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On isometries in linear metric spaces

by
P. MANKIEWICZ (Warszawa)

Abstract. It 18 proved that if (X, d) is a Montel locally convex linear metric
space and 1'ig an isornetry from X onto another linear metric space with T'(0) = 0,
then I' is linear. Also, some other problems related to the question whether every
isometry ig linear are discussed.

Introduction. We shall be concerned with

(H) Oongmorurm. Let (X, d) be a linear metric space. Then every
isometry from (X, d) onto an arbitrary linear metric space (Y, h) with
T(0) = 0 is Uinear.

This conjecture has heen substantiated under some additional as-
sumptions. For example: Mazur and Ulam [5] have proved that (H) holds
provided that X is a linear normed space and the metric d is that induced
by the norm on X (¢f. Lemma 1), Charzyrski [1] has proved that (H)
holds under the assumption that (X, d) is a finite-dimensional linear
metiric space. The original (complicated) proof of Charzyriski has essentially
been simplified by Wobst in [6]. In this paper, using an argument similar
to that of Wobst, we establish (H) under the assumption that (X, d)
is an arbitrary Montel locally convex space.

The complete list of references on the subject can be found in [6].

Preliminaries. By a linear metric space (X, d).we shall mean a linear

space X endowed with a translation invariant métric d, i.e., with & metric

d satistying the condition

d(w,0) = d(w+y,y) for every »,ye X
and such that X endowed with the topology induced by the-metrie 4
is a linear topological space. )

Let (X, d) and (¥, k) be linear metric spaces. By a surjective isometry
between. (X, d) and (¥, k) we ghall mean a mapping T from X onto ¥
such that the equality d(u,v) = W{T(w), T(v)) holds for every u,ve X.
The set of all surjective isometries between (X, d) and (Y, h) which map
the origin onto the origin will be denoted by I ((X, @), (X, h) and the
sef of all isometries from (X, d) onto itself will be denoted by I(X, d).
If the metries ¢ and h are fixed, we shall often write simply I(X, X)
and I(X) instead of I((X,d), (¥, k) and I(X,d), respectively.
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For every linear metric space (X, d), by Inv(X) we shall denote
the family of all isometrically invariant subsets in (X7, d), i.e., d¢ Invy
if and only it T(A) = A for every TelI(X).

By R, Z, N we shall denote the setis of reals, integers (md natural
numbers, respectively.

We shall consider only the linear spaces over reals.

We begin with the following lemma (Charzyniski [17), which veduces
the conjecture (H) o the problen. concerning the linearvity of isomnetries
in I(X). .

Lemua 1. Let (X, d) be a linear metric space. Then the following two
statements are equivalent:

(i) for every linear metric space (X, h),
implies that T is linear,

(i) TeI(X) implies that T is linear.

Proof. Obviously, (i)=(ii). To prove that (i) = (i), let (X, d) and ( Y, h)
be arbitrary linear metric spaces and fix an arbitrary ivometry I'e 1(X, Y).
For every ye X define

the condiron 1'e I(X, V)

Uy(#) =TT (@) +T(y))~y for welX.
Set i
Sz, y) = Uyl®)-—a for a,yel.
We have ‘
1) Sz, y) = *’(T( @)+ L) (w44) = Sy, )  Tor every w, yeX.

Obvlously, UeI(X) for every yeX. Hence, by (ii), U, XX
is linear for each fixed ye X. "]wre[or e S(w,y) is linear in @. By (1),
8(w, y) is also linear in y. We shall prove that Sz, y) = 0for every @, 4 X.
To this end take an arbitrary ¢e¢R. Then we have

a(tw, 0) = a(U -1y (t), 0)=a(U,..

= d(8(tw, rlyﬁ), 0)~—

() —tw, 0) —d (ts, 0)
d(tw, 0) = a(S(m, y), 0)- d(iw, 0).
Leti;in_g t tend to zero, we obtain
S®,y) =0
By (1), this means that
I T (@) + 1 () =

for every w,yeX.

(@+y) for every m,yeX.

Hence

T(@+y) = T(0)+T(y)
Since T' is continuous and additive, we 111[91 that T i linear, which com-
dletes the proof of the lenmima.

for every @, ye X,
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Isometrically invariant sets in (‘X 5 ).

LemMA 2. Let (X, d) be a linear mctm'c space and let A e Inv(X). Then

() T(o-+A) = T(p)-+T(A) @)+ A for ze X and Te I(X),

(i) A is symmetric (ie., 4 = A)

Proof. (i). Fix @< X and Tel(X). The statement follows immedi-
atelv from the definition. of ‘rhe family Inv(X) applied to the isometry
TeI(X) defined by

f(u)ml’(w-l«u)w.’l'(w) for weX.

(ii) follows from the fact that —IeI(X), where —1I (@)
xe X.
LinMwa 8. Let (X, &) be & linear metric space. Then,
(1) every ball B open or closed with the centre at the orig gin 48 isometrically
invariant (i.e., BeInv(X)),

(i) if AyeInv(X) for te T, where 7 is an arbitrary set of indices,
then ﬂ Aye Inv(X),

—g for

(m.) Af AeTav(X), then AeInv(X) (4 denotos the closure of A),

(iv) if Aoy dyy.osy AyeInv(X), then Ay+Ay+4 ... +4,¢ Inv(X).

Proof. (i), (ii) and (iil) are trivial. To prove (iv) it suftices to show
that A4 --Belnv(X), provided that 4, BeInv(X). To this end take
A, BeTnv(X) and observe that, by Lemma 2 (i), for every Tel (X),
we have

(A +B) - Ul’ (@ B)

wed

=y

wed

@) +B =T(4)+B = A+B,
which means that 4 4 Be Inv (X), which completes the proof of the lemma.

We rocall that a subset 4 of a linear topological space (X,J) is
said to be bounded if and only if for every neighbourhood U of the orlgm
we have A « ¢/ for sufficiently large teR.

The following lenuma shows that in every locally convex linear metric
space the family of isometrically invariant subsets iy relatively vich,

© Lusmma 4. Let (X, d) be a locally conven linear metric space. Then for

every bowunded subsot B of X there evists a closed bounded isomeirically in-
variant subset A of X which contains B,

Proof. Take a bounded subset B in (X, d). For every i > 0, define’

A0y == {we X2 d(m, 0)<< 1},

and

ny = min{ne N: B o K+ K+ .. —I-IQ}

nomes
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Since B is bounded, we infer that for every i > 0 the number #, is finite.
Next, we define
WL = .Zf-g:}‘Kt-]- “.._.:!-_»Kt

ny times

for every t > 0 and finally we set
= M W,.

>0
Tt follows from the definition of B’ and from the previous lemma that B’
is isometrically invariant and that B = B, We shall show that B’ ig
bounded. To this end take any convex symmetric neighbourhood V of
the origin in (X, d) and let £, > 0 be such that K, = V. Then we have

=N We W,=E +E+ .. +Ey e VAV oo -V = 7,

>0

4, times 4 timos
which completes the proof of the boundedness of B’. To complete the
proof it suffices, by Lemma 3 (iii), to define 4 as the closure of B'.

2-extremal points. Let A be a subset; of alinear space X. Then a point
e A is said to be a 2-ewtremal point of A if and only .if whenever
o =27 (zm, +-x,) for some u,w,e A, then @, = ®, = ». The set of all
2-extremal points of A will be denoted by Ex,(4).

Lemya 5. Let (X, d) be a locally convew linear metric space and let A
be am isometrically invariant subset of X. Then for every 2-ewtremal pomt @
of A and for every isometry Te I(X) we have

T(w+u) =T(@)+T(u) for all ueX.
Proof. Fix an arbitrary o< Ex,(4). We have
(@+A)n(—2+44) = {0}.

Indeed, put § = (s+4)N{—a+ 4). By Lemma 2 we infer that —woe 4.
Hence 0¢S. On the other hand, ‘

—8 = —(@+A)N(~2+4)) = (~o~4)" (0~ A4)
= (—0+4)no+4) = 8.

Thus § is symmetric. Let we §. Then also - we S, Hence @y == 0+Ued
and @, =@ —ue d. But 27 (wy+@,) = , and therefore, by the definition
" of 2-extremal points, #, = #, = @. This implies that w = 0, Fence

8 =(w+A4)n(~a-4) = {0},
Now, fix an arbitrary isometry TeI(X). We have
-I(8) = {0y =T (@+4)NT(~2--4).

lm Tsometries in linear metric space
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Since AeInv(X) and by Lemma 2 (i), we obtain
@) (T (@) + T (A) N (T(— )+ T(4)) = {0}.

On the other hand, by the symmetry of 4 = T(A), we have T(—u)e A
and.

(3) T(@)+T(~a)e (T(w) + T (4) N (T(~ 2)+7T(4)).
(2) and (3) imply
T( ) = ~T(x).
Now, define
Ty = T(@w+u)—T(w) for weX.

Then Te I (X). Applying the same argument as before to the isometry ’f,
we obtain

© T(—a)= ~T@).
But T(—a) = —T(2) and T'(2) = T(20)— T («). This and (4) give
T(20) = 2T (). .

In the same manner, putting I, (u) = T'(n@--u) — T (nx), one can prove
by induction that

(8) T(nw) = nT (o)
for every ne Z.
Applying the same algument to the isometry U, defined by

Uy(w) =T(u+y)—-T(y) for' wueX,
where y is an arbitrary fixed point in X, we get by (5)
(6) T(no+y) =n(T(@-+y)—T(y))+T(y)

for every ne Z and every ye X.

Take an arbitrary we X. By Lemma 4, there exists a bounded subset
AyeInv(X) which containg w. Hence ma+ue mw+ A, for every me Z,
By Lemma 2 (i)

(7) T(mmw-u)e .T(mw)-{.-Al for every me Z,

By (8), (6) and (7) we infer that, for every me Z, '

(8)  m(T (@)~ T (@)~ T'(w)) = m(T (@+u)— T (u))+ T (u)— T (w)— mT ()
= T'(miw -+ u) — T (w) — T (ma)e T (mew) +A1+A1—T(mw)
= Ay Ay ‘
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Since A4, (and therefore A4;--4,) is bounded, (8) implies that the set
{m(T (@ +u)— T (%)~ ~T(u)): me %} is bounded. Hence I'(w-u)—1T (z)—
—T(u) =0, ie., -

(@ A-w) == 1 () -+ 1 (u)

for every we X, which completes.the proof of the lemma.

Main results. We begin with
LemMA 6. Let (X, d) be a linear metric space and let

= {pe X: T(w+u) =T (w)+T(u) for every T'e I(X) and ue X},

Then B is closed and isonwwiadll;l/ amvariont in (X, d).

* Proof. It follows from the continuity of isometries that B is closed.
We shall show that T(B) = B for every Tel(x). Indeed, fix TeI(X)
and ze B and consider an arbitrary isometry I'e I(X). Since InoT'e I(X),
we have
CORE (ToT)(@+2) = (ToT) (@) + (Lo T)(2)
for every ze X. On the other hand,

(10) (Tol)(w+2) = I{T(@+2)) = I{1'(2)-T(2 ).
* Putting 2 = T7"(%), we obtain, by (9) and (10), that
I(T (@) ) == I(’l’( 1)) -+ T ()

for every we X and every leI(X). This means that I'(w)e BB Lor every
TelI(X). Hence T(B)< B for every TelI(X). Putting T = U™, we
infer that B < U(B) for every Ue I(X). Hence B¢ Inv(X), which com-
pletes the proof of the lemma. ‘

The main result of the paper iy the following

TurorREM 1. Let (X, d) be a locally comvew linear melric space and

let (Y, ) be a linear metric space. Assume that, for every we X, at least one
of the following conditions holds:

(x) the set the 2-ewtremal points of

= {TeeX: T'el(X))
78 non-emply,
(%x) the set of the 2-emlremal jwmts of the elosure of A (n) is non- e'm,p ,
} (. *) the set of the 2-ewiremal pomts of the closure of the set {l’ e X:
Telf X d} 8 non-empty, where (X (1) denoles the completion of (X, d).

Then every surjective isometry between (&, d) and (¥, h) wln('h nmm
the origin onto the ovigin is linear.
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Proof. By Lemma 1, it suffices to prove that every T'e I(X) is linear.
To this end, it is enough to prove that, for every T'e I(X),
T(@w-u) = T(@w)+T(u) for every @, ueX.
Fix arbitrary =, we X and TeI(X).
Assume that (x) holds for the » fixed above. Let ze¢ EXZ(A(m)). Ob-
viously, 4(w)e Inv(X). Hence, by Lemma 5,
T(z-y) = T@)+Ty) for all yelX.
Since ce A (w), we hwve @ == U(z) for some Ue I(X). Thus, by Lemma 6
T (@) =1 () -+ T (u),
which completes the proof of the first part of the theorem. o
Now, assume that (xx) holds for the » fixed above. Let 2« Exz(A(m)).
Then there exist {z,: ne N} < X and {T,: ne N} = I(X) such that
(11) T,(w) =r, for every neN,
(12) @@ a8 f-roo.
Define @, == 1, (2) for ne N. By (11), we have
d(w, w,) = d(ﬂb(‘”)? Tn(“"n)) = d(2,, #)

and, by (12), we conclude that @,-o as n—>oco, Since zeBx,(4 (w)), by
Lemma b, we deduee that

L(z-by) = T(2)+T(y)

for every ye X (by Lemia 3 (iil), we infer that A_(;a_)e Inv(X)). Hence,
by Lemma G, ‘

(13) @y Ag) = T(0,)+T(y)

for every ye X and every ne N. Finally, by the continuity of 7' and be-
cause of w,->m and (13), we obtain

(1.4} T w) = T (@) -1 (u),

which. completes 1he He(f.(mr‘l 1m.11. of the proof of the theorenm.

Finally, assume that (" w w) holds for the @ fixed above. To extablish
(14), extend 7' tothoe monmlly Te1(X,dy and apply the same argument
as in the case (wx). This complotes 1he proof of the theorem,

~ We reeall that w linear topological space X is said to be a Montel
space itf every bounded subset of X iy precompact.

Provoserion 1. Let (X, d) be o Montel locally convew linear metric

space. L'hen for cvery we X the condition (*’**) of Theorem 1 is satisfied.
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Proof. It suffices to show that every closed bounded subset A of
" a Montel, complete, locally convex linear metrie space admits a 2-extremal
point. Bubt then 4 is compact and the desired result follows from the
Krein—-Milman Theorem. (cf. [2]).

By Theorem 1 and Proposition 1 we obtain

TeeoREM 2. Let (X, d) be o Montel locally convex linear metrio space
and lat (Y, h) be a linear melric space. Then every isometry between (X, d)
and (Y, k) which maps the ovigin onto. the origin 8 linear.

Theorem 1 shows that the technique of studying 2-extremal points
is very useful in dealing with the problem of isometries. It can be shown
that under some agsumptions on the space (X, d); the condition (x) of
Theorem 1 is equivalent to the fact that every isometry from (X,d)
onto another linear metric space which maps the origin to the origin
is linear. This is the case where the topology of (X, d) can be generated
by a uniformly convex norm on X. To prove this we shall need some
additional results.

We shall say that an ordered pair (#,, #,) in a normed linear space is
a (1, t)-part of a tree iff |lw, — @yl > 2. Now if (n, ¢)-part of a tree iy defined,
we shall say that a 2"*'-tuple (1, @a, ..., @u4a) I8 an (-1, t)-part of
a tree iff ||wy; ; — @yl = ¢, 1< j< 2" and the 2"-tuple

By o+ 0y @y, Byngrg + Bynogr
2 o2 7TV 2 ‘

iy an (47, 1)-part of atree. We shall say that a normed linear space (B, || |))
has the finite tree property iff there exists a t > 0 such. that for every ne N
there exists an (1, ¢)-part of a tree where all elements have a norm at most 1.
The following theorem is due to Enflo [3].
THEOREM 3. A normed linear space can be endowed with an equivalent
uniformly convex norm if and only if it does not have the finite tree property.
ProPosyrioN 2. Let (X, d) be a linear metric space swoh that every
isometry T'e I(X) is Linear. Then every w< X is a 2-cwtremal point of the set
A, ={T(w)e X: TeI(X)} provided that there ewists uniformly convem
norm ||+ || on X which induces the topology of X. )
Proof. Let ||| be a uniformly convex norm on X. Let we Y. Since
AyeInv (X, d) and 4, is the smallest isometrically invariant set containing
@, we deduce (by Lemma 4) that 4, is bounded, Without loss of generality
we may asgume that
(15) sup{lyli: ye 4.} < 1.

Assume that & = §(w,+2,) where @,,me 4, and @, # o o, (ie, o
is not a 2-extremal point of A4,). Let d(w,, a,) = » > 0. Since the metrlc
induced by the norm ||| is equivalent to d, we infer that there exists

icm
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at> 0 such that d(y, ) = r implies |ly —2{| > ¢. Thus (#1, @) i3 & (1, ?)-part
of a tree. By the definition of 4, 2 there exists a T¢I (X, d) such that
= T, (). Let @} = T (x,) and @y = T,(m,). Since T, is linear, we have

o} +a; - Ty (24) -+ Ty (,) :T(Wi’;“ma) = T(2) = a,.

2 2
Similarly, let Tye I(X, d) be such that w, = T,(x). Let of = Ty(2,) and
o = Ty (a;). As before, we conclude that

g 4o}
»—a..zm_. = (”2'

Since Tl, Tye I(X, @), we have d(af,af) = d(a}, 4}) = d(a,, aaz) Hence
ll} — @3]l =t and [Jof— 3] = ¢ and therefore the quad:cuple (03, 03, 2%, &) is
a (2, t)-part of a tree. On the other hand, observe that a2c A, for P=1,2,

3,4 and, by (15), we deduce that

sup {llf]: ¢ =1,2, 3,4} <

Now, applying the same mrgument to #}, o, o3, and o} independently,
one can define a (3, t)-part of 4 tree with all elements of the norm at most 1,
and, in the same manner, one can define by induction an (n, t)-part of
a tree with all elements of the morm at most 1, for n = 4,5, ... Thus
(X, || ) bas the finite tree property and therefore, by Theorem 3, || |
cannot be uniformly convex, a contradiction. Hence x js a 2-extremal point
of 4,, which completes the proof of the proposition.

By Theorem 1 and Proposition 2 we have

TuworeM 4. Let (X, d) be o linear metric space whose topology can be
generated by o uniformly convew norm. Then the following two statements
are equivalent: i

(i) Bvery we X is a 2-emtremal point of the set A, = {T'(w): Te I(X, d)}.

(ii) Bvery isometry from (X, d) onto another linear metric space (¥, k)
which maps the origin onto the origin is linear.

Note that combining the technique used in this paper with the argu-
ment of the proof of Theorem 2 in [4] one can obtain the following result:

Topormy 5. Let V be an open, connected subset of a Montel locally
conven Uinear metrio space (X, d). Then every isometry T from V onto an
open subset U of a Unear melric space (¥, h) can be uniquely extended to
an affine isometry T between (X, d) and (Y, h).

Isometric embeddings in Montel locally convex linear metric spaces. The
following fact iy well known (ef. [6], proof of Theorem 2).

" Tumonmw 6. Let (K, d) be o compact metric space and let J be an iso-
mefry from K into itself, Then J is surjective.
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The aim. of this section is to prove

TumoreM 7. Let (X, d) be o complete, Montel, looa,lfy con'wm‘ linear
metric space. Then every isomelry from (X, d) into itself 18 surjective and
affine.

Remark. The finite-dimensional version of Theorem 7 ix a well-
known consequence of the Invariant Domain Theorem (cf. [5]).

For a linear metric space (X, d) we denote by J(X) the set of all
isometric embeddings of X into itself which fix the origin. Define

Inv*(X) = {4 = X: J(A) = A for every Je J(X)}.

Using a similar argument as in the proof of Lemma 2, one can prove

LeMMA 7. Let (X, d) be a linear melric space and let A e Inv*(X).
Then

(i) T(w-+4) e T(w)+A forae X and L'eJ(X),

(i) 4 s symmetric. )

The following two lemmas show that the family Inv*(X) is relatively
rich. .

Levma 8. Let (X, d) be a linear metric space. Then

(i) every ball (open or closed) with the centre ab the origin belongs
to Inv*(X),

(i) if Ase Inv(X) for te T, where T is an arbilrary set of indices,
then QA,E Inv*(X),

(iti) if AeInv*(X), then AeInve(X),

(iv) if Ay, 4y, ..., A, eInv¥(X), then A,-+A,+ ... - Aye InvH(X),

(v) Inv*(X) < Inv(X).

Proof., The proofs of (i)—(iv) ave, in fact, the same ay in the case
of Lemma 3. To prove (v) observe that if 4 ¢ Inv*(X) then both T (4) = 4
and T71(4) = 4 for every Te I(X). But T71(4) = A implies A < T'(4).
Hence T'(4) = A for every T'e I(X), which completes the proof of the
lemma.

Lemma 9. For every bounded subset B in a locally convex linear metric
space (X, d), there ewists a closed bounded subset A ¢ Tnv* (X)) which contains B.

Proof. Define A as in the proof of Liemama 4. By Temma 8, 4 bas
the required properties. )

Proof of Theorem 7. Take an arbitvary isometry TeJ(X). We
shall show that T is surjective, i.e., that w¢ T'(X) for every me X. To this
end, fix an arbitrary e X and let .4 be a closed bounded subset belonging
to Inv*(X) which contains @ (the existence of such a subset iy ensured
by Lemma 9). By the definition of Inv*(X), we infer that T vestricted
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to A is an isometry of A into itself. On the other hand, 4 is bounded
and closed, and therefore compact. Hence, by Theorem 6, every isometry
from A into itself i¢ surjective. In particular, T(4) = 4. Thus, ze A
=T'(4) = T'(X) and T is surjective. To complete the proof of the theorem,
observe that ‘every ivometry from X into itself is “translation” of an
isometry from J(X) and therefore is surjective and (by Theorem 2) affine.

Remarks added in proof. Rocently, R. R. Phelps [8] and R. E. Huff
and . D. Morris [7] have proved that a Banach space has the Radon—
Nikodym property if and ouly if every closed bounded subset of it has
an extremal point. Thus, using the same argument as in the proof of
Theorem 2, one can show the following

Turorum 9. Let (X, || ) be o Banach space with the Radon—Nikodym
property and let d be an arbitrary translation snvariant metric generating
the same topology as || |I. Then every isometry from (X, d) onto another linear
meiric space which sends the origin to the origin is linear.

Also, using the vesultis mentioned above, one can prove (cf. Theorem 4)

TunorEm 10. If (X, || |) and @ are as in the assumption of Theorem 9,

* then every e X is an extremal point (even strongly eaposed) of the set A(x)

= (T(w)e X: Te (X, )}
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