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It can also be shown, by calculation, that
G0") = &' c0': &' = ("), acR}
and
G(O”) — {wue 01/: 2 = (eiﬁ‘n)}.
It is easy to show that }
(@0, G(0")) = @G(4).
Hence
T((e™), (¢#m) = ((¢), (ky)),
where

k=6 and k, =" for n>1.

Since not every element of G(4) is of the form ((e"“), (kn)), TG +# @.
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A converse to some inequalities and approximatioms in the theory< of
Stieltjes and stochastic integrals, and for nth derivatives

by
L. C. YOUNG* (Madison, Wisconsin)

Abstract. The object of this report is to establish by counter-examples the best
possible character of theorems recently obtained about stochastic integrals and Stieltjes
integrals, and about nth derivatives and finite differences. The hypotheses involve
a pair of estimate functions subject to the convergence of a corresponding integral
or Y-geries, and it is shown that the divergence of this integral or series render in each
case the conclusion false.

1. Our notation will be largely that of [6], [7]. Let n be a positive
integer, and let p(u), w(%) be functions defined for 0 < w <1, such that
@ is non-negative and Borel measurable, while y is continuous and mono-
tone increasing, and takes the value w(u) =0 only at u = 0; further
suppose that, for 0 < 1< 1,

(1.1) plaw) = (34" e(u),  p(iu) = dip(w).

We denote by {i} a decreasing sequence h, (» = 0,1, ...) with limit
0 and with initial term %y, < 1. We write

Y = () "g(h)p(h,),
»=0
and we denote by Y its partial sum for 0 < »<< N. For n =1, h, = 27,
the series (1.2) occurs in [2] and it then econverges or diverges with the
sum Xo(1/v)y(1/») previously introduced in [5]. This last sum has been
termed Y-series by Lesniewicz and Orlicz [1]. We prefer here to term
Y-series the series (1.2): it was itself introduced, for # =1, in [3].
We say that the sequence {1}, or the ¥-series ¥, satisfies the condi-
tion O(1), if for each » the ratio h,_,/h, is an integer expressible as an
integer power of 2, and satisfies the condition C€(2) if

(1.3) 29(h) < p(h,-y) < 8p(h,).

(1.2)

1
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We say it satisfies partially C(2), if it satisfies the fifst of the two
inequalities (1.3).

In the case of a Y-series subject to O(1), C(2), the convergence or
divergence of Y is clearly equivalent to that of the series

o0

By = D (k)" (h)p(h,_1),

»=1

((1.4)
and, by [7], Appendix A, §A3, equivalent to that of the integral

13
(1.5) = [ up(u)dy(u).
0

We recall that, by the same reference and [6], §3, there always exists
a Y-series subject to C(1) and "0(2).

(1.6) THEOREM. Let F be a continuous real, comlpes, or Banach-valued,
Sfunction of the real variable i, and suppose

.7 4 AEF (@) < p(W)p(k)  (0<Ih<E<T),

where 43, 4s the difference o_pemtor given by

A, F(t) = F(t4+3h)—F

Further suppose the imtegral (1.5) convergent for some h > 0. Then

F has a continuous n-th derivalive F™, satisfying uniformly in t, for
0 < h< 1, the inequality

(1.8) ) (#) —h~

(1—3h).

"4 (1) < K, 8(R),

where K, denotes a constant depending only on n.

The above statement i3 established by the slighest of changes in
the proof of [7], Appendix A, Theorem A2.1. In that reference it was
assumed that (1.7) held for 0 <h<<1, 0< k< 1, instead of for 0<< i

<k < 1, but the proof nowhere used this. In addition we have here subjected
y to the second inequality in (1.1), and therefore defined the condition
C(2) by (1.3), whereas in the reference y fulfilled the weaker inequality
p(Zu) = (34)*y(u), and the constant 8 in (1.3) was consequently changed
to 32. Our present stronger condition merely weakens the statement of
our theorem, but we prefer this weaker from in order to obtain 2 more
precise converse, in which, incidentally, the dissymmetry we have intro-
duced between % and %, and therefore between ¢ and v, i3 essential.

The main object of this note is to establish such a converse to (1.6),
and at the same time to related theorems about Stieltjes and stochastic
integrals. In these comverses the integral (1.5) is supposed divergent. The
converses were suggested by a counterexample due to Lefniewicz and
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Orlicz [1], and in the case of Stieltjes integrals our results cover cases
these authors found it necessary to exclude.

Henceforth we assume ¢ monotone increasing. Later, in the converse
results relating to convolutions we shall strengthen this assumption,
because the dissymmetry between A and % will then disappear. However,
our assumptions will always remain necessary for the -validity of our
results in the most natural context, which is that in which ¢, v are orders
of magnitude, such that every product or ratio of powers of ¢, 9, multi-
plied or divided by a power of the identity function, is automatically
monotone.

2. Our basgic converse theorem i as follows:

(2.1) TumorEM. Let @, v be subject to the conditions stated at the be-
ginning of Section 1, and suppose now @ monotone increasing. Then if the
integral (1.5) is divergent, there ewists a continuous I subject to (1.7), such
that, at t = 0, I(t) does not possess a fimite n-th derivative.

Explicit specification of F. Since (1.5) diverges by hypothesis,
there exists, by what has been said, a divergent ¥-series subject to C(1)
and C(2). We only use the fact that there is a divergent Y-series subject
to C(1) and partially to 0(2). We fix the corresponding sequence {h} and
‘we write

R F(t) = {— 7;)1%1-2 ¢ 2 m(hu)?ﬂ(hv) g2mitlhy
v=0

Here ¢ is a positive constant to be specified later. The function F is con-
tinuous and periodic, since the series on the rightconverges absolutely
and uniformly: this last is because Y g(h,)y(h,) is dominated, on account
of the first inequality (1.3) and of the monotony of ¢, by a multiple of
the geometric series > 277. Thus we must verify that

2.2) F satisfies (1.7),
F has no finite n-th derivative at t = 0.

Proof of (2.2). We have at ¢ =0,
wa
= Z“v 52y .

Here, as t varies, the quantity on the left attains a greatest absolute
value < 3 la,]. Therefore (2.2) reduces to estimating the sum

PACEDIE D

2N A AR F (¢ y8in™ (ch /h,) sin?(wk/h,)
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where §; is the sum for b, < Max(h, k), and Y, for h, > Max(h, k). In 3,
we have

ol <@h)ph,) < e)yp(h,) itk <h,
o} < @ (By)p (h,) (mh[R,)" < (27)" () (h,)

This second estimate iz therefore valid in all cases, and if IV is the smallest
value of » in ), we find that, if b < %,

otherwise.

D<@ (k) Y p(hy.) < @) p(h)p(k) 327 < 2(2n)"0 (h) p(k),

1 =0

or similarly, if 1A <k< b,

D < 2p(h)p(h) < 20(1)p(2K) < do (h)p(k)
1

by (1.1),

80 that the previous estimate ig still valid. On the other hand, in ), we
have, since |sind| < |6],

o] < @ (h) p () (wh 1) (=ke [h,)2 < 2" F 0 (R) p () (wk [1,),
on account of (1.1). Thus by C(1),

2 < m@R o) 3 (k/k) < w2 el 3 2
2 hy>k
= (2m)" g (h)p(k).
Evidently (2.2) follows by choosing ¢ so that
' 2772671 — (2 4 4n?) (2m)".

Proof of (2.3). We shall make % describe the sequence {h}. We
therefore set now % = hy. By O(1) the quantity sin(wh/h,) then vanishes
for » > N, and lies, for » < N, between 1 and 2h/h,, since the minimum
of (sin6)/6 in 0<< 0< /2 is 2/x, attained at § = 7 [2.

Thus at ¢t = 0 we have

. N1
R A F(1)] = 2"07@-“2 @ (h,)p(h,)[sin® (wh/h,)]
y=0
.\7’—11 N—1
=27k D p(h)p(h) (2R =0 3 b (k) p(h,).
v==( v==0

This means that, in norm, the symmetric difference ratio of order n exceeds
& constant multiple of the partial sum Y, of our divergent Y-series, and
80 tends to infinity as k-0 along the sequence {h}. The possiblity that
F has a finite #th derivative at ¢ = 0 is clearly excluded, and this completes
the proof of (2.3), and so of Theorem (2.1).
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3. Let o = gly, 2(u) =’LF"<;/)(1L)V1/J(’L£). As stated earlier, we now
strengthen our assumptions about ¢: we shall suppose ¢ monotone increas-
ing, or more generally subject to an-inequality of the type

o(du) < Ko(u) for 0<i<1,

where K is independent of u, 1. It ¢ is supposed monotone increasing it
is clear that the divergence of §(k) implies that of the twin integral
1
8°(h) = [ " p(w)dg(w),
[}
since we have then

8*(h) = B(h)+ [w"ppdloge > S(h).

This is the “reason behind the requirement on ¢”, but we do not use
it in any explicit way.

In addition we shall make an assumption on y in relation to the se-
quence {A}, but this is not really an assumption, because we can arrange, .
as will be seen below, for it to be satisfied, simply by choosing {h} con-
veniently. We shall assume that the sequence

) =9 (v =1,2,..)

increases monotonely. Of course, if the sequence is monotone, it has to
be monotone increasing, since

2(w(h,))m< oo, while 21,(1{)(7&,,))“2 =Y = oo.

The function F will now be chosen as before except for the choice
of the constant factor ¢, which we write in the form ¢ = ¢;¢,, where
¢, > 0, ¢, > 0 are still to be determined. In that case F is now the con-
volution fxg of the pair of functions

f(t) = (_,5)71012 p(h,) =t

(3.1)

g() = (=i, D p(h,) e,
v=0

To see this it is sufficient to verify the convergence of Yo(h,), 3w (h,).
The former is majorized by the multiple Kg{h,) of the latter, which is
in turn majorized, on account of the first relation (1.3), by a multiple
of the geometric series > 27

The convolution #' = fxg, on the period h,, which we take to be 1,
satisties the identity
A4 AP F = (40 f)+ (4 g).
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It will follow that relation (1.7) must remain valid in. the wider range
0< <, 0< k<1, if we verify, as we now shall, that by choice of
Gy Cgy
(3.2) A< @by, 142 g(OI< p(h).

Verification of (3.2). We have, at ¢ =0,

= ok, =D

VV) h,)sin?(nch [h,) Eb;’

2“”0;’ AFF (1) Vsin®™(mh [h,) say,

27 Mg (1) BRY

where as before the left-hand sides attain, as ¢t varies, a greatest abgsolute
value < Y |by], or < Y'[b,|. We write

Swi=3+3, Swi=3+3,
where 3}, 37 are sums for h, < b, and Y, 3, for h, > h. Wewrite 4, for

p(h,))™*?, and N for the smallest » such that h, < h.
In 3, Y we have

b < g(h,) < Ke(h)y(hy),  b)| < p(h,).

< Yl 7tmr )< phy) 1277 < 29(h),
S <Koy 3 < 2Ko(h)p(h) = 2Kp ().
On the other 'hamd in Y, Y, we have » = N—1—r (r>0), so that
19,1 < w(h,) (mh/h,)2 < 229 (R) hfh, < 2m2y(R)27",
o) < @ (h) (hh,)" = (k)" 4, < (h)" o1y
<27 ﬁ(”W‘%A oy =27 (wh k) @ (hyy)
<277 (2r)re(h).

Consequently

Therefore
2, <2mip(h) D27 = dwiy(h),
Sl <@arem Y2 = (2+V3)@nr ),
and to derive (3.2) it is enough to choose ¢;'27% = 2--4xn2, 12"

= 2K + (24 V2)(2r)™

4. Thinning the Y~ series. We denote by y, the general texm y, 1/1;@—:)

- of the Y-series (1.2), where by hypothesis 0(1) is fulfilled, and partially

0(2), and the series  y, diverges. For this series we shall now suppose
the first inequality (1.3) strengthened to

(41) 16 (k) < (ko) e 4Vy(h) < Voplh,_y)
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This means that, for any v,

21/1/) By ) ) V’lp

r=1

(4.2) S\r’ = 3Vp(h,)
‘We arrange for (4.1) to be satisfied, simply by choosing s from the
values 0,1, 2, 3 in snch a manner that the series

¥
2 Yargs
v

be divergent, and by then rewriting h, for h,,,,, and the other symbols
correspondingly.

However, the new divergent Y-geries thus obtained will now be
thinned out further, and for this purpose we denote by E the set of suffixes
» for which

' <y implies  x. < y,.

We write further E, for the set of positive integers » such that

XV > XV—l—r‘
Evidently by (4.2)

2?/u-|-r < XwZ l/"/)(hwi»'r)

reld, Pe=l

It follows easily that Y y, diverges, since its partial sum for » < N
are)'u
differs by at most a third of itself from the partial sum ¥, . If we now
rename h, the »th term of the restriction to weE of the sequence hy
(u=1,2,...), we see that y, now increases monotonely with ». The cor-
responding new Y-series is still divergent, and is subject,to O(1) and
partially to CO(2).

5. We consider specially the cage m ==1. We shall then show that
by modifying the constant factor in g(f) the second inequality (3.2) can
be replaced by the first ditference condition

1459 (O] < p(h).

Tovidently, by writing 3¢ for g, we could then satisfy also the second
inequality (3.2) as it stands, so that we are now, in effect, obtaining a stron-
ger result than in the preceding section in our special case.

We choose this time

) exmilhs,

1) = —ioy > p(h,)
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At t =0 we have
@7 Ay (1) = Y w(h)sin(mhjh)= b, say,
and as before
2 Ib,] =ZI+227

3= dmI< Y wh) <),

i

=N =N
M= NI Y w(h)(mhb,).
442 v%\r "%;

‘However, the last sum is now
Ry
< ¥ N0, b ),
p(h) &
and this we have already estimated. It is therefore

<K Z((Z; (2+V2)2mp(h) = K (2+V2)2mp(h),
and our assertion follows by choosing 672271 = 2+ (24 V2)2nK.

‘We remark that the symmetric differences in (3.2), or in its modifica-
tion above, can of course be replaced by ordinary differences 4, defined
by setting, for an arbitrary function @, 4,G(%) = Q(t-+h) —G{1). For this,
it is sufficient to change the variable ¢ to t - 4h. Thus our functions f, ¢
now satisfy

(5.1) [afOI < @(R),  |dag(B)] < p(h),

and the convolution F = fxg has no linite derivative at ¢ = 0. We note
that the second inequality (4.1) can of course be written |4,7(f)| << v(h),
where 7 is the conjugate of g.

L]

6. The functions f, ¢ of the preceding section provide converses to
existence theorems for Stieltjes integrals of functions subject to conditions
of the type (5.1), and also for corresponding stochastic integrals. It is
important that that f, g are periodic and that §(i) = g( —1%). According
to [6] ((5.4), p. 188), this implies, in view of the continuity of f, ¢ that
the. existence of

1
I=[fig
0

a8 a Riemann—Stieltjes integral ensures that I be the derivative at ¢ = 0
of the convolution # = fxg, and in particular that this devivative be
finite. Indeed the existence of such a finite derivative at ¢ = 0 is shown
to be equivalent in such a case to each of the generalized definitions
#, F, & of the integral 1. Thus for the pair f, § of the preceding section,
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not only does I not exist as a Riemann-Stieltjes integml, but it also
does not exist as the limit of

1 N . t
I = [fag, where F(ty= [ f(w)dufn,
. 0 t—n
as h-»0. Here [ is an elementary integral easily evaluated by parts on
account of periodiciby: We have in fact

I=—[fgat = [ (ft—n)—f0)g@)at/n.

From the same pair of functions f,g we can construct a pair f(t)
F(t, w) and & pair f(t, ), §(t, o), where functions of # only are deterministic,
and functions of (¢, w) are stochastic. We do so by the simple expedient
of making f(4, w) or ¢(¢, ) independent of w. Evidently the covariance
of ¢ satisfies
(4, 44| = | [ dodgd*g| < p(14)p(|4%).

Similarly g satisfies a nigh-martingale condition. (We use the notation
of [6], [7].) ‘

Thus, with our hypotheses on ¢, v, in all these cases, the divergence
of the integral (1.3) implies the existence of a pair f, 7 for which the Stieltjes
integral, or the stochastic integral with deterministic or with stochastic
integrand, does not exist. This means. that the results of [6], [7] can
now be regarded as being, in the appropriate sense, the best of their kind.
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