Contents of volume LV, number 3

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. O. Osho, Norm-decreasing isomorphism on hermitian elements and the group of isometric and invertible multipliers of a Banach algebra</td>
<td>207–214</td>
</tr>
<tr>
<td>L. G. Young, A convex set of seminorms and approximations in the theory of Stieltjes and stochastic integrals, and for set derivatives</td>
<td>215–223</td>
</tr>
<tr>
<td>H. Loom, Banach spaces and the category of spaces of continuous functions on Banach spaces</td>
<td>225–237</td>
</tr>
<tr>
<td>P. Tognotti, Further results on integral representations</td>
<td>239–245</td>
</tr>
<tr>
<td>Y. Mano, On the integrability of a class of integral transforms</td>
<td>247–259</td>
</tr>
<tr>
<td>M. Wenzel, Minimal Entails on Hyperbolas and Injunctive Functions</td>
<td>261–264</td>
</tr>
<tr>
<td>H. Ajina, Some permanence properties of locally convex spaces defined by norm space ideals of operators</td>
<td>265–278</td>
</tr>
<tr>
<td>M. Riesz, Two weight function norm inequalities for the Hardy–Littlewood maximal function and the Hilbert transform</td>
<td>279–294</td>
</tr>
<tr>
<td>V. Peetre, All separable Banach spaces admit for every ε > 0 a fundamental total and bounded by 1 + ε Lebesgue sequences</td>
<td>295–304</td>
</tr>
</tbody>
</table>

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief), A. Pelczynski, W. Zelazko

The journal prints original papers in English, French, German and Russian, mainly on functional analysis, abstract methods of mathematical analysis and on the theory of probabilities. Usually 3 issues constitute a volume.

The papers submitted should be typed on one side only and accompanied by an abstract, normally not exceeding 200 words. The authors are requested to send two copies, one of them being the typed, not Xerox copy. Authors are advised to retain a copy of the paper submitted for publication. Manuscripts and the correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA
ul. Śniadeckich 8, 00-950 Warszawa, Poland

Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ul. Śniadeckich 8, 00-950 Warszawa, Poland

The journal is available at your bookseller or at ARS POLONA

Krakowskie Przedmiescje 7, 00-689 Warszawa, Poland

PRINTED IN POLAND

WROCŁAWSKA DRUKARNIA NAUKOWA

STUDIA MATHEMATICA, T. LV. (1976)

Norm-decreasing isomorphism on hermitian elements and the group of isometric and invertible multipliers of a Banach algebra

by

E. O. Osho, Bi (Ibadan, Nigeria)

Abstract. Let $A_i (i = 1, 2)$ be a complex Banach algebra, T, a norm decreasing algebra isomorphism of A_1 onto A_2, $H(A)$, the Banach space of hermitian elements in A_i and $G(A)$, the group of isometric and invertible multipliers in A_i. We show that

(i) If A_1 is unital, $TH(A_1) = H(A_2)$, and $TG(A_1) = G(A_2)$. But if $A_1 = A_2 = A$ and $TG(A) = G(A)$, then $TH(A) = H(A)$.

(ii) If A_1 is a *-algebra, then T is a *-isomorphism.

(iii) If A_1 has a minimal approximate identity I, the induced map of the multiplier algebra A_2^* onto A_1^* is a norm decreasing extension of T and $T^* G(A)^* = G(A_1)^*$.

We finally construct an example to show that T does not in general preserve $G(A)$ and $H(A)$.

1. Introduction. We shall investigate, in this paper, the effect of norm-decreasing algebra isomorphism on hermitian elements $H(A)$ and the group of isometric and invertible multipliers $G(A)$ of a Banach algebra A. The motivation for this work is Wendel’s paper in [7] on the preservation of $G(A)$ by a norm-decreasing T when A is a group algebra, Rigelhof’s in [5] when A is a measure algebra on a locally compact group, and Wood’s in [8] where A is $L^p(G)$ for compact group. We shall indicate that $G(A)$ and $H(A)$ are not, in general, preserved by a norm-decreasing T. But when $G(A)$ is preserved, $H(A)$ is also preserved.

This work is a part of the author’s Ph.D. thesis and I wish to express my thanks to Dr. G. V. Wood of the University College of Swansea for his help and advice as my Supervisor throughout my three years stay in Swansea.

2. Notations and definitions. We shall always consider Banach algebras A over the complex field C (A, assumed to be without order (i.e. $\forall a \in A$, $a^2 = 0$ or $A^2 = 0$ or $a = 0$)). We shall denote by R the real scalars and by I, the identity in A if it has one. $g(a)$ denotes the spectral radius of $a A$.

2.1. Definition: Hermitian Elements (see [1]). Let A be a complex unital Banach algebra (i.e. $1 \in A$ and $\|1\| = 1$). We denote by A^* the dual
space of A and by $S(A)$ the unit sphere of A. Given $x \in S(A)$, we define

$$D(A, x) = \{ f \circ A^* : f(x) = 1 = \| f \| \}.$$

Given $a \in A$ and $x \in S(A)$, let

$$V(A, a, x) = \{ f(ax) : f \in D(A, x) \}$$

and

$$V(A, a) = \bigcup \{ V(A, a, x) : x \in S(A) \}.$$

$V(A, a)$ is called the numerical range of a. $a \in A$ is hermitian if $V(A, a) \subset \mathbb{R}$ and we shall denote by $H(A)$ the set of all hermitian elements of A.

$B(A)$ denotes the Banach algebra of all bounded linear operators in A. L_a (defined by $L_a a = ax$ $\forall a \in A$ $x \in A$) denotes the left multiplication operator. The right multiplication operator R_a is similarly defined.

If A has no identity, then $H(A)$ is hermitian if $L_a \in B(A)$ is hermitian. We shall need the following results on hermitian elements.

2.3. Proposition. Let A be a complex unital Banach algebra. Given $a \in A$, the following statements are equivalent:

(i) $ha \in H(A)$;

(ii) $\lim_{n \to \infty} \frac{1}{n+1} \| [a, h] \| = 0$;

(iii) $\| [a, h] \| = 1$ $\forall a \in R$ (see Lemma 2.2 of [1]).

2.4. Proposition. $H(A)$ is a Banach space (see Lemma 4.5 of [1]).

2.5. Definition. Multiplier algebras (see [3]). The bounded linear operator φ on A is a multiplier of A if $\varphi(ax) = (\varphi a)x = \varphi(xa) \forall a, x \in A$. If $\varphi(ax) = (\varphi a)x = \varphi(xa)$, then φ is a left multiplier of a. If $\varphi(ax) = \varphi(\varphi a)x = \varphi(xa)$, then φ is a right multiplier of a. To see repetition, we shall deal with Banach algebras of left multipliers only in this paper; we denote this by A^\star. Clearly, $L_a \in A^\star$.

If A has an identity, then $A = A^\pi$, $\varphi \in \mathfrak{G}(A)$ if $\varphi \in A^\pi$ and $[\varphi, x] = [\varphi x, x] = [x, x] \forall x \in A$. If A has an identity, then $\mathfrak{G}(A) = \{ x : [x, x] = [x, x] = 1 \}$.

In fact, $\mathfrak{G}(A)$ is a topological group in the strong operator topology (SOT). (see Lemma 1.6.1 of [2]). A net (a_α) converges to φ in the SOT iff $\lim_{\alpha} [a_\alpha, x] = 0 \forall a \in A$. It converges in the weak operator topology (WOT) iff for each $\varphi \in A$ and $\varphi^* A^\pi$ we have

$$\lim_{\alpha} \| \varphi^* (\varphi_\alpha, x) - \varphi^* (\varphi_{\alpha}) \| = 0.$$

2.6. Definition. A net (a_α) in a Banach algebra A is a left approximate identity if $\lim_{\alpha} [a_\alpha, x] = 0$ for each $a \in A$. It is a right approximate identity if $\lim_{\alpha} [x, a_\alpha - x] = 0$ for each $a \in A$. It is an approximate identity if $\lim_{\alpha} [a_\alpha, x] = 0$ for each $a \in A$. It is minimal if $\lim_{\alpha} [a_\alpha, x] = 1$ in addition.

$[L_a, \varphi_a]$ is dense in A^π in the SOT iff A has an approximate identity (see Theorem 1.1.6 of [3]).

3. Isomorphism of $H(A)$ and $G(A)$.

3.1. Theorem. Let T be a norm decreasing algebra isomorphism of a complex unital Banach algebra A onto another A.

(i) $TH(A) = H(A)$ and $TH(A) \cap H(A)$ and $TGH(A) \supseteq G(A)$.

(ii) $TGH(A) \supseteq G(A)$.

Proof. (i) Let $h \in H(A)$; then

$$\| \exp iah \| = 1, \quad a \in R.$$

By 2.2.

Since T is algebraic, $T \exp iah = \exp iTh$. Hence

$$\| \exp iTh \| = \| T \exp iah \| \leq \| \exp iah \| = 1 \quad \forall a \in R,$$

i.e.

$$\| \exp iTh \| = 1$$

and $TH(A) = H(A)$.

This proves (i).

(ii) Let $a \in G(A)$. Then $[a, [a]] = 1$ since $A = A^\pi$. Hence $\| Ta \| \leq \| [a, a] \| = 1$ and $\| Ta^{-1} \| \leq \| [a, a] \| = 1$. But $Ta^{-1} = (Ta)^{-1}$. Therefore $[Ta^{-1}] = [Ta^{-1}] = 1$ and (ii) is proved.

Before proceeding with our investigation, we shall use 3.1 to show that norm decreasing is sufficient for Corollary 4.5.6 of [3] to hold.

3.2. Theorem. Any norm-decreasing isomorphism T between two B^π algebras A and A is a *.

Proof. It is known that if A is a Banach algebra with an approximate identity and \tilde{A} is the unitization of A, then

$$H(A) = A \cap H(\tilde{A})$$

(1)

Let T be an algebra isomorphism of a Banach algebra A onto another A and T be defined thus:

$$\tilde{T}(a, a) = (Ta, a), \quad \varphi \circ A^\pi \circ \varphi \circ A^\pi \circ \varphi.$$

Clearly, \tilde{T} is an algebra isomorphism of \tilde{A} and \tilde{A} and it is norm-decreasing. The norm in \tilde{A} is defined by

$$\| (a, a) \| = \| a \| + |a|.$$

209

Norm-decreasing isomorphism
Hence, if A_i ($i = 1, 2$) has an approximate identity, we have
\[
TH(A_i) = \tilde{H}(A_i) = \tilde{H}(A_i) \ast H(A_i)
\]
(1)
\[
\leq T(A_i) \ast TH(A_i)
\]
(2)
\[
\leq A_i \ast H(A_i)
\]
by 3.1
(3)
\[
= H(A_i)
\]
(4)

Since a B^\ast algebra has an approximate identity, T then maps a hermitian element to a hermitian element. But an element of a B^\ast algebra is hermitian iff it is self-adjoint (see 2.1.3 of [3]). Hence T is a \ast.

3.5. Lemma. Let A_i ($i = 1, 2$) be a Banach algebra with a minimal approximate identity. Suppose that T is a norm decreasing algebra isomorphism of A_i onto A_i. Then $T^{\ast m}$, the induced map of A_i onto A_i, is a norm-decreasing extension of T.

Proof. Let $\varphi_i A_i$, $T^{\ast m}$ be given by
\[
T^{\ast m} \varphi_i = T \varphi_i T^{-1}
\]
(2)

We shall only show that $T^{\ast m}$ is a norm-decreasing extension of T as other properties of an algebra isomorphism can easily be verified. Let $\{a_i\}$ be a minimal approximate identity in A_i. Then $\{T(a_i)\}$ is an approximate identity in A_i and $\|T(a_i)\| \leq 1$. Let $a' \in A_i$; having
\[
(T^{\ast m} \varphi_i)(T(a_i) \ast a') = (T \varphi_i T^{-1})(T(a_i) \ast a') = (T \varphi_i T^{-1} T(a_i)) \ast a' = (T \varphi_i a_i) \ast a'.
\]

Hence
\[
\|T^{\ast m} \varphi_i(T(a_i) \ast a')\| = \|T \varphi_i a_i \ast a'\|
\]
\[
\leq \|T \| \|T \varphi_i\| \|a_i\| \|a'\|
\]
(5)
\[
\leq \|T \| \|a'\|.
\]

Also
\[
\liminf \|T^{\ast m} \varphi_i(T(a_i) \ast a')\| = \|T \varphi_i a_i \ast a'\|
\]
\[
\leq \|T \varphi_i\| \|a'\|
\]

Therefore $\|T^{\ast m} \varphi_i\| \leq \|T \varphi_i\|$.

Since $\{L_a\}$ is a strong operator dense in A_i (see 2.5) and $\|a\| = \|L_a\|$, $\{a\}$ is strong operator dense in A_i.

3.4. Theorem. Suppose T is a norm-decreasing isomorphism of A_i onto A_i, as in Lemma 3.3 above. Then

(i) $TH(A_i) \subseteq H(A_i)$ and

(ii) $T^{\ast m} G(A_i) \subseteq G(A_i)$.
Preservation of $G(A)$ by a norm-decreasing T implies the preservation of $H(A)$ as we now show.

3.7. **Theorem.** Let T be a norm-decreasing algebra automorphism of a complex unital Banach algebra. Then $TG(A) = G(A)$ implies $TH(A) = H(A)$.

Proof. Let $G_t(A)$ be the group generated by $E = \{\exp\{it\} : t \in H(A)\}$. Then $G_t(A) \subseteq G(A)$ since $\|\exp\{it\}\| = 1$. In fact, $T(G_t(A)) \subseteq G_t(A)$, for let $e = \exp\{it\}$. Then $Te = T(\exp\{it\}) = \exp\{iTh\}$. But $Th \in H(A)$ by 3.1. Hence $Te \in G_t(A)$. Since $G_t(A) \subseteq TG_t(A)$ by hypothesis, $T^{-1}a \in G_t(A)$ and $T^{-1}a = \exp\{i^{-1}h\}$. Therefore, $\|\exp\{i^{-1}h\}\| = \|T^{-1}a\|^{-1} = 1$, i.e. $T^{-1}a \in H(A)$ by 3.2. Combining this with 3.1, we have $TH(A) = H(A)$ and $TG_t(A) = G_t(A)$.

3.8. **Remark.** The converse of 3.7 is not known. It is, however, clear that $G_t(A)$ is not necessarily dense in $G(A)$ for, let $A = C[0, 1]$ (the unit circle in the complex plane). $G(A) = \{f \in C[0, 1] : \|f\| = 1\}$ and $E = \{\exp\{ig\} : g \in C[0, 1] \}$ is a real-valued function in $G(A)$. Let $x \in X$.

We shall conclude this paper with an example to show that norm decreasing isomorphism does not in general, preserve $G(A)$ and $H(A)$.

3.9. **Example.** Let C' be the Banach space of all sequences of bounded variation with norm defined by

$$\|x'\| = \|x\| + \sum_{n=1}^{\infty} \|x_{n+1} - x_n\|$$

and C'', the Banach space of all convergent sequences with supremum norm

$$\|x''\| = \sup_{n} |x'_n|$$

for $x' \in C'$.

C' is clearly a Banach algebra under pointwise multiplication. C' is also a Banach algebra under pointwise multiplication, for it can be shown by induction that

$$\left(\|x\| + \sum_{n=1}^{k} \|x_{n+1} - x_n\|\right) \left(\|y\| + \sum_{n=1}^{k} \|y_{n+1} - y_n\|\right) \geq \|x\|\|y\| + \sum_{n=1}^{k} \|x_{n+1} - x_n\| \|y_{n+1} - y_n\|$$

for all positive integers k.

If we allow k to tend to infinity, then

$$\|x'y'\| \leq \|x\|\|y\|,$$

$C', y' \in C'$.

All other properties are easily verified. C' and C'' are then complex unital Banach algebras with sequence (1) as the unit element and e_n as the basic elements in each of them (e_n is the sequence with 0 in every entry but the nth which is 1 and (1) is the sequence with 1 in every entry).

We now define the Banach algebra A as the direct sum of C' and C'' ($A = C' \oplus C''$) with norm defined by

$$\|(x', y')\| = \max \{\|x'\|, \|y'\|\}, \quad (x', y') \in A, \quad x' \in C', \quad y' \in C''.$$

We define a map T on A thus:

$$T(x', y') = (U', U''),$$

where

$$U'_n = a'_{n+1}, \quad n \geq 1,$$

$$U''_n = a''_{n-1}, \quad n > 1.$$

Clearly, T is linear, multiplicative and one-to-one. It is also easy to show that T is onto U is norm-decreasing since

$$\|(x', y')\| \geq \max \left\{ |x'_n| + \sum_{n=1}^{m} |x'_{n+1} - x'_n|, \sup |x'_n| \right\}$$

$$\geq \max \left\{ |x'_n| + \sum_{n=1}^{m} |x'_{n+1} - x'_n|, \max |x'_n|, \sup |x'_n| \right\}$$

$$= \max \{\|U'\|, \|U''\|\}$$

$$= \|T(x', y')\|.$$

Using the fact that $x \in H(C')$ implies $\lim_{n \to \infty} |\langle x, e_{n+1} \rangle - 1| = 0$, it is easy to show that $H(C')$ is the set of all real scalar multiples of the identity in C' and $H(C'')$ is the set of all real convergent sequences in C''.

Using the fact that $x \in H(C) \Rightarrow \langle x, e_{n+1} \rangle = 1$, it is also easy to show that $H(C') \cong H(C'')$.

Suppose

$$\langle \lambda, (x) \in H(C) \rangle$$

Then $(\langle \lambda, (x) \in H(C) \rangle$ and, by definition,

$$T((\langle \lambda, (x) \in H(C) \rangle,$$

where

$$\lambda \in \mathbb{C}$$

and

$$\left\{ v_n = \mu_n, \quad n > 1. \right.$$
It can also be shown, by calculation, that
\[G(C') = \{ x' \in C': x' = (e^{\alpha}) \}, \alpha \in \mathbb{R} \]
and
\[G(C'') = \{ x'' \in C'' : x'' = (e^{2\alpha}) \}. \]
It is easy to show that
\[\{ G(C') \cap G(C'') \} = G(A). \]
Hence
\[T(e^{\alpha}), (e^{2\alpha}) = \{(e^{\alpha}), (k_{n})\}, \]
where
\[k_{1} = e^{\alpha} \quad \text{and} \quad k_{n} = e^{2^n} \quad \text{for} \quad n > 1. \]
Since not every element of \(G(A) \) is of the form \(\{(e^{\alpha}), (k_{n})\}, TG \neq G. \)

References

Received November 27, 1973 (763)

STUDIA MATHEMATICA, T. LV. (1976)

A converse to some inequalities and approximations in the theory of Stieltjes and stochastic integrals, and for \(n \)th derivatives

by

L. C. Young* (Madison, Wisconsin)

Abstract. The object of this report is to establish by counter-examples the best possible character of theorems recently obtained about stochastic integrals and Stieltjes integrals, and about \(n \)th derivatives and finite differences. The hypotheses involve a pair of estimate functions subject to the convergence of a corresponding integral or \(Y \)-series, and it is shown that the divergence of this integral or series render in each case the conclusion false.

I. Our notation will be largely that of [6], [7]. Let \(m \) be a positive integer, and let \(\varphi(u), \psi(u) \) be functions defined for \(0 \leq u \leq 1 \), such that
\[\varphi(u) = \text{non-negative and Borel measurable}, \psi \text{ is continuous and monotone increasing, and takes the value } \psi(u) = 0 \text{ only at } u = 0; \]
and suppose that, for \(0 < \lambda < 1 \),
\[\psi(\lambda u) \geq (\lambda^p) \psi(u), \quad \varphi(\lambda u) \leq \frac{1}{\lambda} \psi(u). \]

We denote by \(\{a\} \) a decreasing sequence \(a_{n} \) \((n = 0, 1, \ldots) \) with limit 0 and with initial term \(a_{0} \leq 1 \). We write
\[Y = \sum_{n=0}^{\infty} \varphi(a_{n}) \psi(a_{n}), \]
and we denote by \(Y_{v} \) its partial sum for \(0 < v < N \). For \(n = 1, a_{n} = 2^{-n} \), the series (1.2) occurs in [3] and it then converges or diverges with the sum \(\sum_{1}^{\infty} \varphi(1/n) \psi(1/n) \) previously introduced in [3].

We say that the sequence \(\{a\} \), or the \(Y \)-series \(Y \), satisfies the condition \(C(1) \), if for each \(v \) the ratio \(a_{n+1}/a_{n} \) is an integer expressible as an integer power of 2, and satisfies the condition \(C(2) \) if
\[2 \psi(a_{n}) < \psi(a_{n+1}) \leq 8 \psi(a_{n}). \]

* Sponsored by the United States Army under Contract No. DA-31-134-ARO-D-462, and National Science Foundation under Contract No. GP-27211.