp), then Funsp
iy P-co-well-powered. Similarly, it I < M (M is the class of all mono-
morphisms in Funsp), then Funsp is I-well-powered. m

The category Funsp has products, coproducts, equalizers, and coe-
qualizers. The next proposition gives the construction of products, equal-
izers, and intersections. '

ProrostrioN 1.5 (Grossman [6], Section 3).

1. Suppose {(X;, H,)} is a family in ob Funsp. Let X = [[X, be the
cartesian product of the spaces in the family {X,;}. Let H be the subspace of
BO(X) spanned by \ {ho;: heH;}, where g; is the projection of X onto X,
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Then {o;: (X, H)—

2. Suppose o, f: (X, H)
= {weX: a(z) = B(#)}. Then an equalizer for a and f s i:
where © is the inclusion map.

3. If {iy: (8;, H|8)) (X, H)} is a family of subobjects of (X, H) such
that i; is the inclusion map for each j, then the categorical intersection of the
family is i: (¥, H|Y)—>(X, H), where Y = (\8; and i is the inclusion
nap.

(X;, H,)} is a product of the family {(X;, H})} in Funsp.
—(Y, K) are morphisms in Funsp. Let B
(B, H|E)~(X, H),

COROLLARY 1.6. Funsp is complete and co-complete.

Proof. This is immediate from Proposition 2.9, and its dual, in
Mitchell [16].

DeriNrTioN 1.7. The morphism a: (X, H)—(Y, K) is an isomorphism
into if and only if o (X, H)~((a(X), K |a(X)) defined by o (2) = a(@)
for all # is an isomorphism. .

DrrFINITION 1.8. (Isbell [14]). The morphism « is an emtremal mono-
morphism if and only if « is a monomorphism, and whenever o = yp
and g is an epimorphism, then g is an isomorphism.

_ProrosirionN 1.9. If a: (X, H)—(Y, K) is a morphism in Funsp,
then the following three conditions are equivalent:

1. a is an isomorphism into and K-aff a(X) = a(X).

2. a is an equalizer.

3. a is an ewviremal monomorphism.

Proof. Assume « satisfies condition 1. Let (Z, J) be the coproduct
of (Y, K) with (Y, K) and g; be the injections. Define an equivalence
relation on Z by o~y i 4i(0) = 15 (y) a(X) or w7 (y) = p5*(2)ea(X).
Let J' = {jeJ: s~y implies j(=) )} and q:(Z, J)—(Z]~, J') be
the quotient map. Then a is the equcmhzel of gu; and gu,.

That 2 implies 3 is proven in Satz 7.13 in Herrlich [10]. Assume a sat-

isfies condition 3. Let : (X, H)—>(K=a,ff a(X), K| K-aff a(X)) be defined
by B(#) = a(z), and y: (K-aft o(X), K|K-aff o(X )—» Y, K) be defined
by 'y(X) X. Then a = yf and ﬂ is an epimorphism. Simee a is extremal,
B is an isomorphism. m

Hull operators on Funsp. The definition of limit operators which
appears in Herrlich [11] provides some |of the motivation for our defi-
nition of a hull operator. Also see Hammer [9], pp. 305-316.

DEFINITION 2.1. A hull operator on the category Funsp is an operator
@ that assigns to every pair (S, (X, H)), where (X, H)cob Funsp and
8§ < X, asubset of X called the H —Q hull of S, denoted by H —@ hull 8,
which satisties the following conditions:

- 1. If (X, H)eob Funsp and § < X, then § € H—Q hull § < H-aff .
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2. If (X, H)<ob Funsp and 4, B < X, then (H—@Qhulld)u(H —Q
hull B) € H—@ hull (4uB).

3. If (X, H)eob Funsp, S € ¥ = X, and ¥ = H-@ hull ¥, then
(H—@Q hull $)nY = H|Y —¢ hull 8.

4. If a: (X, H)—(Y, K) is a morphism and § c X, then o(H—Q
hull §) € K—@Q hull «(S).

5. If (X, H)eob Funsp and §
= H - hull 8.

The following proposition, whose proof is straightforward, gives an
equivalent characterization of hull operators.

< X, then H—@ hull (H—@ hull 8)

PROPOSITION 2.2, @ is & hull operator on Funsp if and only if Q satisfies
the following conditions :

1. If (X, H)eob Funsp and 8 € X, then § <« H—Q hull 8§ < H-aff §.

2. If (X, H)eob Fonsp and 4, B < X, then A < B implies H—Q
hull 4 € H—¢@ hull B.

3. If (X, Hyeob Funsp and 8§ = ¥ < X such that ¥ = H—Q hull ¥,
then (H—Q hull $)nY =H|Y—¢ hull §.

4. If (X, H) eOb Funspand8 € ¥ < X, then H|Y—Qhull § <(H—Q
hull §)nY.

B, If a: (X, H)—(Y, K) is a morphism in Funsp with a(X) = ¥ and
S < X is such that H—@ hull § = X, then K —@ hull a(8) =

6. If (X, Hyeob Funsp and 8§ < X, then H—@Q hull (H—¢ hull 8)
= H —¢ hull S.

The verifications that the following examples are in fact hull operatms
are either obvious or. straightforward.

Examprn 1. We call the hull operator defined for all (X, H)<ob Funsp
and § € X by H—@ hull § = 8, the trivial hull operator.

ExampLE 2. The closure operator on Top induces a hull operator on
Funsp, where H—@ hull 8 = OLS (the closure of § in X), for all (X, H)eob
Fuusp and 8§ € X. In fact, any idempotent limit operator I on Top
(in the sense of errlich [11]) that satisfies the additional property that
if XeTop, S € ¥ <X, and Y =1, ¥, then (Ix8)NY < IyF, induces
a hull operator on Funsp via the forgetful functor #': Funsp —Top, where
X, H) = X.

BxAampry 3. Let (X, H)eob Funsp and § < X. The H-conven hull
of 8, denoted by H-conv s, is defined to be {weX: for all heH, h(m) <

- sup A(S8)}. This notion of function space convex hull has been used by

many authors (see e.g., [4], [17]). The fact that this definition is con-
sistent with the discussion in the introduction appears in Ky Fan [4].
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If we define H—Q hull § = H-conv 8 for all (X, H)<ob Funsp and
8 < X, then @ is a hull operator.

ExAMPLE 4. Affine hull is a hull operator. It has been studied in the
geometric setting by many authors. See Ellis [3] and the references thore.

BExamrre 5. The following proposition will provide a class of hull
operators.

ProrosirioN 2.3. Let T: ob Funsp —ob Funsp be such that:

1. For all (X, H)eob Funsp, T(X,H)=(X,H'), where H < H’',

2. If a: (X, H)—~(¥Y, K) is a morphism in Funsp, then o': T(X, H')
—-(T(Y, K') is a morphism in Funsp, where o' (1) = a(w) for all weX.

Then T induces a hull operator Q, on Funsp, where if (X, H)¢ob Funsp
and 8 < X, then H—Qp hull 8§ = H'-aft 8, where (X, H') = T(X, H).

The proof of this propesition follows immediately from Example 4.
Examples of such a T can be obtained as follows:

Let % be a class of Hausdorff spaces that are preserved under con-
tinuous functions; i.e. f: X—Y continuous and X%, implies f(X)e%.
Let X denote the collection of subspaces of X that are in . Equip
B((X) with the topology of uniform convergence on the sets in ¢ nX.

Bach such € induces a T’ as above defined by Ty: (X, H) = (X, Hy),
where Hy denote the closure of H in BC(X) with respect to the topology
of uniform convergence on the sets in #nNX.

We can choose for €:

1. The class of all Hausdorff spaces (this gives BC(X) the topology
of wuniform convergence on X).
2. The class of all separable Hausdorff spaces.
. The class of all Lindelof Hausdorff spaces.
. The class of all compact Hausdorff spaces.
. The class of all connecled Hausdorff spaces.
. The class of all countably compact Hausdorff spaces.
- The class of all sequentially compact Hausdorff spaces.
8. The class of all singleton spaces (this gives BC(X) the topology
of pointwise convergence on X).
DeriNIrIoN 2.4. Let @ be a hull operator on. Fansp, (X, H)<ob Funsp
and 8§ <= X. §is a H—Q subset of X if amd only if § = H —¢ hull 5.
It is easy to prove that the intersection of a family of H ~¢) subsobs
of X is also an H—@Q subset of X.

Consequently, if § < X, then H~@Q hull 8 is the intersection of all
H—Q subsets of X that contain S.

- o O B W
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We show next how each hull operator @ induces a bicategory structure,
(Iy, Pg), on Funsp (see, e.g. Kennison [15]). Define (Ip,Pg) as follows:

Iy = {a: (X, H)~>(¥, K)|a is an isomorphism into and X —@ hull
a(X) = a(X)};

20 = {a: (X, H)—(Y, K)|ais 2 morphism and K ~-@ hull a(X) = ¥}.

The Isubobjects of (X, H), up to isomorphism, are the objects
(8, H|8) such that § is an H ~ @ subset of X.

We note that if we choose @ to be the affine hull operator on Funsp,
then P, coincides with all epimorphisms (Proposition 1.8) and I, coinci-
des with all extremal monomorphisms (Proposition 1.9).

LmvmA 2.5, If a, B are in Py, then Bu is in Py whenever fa is defined.

Proof. Suppose a: (X, H))~(X,, H,) and 8: (X,, Hy)—>(X,, H,) are
in Pgy. Let ¥V = H;—@ hull fa(X;). By condition 5 of Proposition 2.2,
Hy|B(Xp)—~@ hull fa(X,;) = §(X,). By condition 4, 8(X,) < ¥. By 1
and 2, Hy~@ hull $(X,) < Hy—@ hull ¥ = ¥. Therefore, X, = ¥ and
ﬁaePQ. ]

LevmaA 2.6. Let Q@ be a hull operator on Funsp. If (X,, H,)eob Funsp
and 8 € X, = Xy, with Hy—Q hull X; = X,, and H,| X,—Q hull § = S,
then S is an H—Q subset of X.

Proof. Let B'=H,—@ hull 8. B = (H,—@ hull 8§)nB = H,|B—@
hull § = (H,|X;—@ hull §)nB =8nB =8 m

TimonuM 2.7. If @ is o il operator on Funsp, then (14, Pp) is a bi-
category structure on Funsp.

Proof. (I,NnP,) clearly contains all isomorphisms. By Lemma 2.5,
’o 15 closed under composition.

Let a, fely, with a: (X, H))—>(X,, Hy) and B: (X, Hy)—(Xs, Hj)
Ba(X) z113|(X2——(,) hull ﬂa(X,)). By Lemma 2.6, H;—@Q hull a(X,)
= fa(X;). Bo I, is closed under composition. ’

Suppose a: (X, Hy)—(X,, Hy) is a morphism in Funsp. Let X,
= Hy,~@ hull «(X,), and H; = H,| X;. Define «y: (X;, Hy)—(X,, H;) by
ag(@) = a(®), and o (X3, Hy) = (X,, Hy) by o (®) =o. Then o = a; g,
where ayely and ogePy. If a = By, fel, and yePq, then we let ¢ =
B X, Hy). S0 eaq =y and fe = 4, 80 the factorization of « is unique
up to isomorphism.

Itis clear that P is contained in the class of all epimorphisms and
I, s contained in the class of dll monomorphisms. m

The following corollary is an immediate consequence of Theorem 2.7
and the Freyd-Isbell theorem (see Isbell [14], p. 1276, Kennison [15],
p. 856, and Herrlich [10], p. 96).

CoROLLARY 2.8, Let o be a full, replete subcategory of Funsp and
Q a hull operator on Funsp. Then o is a Py-reflective in Funsp if and only


GUEST


232 H. Lord

" if of is closed under the formation of products and Iy-subobjects; that is,
of and only if:

1. If {(X;, H;)} is a family of objects im o7, then IT(X,;, H;) is im .
2. If (X, H)eob o/ and B is an H —Q subset of X, then (E, H |F)eob o.

If (X, H)eob Funsp, then a Py-reflection can be realized as follows:
Let {a,|a,: (X, H)~>(Y,, H,), a,eP, (Y4, H,)cob .27} be a representative set
of all morphisms in Py from (X, H) to objects in o and define a: (X, H)
—~II(Y,, H,) by p, = a, for all a, —p, is the ath projection map. Let
(Y, K) = II(Y;, H,). Then ay: (X, H)—~(Z, K|Z) is a Pgreflection of
(X, H) in o7, where Z = K —@ hull «(X) and a,(2) = () for all z¢X.

For example, let @ be a hull operator on Funsp and let oy be the
full subcategory conssting of all Ig-subobjects of products of ([0, 1],
A [0,1]) with itseli, where 410, 1] is the space of all real affine functions
on [0,1]. o is Pyretlective in Funsp and is called the Py-reflective hull
of ([0,1], A[0,1]). This example will be studied further in Section 4.

Characterizations of hull operators. In the previous section, we saw
that each hull operator induces a bicategory structure on Funsp. In this
section we prove that there is a 1-1 correspondence between certain
bicategory struetures and all hull operators on Funsp. Each hull operator
@ assigns to each object (X, H) in Funsp a collection of subsets of X
namely, all H—@ subsets of X. We also prove that there is a 1-1 corre-
spondence between all hull operators on Funsp and a certain class of
operators that assign to each object (X, H) a collection of subsets of X.

Lemna 3.1. Let @ be a hull operator on Funsp and o: (X, H)—(Y, )
a morphism. If 8 < Y 4s such that K —@ hull 8 = 8, then H —@ hull
a M(8) = a~2(8). (That is, the inverse of a Q-subset is Q-subset.)

Proof. Let 7 = H—@ hull ¢-*(8). Then K |a(T)—Q hull § = a(T).
But K]a(T)~@ hull § = (K—@ hull §) ne(T) = §na(T) = §. Therefore
o(T) < 8. Thus, 8 = a(T), and 50 T' = a~(§). m

Levwa 3.2. Let (I, P) be o bicategory structure on Funsp. Let a: (X, H)

(X, K) be a morphism in Fansp and A = Y such that the. inclusion i i
(4, K|A)~(Y, K)el. If 8 = a-*(4), then the diagram

(8, H|8) 15— (4, K|4)
i; iy
(X, H) ————> (¥, K)

is a pullback of a and i ,. Consequently, iyel.
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Proof. It can be easily verified that this diagram is a pullback of

aand 7. That 4,eI follows from the dual of Proposition 1.1 in Kennison
[13], p. 355.

Lmvwa 3.3. Let (I, P) be a bicategory structure on Funsp such that
each morphisi in [ is an isomorphism into, and let (X, H)eob Funsp. Let
(8;, H|8;), where 8; < X, be q family of I-subobjects of (X, H). Then
(Y, H|X) is an I-subobject of (X, H), where ¥ — M {8}

The lemma follows immediately from the fact that (Y, H|Y) coincides
with the categorical intersection ot the family {isj: (8;, H|8)—(X, H)},
where each z',s.j iy the inclusion map, and the following proposition, which
is the bicatiegory version of Baron [1], Corollary 2, p. 504 ; see also Herrlich
[10], p. 72. The proot for the bicategory version is the same as that for
the original corollary. )

Provosrrion 3.4. If (I, P) is a bicategory structure on %, o well-
powered category with intersections and equalizers, then the intersection of a

Jamily of I-subobjecls of @ given object is again an I-subobject.

TumoruM 3.5. There ewists a 1-1 correspondence between the Jfollowing
4 families:

L. {Q: @ 48 o hll operator on Funsp).

) 2. {B: R is an operator on Funsp which assigns to each (X, H)ecob Funsp
a collestion of subsets of X, denoted by R(X, H), and R satisfies the four
conditions listed below}.

(i) If (X, H)eob Funsp, then R(X, H) is closed under arbitrary inter-
sections.

(i) If (X, H)eob Funsy, then R(X, H) contains all H-affine subsets
of X. '

(iil) If (X, H)eob Funsp and Y <R(X, H), then R(Y, H|Y) = {TnY:
TeR(X, H)). :

(iv) If fi(X, H)-~(Y,K) is a morphism and TeR(Y, K), then
ST eR(X, H).

30 {(L, P): (I,P) is a bioategory structure on Funsp, I contains all
ewtremal monomorplisms and is contained in the class of all isomorphisms
nto}.

4. {L: 1 contains all exiremal monomorphisms, is comtained in the
class of all isomorphisms into, and satisfies the three conditions listed below).

(i) 1 48 closed wunder composition.

(i) If {g;: (X, H)- (Y, K} is a family of morphisms in I, then

& = [Je;e I, where a: [ [ (X, Hy)~[[ (X, K) is defined by e({n;}) = {&;(x,)}.
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(iii) Let the commutative diagram

&

U, S—

: l
¥

S

be a pullback of a and y. Then ael implies Bel.

Proof. Let @ be a hull operation on Funsp. If (X, H)ecob Funsp,
then define Ry(X, H) = {§:8 is an H—@ subset of X}. Since H —@
hull 8 < H-aff 8, By(X, H) contains all H-affine subsets of X. From
the comment following Definition 2.4, By(X, H) is closed under intersec-
tions. If YeRy(X, H), and 8 < ¥, then H| Y—@ hull § = (H —¢ hull §)
NX, by condition 3 of Proposition 2.2. Thus, By(¥, H|Y) = {TNnY:

TeRy(X, H)}. Suppose f: (X, H)—(Y, K) is a morphism and § = Y-

satisfies 8 = K —@ hull §. By Lemma 3.1, H—@ hull f7(8) = f*(8).
Thus, Rq satisfies all four conditions of 2.

Suppose R satisties 2. If (X, H)<ob Funsp and § ¢ X, detine H—¢@
hull 8 = N{T:TeR(X, H); § =T}. We will verity the conditions in
Proposition 2.2. Clearly, S € H~@ hull § < H-aff 8, and H—¢ hull
(H—Qhull 8) = H—@ hull §. Also, § < T implies  —@Q hull § <« H~@
hull 7. If ¥ € X and YeR(X, H), then condition 3 implies H|¥ —@
hull 8 = (H—@Q hull §)nY, forall S = ¥. If ¥ € X and 4: (¥, H|Y)
—(X, H) is the inclugion, then condition 4 yields H|Y —@ hull § € (H —¢
hull 8)nY. It remains to prove that if a: (X, H)-(Y, K) is a morphism,
a(X) = ¥, and H—Q hull § = X, then K —@ hull a(8) = ¥. Let T =
E—@Q hull a(8). a(8) =T, and so § £ a~}(T). Since a=H(T) = H —@
hull «3(T) by condition 4, we have X = H—@Q hull § < o=*(T). Thus
I =Y, and @ is a hull operation.

We have already shown that a hull operator induces a bicategory
structure on Funsp, satisfying the conditions in 3. Suppose (I,.P) is
a bicategory structure on Funsp satisfying 3. If (X, H)e<ob Funsp, leb
RY(X,H) = {8: 8§ < X, and the inclusion &: (8, H |8§)—(X, H)el}. By
Lemma 3.3, RE(X, H) is closed under intersections. Suppose a: (X, H).
—(¥, K) is a morphism and VeRY (Y, K). Let T = a~*(V). By Lemma
3.2, TeRY(X, H). It F is an H-affine subset of X, then 4,: (H, H|L)
—(X, H), the inclusion, iy an extremal monomorphism, Therelore, 4, el
and BeRE(X, H).

It remains to prove thatif ¥ «RY (X, H), then By (¥, H|Y) = {INY:
TeR}(X, H)}. iy: (¥, H|Y)—(X, H), the inclusion, is in I. If §«RP(Y,
H|Y), then 4g: (8, H|8)—(Y, H|X), the inclusion,is in L. ipig: (8, H|S)
~+(X, H)el, since I is closed under composition. Therefore § e KL (X, H),
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and B7 (Y, H|Y) € {TnY: TeR}(X, H)). By condition (iv) of 2, {TNY:
TeRE(X, H)} < RY(Y, H|Y). So (I, P) induces RY, which induces a hull
operator.

Since each (I, P) corresponds to a unique I (see Kennison [15],
Proposition 1.1, p. 355), it remains to prove that each I satisfying the
three conditions in 4 corresponds to a unique bicategory structure (I, P)
on Funsp. By the dual of Kennison’s theorem ([15], p. 357), for each I,
there exists P such that (I, P) is a left bicategory structure on Funsp.
P == {a: a = Py, Bel implies § iy an isomorphism}. We must show that
P € H, the class of all epimorphisms. Fach morphism o in Funsp can
be wriiten as « = fy, f an extremal monomorphism and y an epimorphism.
Thus, fel. Therefore, acP implies g is an isomorphism and so acH.
Consequently, (I, P) is a bicategory structure on Funsp satistying con-
dition 3.

That there is a 1-1 correspondence between the families in 1,2,3
and 4 is straightforward from the constructions in the proof. m

A characterization of P-refl hull ([0, 1], A[0, 17). In this section we
apply some general category results in order to obtain a morphism
characterization of the objects in the smallest Pyreflective subcategory
of Funsp that contains ([0, 1], 4[0,1]), where @ is a hull operator, and
A0, 1] denoties the continuous affine functions on [0,1].

DuprNirIoN 4.1, Let 4 be a complete category, and (I, P) a bicategory
structure on ¢ such that ¢ is P-co-well-powered. If o7 is a subeclass of
%, then the P-refloctive hull of of is the full subcategory of ¢ whose objects
are all the I-subobjects of products of objects in 7. We will denote this
subcategory by P-refl hull 7. ‘

It is well known (Kennison [15], p. 306, Herrlich [10], p. 99, Baron
[1], p. 500) that the P-reflective hull of « is the smallest P-reflective
subcategory of @ that containg all the objects in .

DuriNrrron 4.2, (Herrlich [12], p. 100). Let o be a class of objects
in the category . A morphism «: X—Y is «/-emtendable if and only if
for each morphism #: X 7, where Z <., there exists a morphism §': Y%
such that g = f'a,

Xy

B

Z i

We need the following bicategory version of a result that appears
in Herrlich ([107, p. 101), for the case when P is the class of all epimorphisms
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and I is the class of all extremal monomorphisms. Since the proof is
identical for the general bicategory structure, it will be omitted.

TEEOREM 4.3 (cf. Herrlich [10], p. 101). Let &= P-refl hull of, where
< is a class of objects in a complete well-powered and co-well-powered cate-
gory %, with bicategory structure (I, P). If a morphism aeP is o-ewtendable,
then it is #-extendable.

‘We note that if (X, H)eob Funsp and h: X—[0,1] is a continuous
map, then %: (X, H)-+([0,1], A[0,1]) is & morphism if and only if heH.
Consequently, we have the following Lemma.

LEvMA 4.4, Let a: (X, H)—~(Y, K) be ¢ morphism in Funsp, and
for each (Z, J)eob Funsp, let J, = {jeJ, j (%) < [0,1]}. Then ais ([0, 1],
A0, 1])-emtendable if and only if Ko = H,.

The following is an immediate consequence of Lemma 4.5 and
Theorem 4.3.

THEOREM 4.5. If Q is o hull operator on Funsp, (I, Py) is the associated
bicategory structure on Funsp, and a: (X, H)—~(Y, K)ePg, then a is Py-rofl
hull ([0, 1], A [0, 1))-extendable if and only if K o = H,.

COROLLARY 4.6. Let @ be a hull operator on Funsp. If (X, H)eob Funsp,
then (X, H)eobPy-refl hull ([0,1], A[0,1]) if and only if whenever a:
(X, H)~>(Y, K) is a morphism with K —@Q hull a(X) =Y and K,a = H,,
then a is an isomorphism. '

Proof. Since acPy,, the corollary follows from Theorem 4.5 and the
fact that (X, H)ePg-refl hull of ([0, 1], 4[0, 1]) if and only if every ([0, 1],
AT0, 1])-extendable morphism « with domain (X, H) and aePg is an
isomorphism (see H. Herrlich [10], p. 102). We are using the bicategory
version of Satz 11.2.4. The proof for the bicategory version is the same
as that for the original theorem. m

COROLLARY 4.7, Let Q be a hull operator on Funsp such that for all
(X, H)eob Funsp and for all 8 = X, H—Q hull 8 g H-conv 8. Then
Theorem 4.5 and Corollary 4.6 remain valid if we replace the condition
K,a =H, by Ka = H. :

Proof. If suffices to prove that with the above condition on ¢,
Ko = H if and only if K,a = H;. Then we can use Theorem 4.5.

If Ka = H, then Kya < H,. Let h,cH. There exists keX so thab
ko = k. Since aePy,, K-conva(X) = Y. 8o ka(X) < [0, 1] and theretfore
E(Y) £ [0,1]. Thus, kekK,, and K,a = H,. :

If K 0 =H,, we know Ko < H since « is & morphism. Let hell.
There must be real numbers ¢ and b so that b’ = ah-+b and &' (X) < [0, 1].
Thus there ‘exists %'eK, with k'a =h'. Let & == ((k'/a)—b). Then
ka =h. m
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