

Literatur

- I. C. Gohberg, A. S. Markus und I. A. Fel'dman, Normally solvable operators and ideals associated with them, Amer. Math. Soc. Translat., II. Ser. 61 (1967), S. 63-84. Russ. Original in Bul. Akad. Štiince RSS Moldoven, 1960, Nr. 10 (76), S. 51-70.
- [2] S. Goldberg und E. O. Thorp, On some open questions concerning strictly singular operators, Proc. Amer. Math. Soc. 14 (1963), S. 334-336.
- [3] J. Lindenstrauss und L. Tzafriri, Classical Banach spaces, Berlin-Heidelberg-New York 1973.
- [4] A. Pietsch, Theorie der Operatorenideale, Wissenschaftliche Beiträge der Friedrich-Schiller-Universität, Jena 1972.
- [5] H. R. Pitt, A note on bilinear forms, J. London Math. Soc. 11 (1936), S. 174-180.
- [6] H. Porta, Factorable and strictly singular operators. I, Studia Math. 37 (1971),
 S. 237-243.

Received July 12, 1974 (864)

Toeplitz operators for a certain class of function algebras

by

J. JANAS (Kraków)

Abstract. In this paper we describe a joint approximate spectrum of a p-tuple of Toeplitz operators for a certain class of function algebras (approximating in modulus). We also give a characterization of a C^* -algebra generated by Toeplitz operators modulo commutator ideal.

Let A be a function algebra on a compact Hausdorff space X. Suppose we are given a finite, regular Borel measure $\mu>0$ on X. Denote by $\mathscr{L}^2(\mu)$ the Hilbert space of all complex-valued μ -square integrable functions. One can define the $H^2(\mu)$ space as the closure of A in $\mathscr{L}^2(\mu)$ and $H^\infty(\mu)$ as the set of all functions $\varphi \in L^\infty(\mu)$ such that $\varphi H^2(\mu) \subset H^2(\mu)$. For $\varphi \in L^\infty(\mu)$ we define the Toeplitz operator T_φ on $H^2(\mu)$ by $T_\varphi f = P(\varphi \cdot f)$, where $f \in H^2(\mu)$ and $P \colon \mathscr{L}^2(\mu) \to H^2(\mu)$ is an orthogonal projection. Denoting by L_φ the operator of multiplication by φ in $\mathscr{L}^2(\mu)$, we can write

$$T_{\varphi}f = PL_{\varphi}f.$$

Let L(H) be the algebra of all bounded linear operators on a complex Hilbert space H. Denote by $\sigma_H(T_1, \ldots, T_s)$ the joint approximate point spectrum for a system T_1, \ldots, T_s of commuting operators in L(H) (see [1] for the definition). In the case where $X = \Gamma$ is the unit circle, A the disc algebra and μ the Lebesgue measure on X, it is well known that

$$\sigma_H(L_{\varphi_1},\ldots,L_{\varphi_n})=\sigma_H(T_{\varphi_1},\ldots,T_{\varphi_n}), \text{ where } \varphi_i \in H^\infty(\mu) \text{ for } i=1,\ldots,s.$$

Let $M_{r,\infty}$ be the spectrum of $L^{\infty}(\mu)$. Since

$$\sigma_{II}(L_{\varphi_1},\ldots,L_{\varphi_8}) = \{ (\hat{\varphi}_1(m),\ldots,\hat{\varphi}_s(m)), m \in M_{L^{\infty}} \},$$

where $\hat{\varphi}_i$ denotes the Gelfand transform of φ_i , we have

$$\sigma_{II}(T_{\varphi_1}, \ldots, T_{\varphi_8}) = \left\{ \left(\hat{\varphi}_1(m), \ldots, \hat{\varphi}_s(m) \right), \ m \in M_{L^{\infty}} \right\}.$$

The lemma which we shall now prove shows that the above equality is true in a more general setting.

LEMMA 1. Let A be a function algebra approximating in modulus (see [5] for the definition (1). If $\varphi_i \in H^{\infty}(\mu)$ for i = 1, ..., s, then

$$\sigma_{\varPi}(T_{\varphi_1},\,\ldots,\,T_{\varphi_{\delta}}) = \left\{ \left(\hat{\varphi}_1(m)\,,\,\ldots,\,\hat{\varphi}_s(m) \right), \ m \in M_{L^\infty} \right\}.$$

Proof. Let $\lambda \notin \sigma_{\Pi}(L_{\varphi_1}, \ldots, L_{\varphi_n})$, i.e. let there exist $\psi_i \in L^{\infty}(\mu)$ (i $=1,\ldots,s$) such that

$$\sum_{i=1}^{s} \psi_i(\lambda_i - \varphi_i) = 1.$$

Hence

$$\sum_{i=1}^s T_{\varphi_i}(\lambda_i J - T_{\varphi_i}) = I \quad \ (I \ \ \text{the identity in} \ \ L(H)) \, ,$$

which implies that $\lambda \notin \sigma_{\Pi}(T_{\varphi_1}, \ldots, T_{\varphi_s})$. Thus we have proved the inclusion

$$\sigma_{II}(T_{\varphi_1},\ldots,T_{\varphi_s}) \subset \{(\hat{\varphi}_1(m),\ldots,\hat{\varphi}_s(m)), m \in M_{T^{\infty}}\}.$$

To prove the inverse inclusion we may assume without loss of generality that $\hat{\varphi}_i(m_0) = 0$, i = 1, ..., s. It follows that for every $\varepsilon > 0$ there exists a neighbourhood of m_0 , U_{m_0} and $|\hat{\varphi}_i(m)| \leqslant \varepsilon$ for $m \in U_{m_0}$. Let $\hat{\mu}$ be a Borel measure on $M_{r\infty}$ induced by μ , i.e.,

$$\hat{\mu}(\hat{f}) = \int f d\mu$$
, for all $f \in L^{\infty}(\mu)$.

Let $v\geqslant 0$ be a continuous function on M_{L^∞} satisfying two conditions, $\int v d\hat{\mu} = 1$ and v(m) = 0 for $m \notin U_{m_0}$. Then, denoting by $\tau \colon L^{\infty}(\mu) \to C(M_{r^{\infty}})$ the Gelfand transform, we have

$$\int |\varphi_i|^2 \tau^{-1}(v) d\mu = \int |\hat{\varphi}_i|^2 v d\hat{\mu} \leqslant \varepsilon^2 \quad (i = 1, \dots, s).$$

Let $M = \max\{\|\varphi_i\|_{\infty}\}$ and $g = \tau^{-1}(v)$. By the Łuzin theorem, for every $\eta > 0$ there exists a compact set F such that $g|_F$ is continuous and $\mu(X \setminus F) \leq \eta$. We can extend $g|_F$ to a continuous function on X, $\tilde{g}\geqslant 0,\ \|g|_F\|_\infty=\|\tilde{g}\|_\infty \ \ ext{and} \ \ \int \tilde{g}d\hat{\mu}\geqslant 1-\delta>0, \ \ ext{for a certain} \ \ \delta>0. \ \ ext{Next}$ we have

$$\begin{split} \left| \int |\varphi_i|^2 g d\mu - \int |\varphi_i|^2 \tilde{g} \, d\mu \, \right| &\leqslant \int\limits_{X \diagdown F} |\varphi_i|^2 \, |g - \tilde{g}| \, d\mu \\ &\leqslant 2 \, M^2 \, ||v||_\infty \, \mu(X \diagdown F) \leqslant 2 \, M^2 \, ||v||_\infty \, \eta \, . \end{split}$$

Since η is arbitrary, this implies that

(*)
$$\int |\varphi_i|^2 \tilde{g} \, d\mu \leqslant 2\varepsilon \quad \text{ for } \quad i = 1, \dots, s.$$

(1) A function algebra A on X is approximating in modulus if for every positive, continuous function v on X there exists a sequence $h_n \in A$ such that

$$||v-|h_n|||_{\infty} = \sup_{x \in Y} |v(x)-|h_n(x)||_{\xrightarrow{n\to\infty}} 0.$$

Let $\{k_n\} \subset A$ and $|||k_n||^2 - \tilde{g}||_{\infty} \to 0$. By inequality (*) we have

$$\|T_{\varphi_i}k_n\|^2=\int |\varphi_i|^2\,|k_n|^2\,d\mu\leqslant 3\varepsilon\quad \text{ for }\quad n\geqslant n_0 \text{ and } i=1,\dots,s\,.$$

But $\int \tilde{g} d\mu \geqslant 1 - \delta$ and consequently there exists a $\delta' > 0$ such that

$$\int |k_n|^2 d\mu \geqslant \delta' \text{ for } n \geqslant n_1, \quad \text{ and so } \quad 0 \in \sigma_H(T_{\varphi_1}, \ldots, T_{\varphi_s}).$$

LEMMA 2. Let A be as in Lemma 1. If $g_i \in A$ (i = 1, ..., s), then

$$\sigma_{II}(T_{\varphi_1}, \ldots, T_{\varphi_s}) = \{ (g_1(x), \ldots, g_s(x)), x \in X \}.$$

Proof. Since the proof is similar to the proof of Lemma 1, we omit it. It is an interesting question whether Lemma 1 is true for more general function algebras. The following reasoning shows that it may be true for a more general case. Let A be a function algebra on X. We claim that there are $m \in M_{r\infty}$ for which $(\hat{\varphi}_1(m), \ldots, \hat{\varphi}_s(m))$ belongs to $\sigma_H(T_{\varphi_1}, \ldots, T_{\varphi_s})$, where $\varphi_i \in H^{\infty}(\mu)$, i = 1, ..., s. Indeed, denote by $\mathscr A$ the smallest commutative and closed algebra in $L(H^2(\mu))$ which contains T_{φ_i} $(i=1,\ldots,s)$. Let \mathscr{B} be the closed subalgebra of $L^{\infty}(\mu)$ generated by φ_i $(i=1,\ldots,s)$. Then, by Theorem 1.11 in [6], every point $(\xi(T_{\varphi_1}), \ldots, \xi(T_{\varphi_s}))$ belongs to $\sigma_{\varPi}(T_{\sigma_1},\,\ldots,\,T_{\sigma_o})$, where $\xi \in \varGamma(\mathscr{A})$ is the Shilov boundary of \mathscr{A} . Next note that $||T_{\varphi_i}|| = ||\varphi_i||_{\infty}$. Indeed, we can assume $\mu(X) = 1$; then for $\varphi \in H^{\infty}(\mu)$ and n = 1, 2, ...

$$||T_{\varphi}^{n}1||^{2} \leqslant ||T_{\varphi}^{n}||^{2} \leqslant ||T_{\varphi}||^{2n},$$

which implies that $\int (|\varphi|/||T_{\omega}||)^2 d\mu \leq 1$ and so $||\varphi||_{\infty} \leq ||T_{\omega}||$. Therefore the algebras A and B are isometrically isomorphic. Denote this isomorphism by $\tau \colon \mathscr{A} \to \mathscr{B}$. It induces a homeomorphism $\tau^* \colon \varGamma(\mathscr{A}) \to \varGamma(\mathscr{B})$ of the Shilov boundaries and we have for $\varphi \in H^{\infty}(\mu)$ the equality

$$\xi(T_{\varphi}) = \xi(\tau^{-1}(\varphi)) = \tau^*(\xi)(\varphi), \quad \text{where} \quad \xi \in \Gamma(\mathscr{A}).$$

Since $\tau^*(\xi) \in \Gamma(\mathcal{B})$, there exists an extension of $\tau^*(\xi)$ to a certain $\eta \in M_{\tau \infty}$, and so we get the equality

$$egin{aligned} \left(\xi(T_{arphi_1}), \ldots, \xi(T_{arphi_S})
ight) &= \left(au^*(\xi)(arphi_1), \ldots, au^*(\xi)(arphi_S)
ight) \ &= \left(\eta(arphi_1), \ldots, \eta(arphi_S)
ight) \epsilon \ \sigma_{II}(T_{arphi_1}, \ldots, T_{arphi_S}). \end{aligned}$$

The proof of the claim is complete.

In the case where $X = \Gamma$ it is well known [2] that a joint approximate point spectrum of the family $\{T_{\varphi}, \ \varphi \in H^{\infty}(\mu)\}$ is homeomorphic with $M_{r\infty}$. If A is approximating in modulus, then by Lemma 1

$$egin{aligned} \sigma_{ec{H}}(T_{arphi_1},\ldots,T_{arphi_{oldsymbol{s}}}) &= ig\{ ig(\hat{arphi}_1(m),\,\ldots,\,\hat{arphi}_s(m)ig),\,\,m\,\epsilon\,M_{ec{L}^\infty} ig\} \ & ext{for} \quad &arphi_i\,\epsilon\,H^\infty(\mu),\,\,i=1,\,\ldots,\,s\,. \end{aligned}$$

Assume also that the set $\{\varphi\psi,\ \varphi,\ \psi\in H^\infty(\mu)\}$ is linearly dense in $L^\infty(\mu)$. Then $\sigma_H\{T_\varphi,\ \varphi\in H^\infty(\mu)\}$ is homeomorphic with M_{L^∞} . Indeed, denote by $\mathscr R$ the family of all finite sets contained in $H^\infty(\mu)$. For a finite set $(\varphi_1,\ldots,\varphi_s)=\alpha\in\mathscr R$, write

$$X_{\alpha} = \{ (\hat{\varphi}_1(m), \ldots, \hat{\varphi}_s(m)), m \in M_{L^{\infty}} \}.$$

Then the mapping

$$r \colon M_{L^{\infty}} \circ m \to \{f_m\} \in \lim_{\substack{\alpha \in \mathscr{B} \\ \alpha \notin \mathscr{B}}} \{X_a\} \subset \prod_{\alpha \in \mathscr{B}} X_{\alpha}, \text{ where } f_m(\alpha) = (\hat{\varphi}_1(m), \ldots, \hat{\varphi}_s(m)).$$

and $\lim_{a \to \infty} X_a$ is the inverse limit of $\{X_a\}$, is the homeomorphism of $M_{L^{\infty}}$

fand $\sigma_H(T_{\varphi}, \varphi \in H^{\infty}(\mu))$. To check this, note that r is continuous by definition and is a bijection, since the set $\{\varphi \psi, \varphi, \psi \in H^{\infty}(\mu)\}$ is linearly dense in $L^{\infty}(\mu)$. Thus r is a homeomorphism. Now by Proposition 4 of [1] we can identify a C^* -algebra $\mathscr C$ generated by $\{T_{\varphi}, \varphi \in L^{\infty}\}$ modulo commutator ideal in $\mathscr C$. Denoting this commutator ideal by G, we conclude that $\mathscr C/G$ is isometrically isomorphic with $C(\sigma_H(T_{\varphi}, \varphi \in H^{\infty}(\mu)))$. Since $C(\sigma_H(T_{\varphi}, \varphi \in H^{\infty}(\mu)))$ is incompletely isomorphic), we have $\mathscr C/G \cong L^{\infty}(\mu)$. Summing up, we get

THEOREM 1. Let A be a function algebra approximating in modulus. Assume that the set $\{\varphi \psi, \varphi, \psi \in H^{\infty}\}$ is linearly dense in $L^{\infty}(\mu)$. Then we have

$$\mathscr{C}/G \cong L^{\infty}(\mu)$$
,

where $\mathscr C$ is the C*-algebra generated by $\{T_{\varphi},\,\varphi\in L^{\infty}\}$ and G is the commutator ideal in $\mathscr C$.

Now we consider a C^* -algebra generated by the set $\{T_{\varphi}, \varphi \in A\}$. First of all note that for the function algebra A approximating in modulus the set $\sigma_H\{T_{\varphi}, \varphi \in A\}$ is homeomorphic with X. Indeed, by Lemma 2 we have the equality

$$\sigma_{II}(T_{\varphi_1}, \ldots, T_{\varphi_n}) = \{\varphi_1(x), \ldots, \varphi_s(x), x \in X\}$$
 for $\varphi_i \in A$.

Denote by \mathscr{R} the family of all finite sets contained in A. For the finite set $(\varphi_1,\ldots,\varphi_s)=a\,\epsilon\,\mathscr{R}$ write $X_\alpha=\{\varphi_1(x),\ldots,\varphi_s(x),\ x\,\epsilon\,X\}$. Then the mapping

$$h: X \ni x \to \{f_x\} \in \prod_{a \in \mathbb{R}} X_a, \quad \text{where} \quad f_x(a) := (\varphi_1(x), \ldots, \varphi_s(x)),$$

is the homeomorphism of X and $\sigma_{\Pi}\{T_{\alpha}, \varphi \in A\}$.

To prove this note that h is continuous by definition and is a bijection since A separates the points of X. Therefore h is the homeomorphism. Applying the theorem of Bunce once again, we get Theorem 2.

THEOREM 2. Let A be a function algebra approximating in modulus. Denote by $\mathscr C$ the C^* -algebra generated by $\{T_\varphi, \varphi \in A\}$ and by G the commutator ideal in $\mathscr C$. Then there exists an *-homomorphism ϱ from $\mathscr C$ onto C(X) such that the sequence

$$(0) \rightarrow G \xrightarrow{i} \mathscr{C} \xrightarrow{\varrho} C(X) \rightarrow (0)$$

is exact, and $\varrho(T_{\varphi}) = \varphi$.

EXAMPLE. Let U be an arbitrary open and bounded set in C. Denote by $H^{\infty}(U)$ the Banach algebra of all bounded and holomorphic functions in U. T. Gamelin proved in [4] that $H^{\infty}(U)$ is a logmodular function algebra on its Shilov boundary. Since every logmodular function algebra is approximating in modulus, Theorem 2 applies in this situation.

We can extend Theorem 2 to the matrix case. To do this we apply Lemma 2.3 in [2]. Let us recall it now.

LEMMA If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of C*-algebras, then the sequence

$$(0) \rightarrow A \otimes M_n \rightarrow B \otimes M_n \rightarrow C \otimes M_n \rightarrow (0)$$

is also exact. (M_n denotes the C^* -algebra of all complex matrices.)

We leave to the reader the precise formulation of the extension of Theorem 2.

References

- J. Bunce, The joint spectrum of commuting non-normal operators, Proc. Amer. Math. Soc. 29 (1971), pp. 449-505.
- [2] R. G. Douglas, Banach algebra techniques in Toeplitz operator theory, 1972.
- [3] A. T. Dash, Joint spectra, Studia Math. 45 (1973), pp. 225-237.
- [4] T. W. Gamelin, Shilov boundary of $H^{\infty}(U)$, Amer. Jour. Math. (to appear).
- [5] I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962).
- [6] Z. Słodkowski, W. Zelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), pp. 127-148.