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Toeplitz operators for a certain class of
function algebras

by
J. JTANAS (Krakéw)

Abstract. In this paper we desceibe a joint approximate spectrum of a p-tuple
of Toeplitz opoerators Lox o certain elass of funetion algebras (approximating in mod-
ulug), We also give a characterization of a (™*-algebra generated by Toeplitz oper-
ators modulo commutator ideal.

Let 4 be a function algebra on a compact Hausdorff space X. Suppose
we are given a finite, regular Borel measure x4 > 0 on X. Denote by #2(u)
the Hilbert space of all complex-valued u-square integrable functions.
One can define the H*(x) space as the closure of A in ¥*(u) and H* (u)
as the set of all functions e L* (u) such that pH*(u) = H*(u). For ¢ e I (u)
we ‘define the Toeplitz operator T, on H*(u) by T,f = P(p-f), where

feH*(u) and P: #*(u)->H*(u) is an orthogonal projection. Denoting

by L, tho operator of multiplication by ¢ in £*(u), we can write
T,f = PL,f.

Leét L(H) be the algebra of all bounded linear operators on a complex
Hilbert space H. Denote by oy (L, ..., L,) the joint approximate point
spectrum for a gystem 1'y, ..., T of commuting operators in L (H) (see [1]
for the definition). In the case where X = I'is the unit circle, A the disc
algebra and u the Lebesgue measure on X, it is well known that

Ol s oony L) 5= 0 (Lyy vy Xg), Where e H™ (u) for i =1,.,.,s.
Let M, be the spectrum of L®(u). Since
Oyl ligyy ooy dip,) = {(‘%l(m): ey Po(m))y me MLoo}7
where ¢; denotes the Gelfand transtorm of ¢, we have
Ou(Lgpy oo Ty,) = {(‘;’1(""/)7 vy Pa(m))y me ~MLoa}-

The lemma which we shall now prove shows that the above equality
is true in & more general wetting.
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Tmmna 1. Let A be a function algebra approximating in modulus (see
{5] for the definition)(*). If pieH®(u) for i =1, ..., s, then

0T v To) = ({1 (M), <y ), me D).

Proof. Let A¢op(Ly,...; Ly), ie. let there exist e L°(u) (i
=1,...,8) such that

8
ZW(%‘“W) = 1.

gl

Hence

€

8
D, (hJ —T,) =1 (I the identity in L(H)),
i=1

which implies that A ¢ aH(Tq,l, ceey Tq,a). Thus we have proved the inclusion
oLy -y Ty) = {{@u(m), .., ‘i’s('m’))’ me 'MLno}'

To prove the inverse inclusion we may assume without loss of gener-
ality that @;(my) =0, 4 =1, ...,s. It follows that for every &> 0 there
exists a- neighbourhood of m,, Uy, and |@;(m)| < s for me U, . Let i
be a Borel measure on M, induced by y, ie.,

i(f) = [fau, for all feI™(n).

Let v = 0 be a continuous function on M o Satistying two conditions,
Jvdp =1 andv(m) = 0 for m¢ Un, - Then, denoting by v: L™ (u)->C(M )
the Gelfand transform, we have .

Jlple @ du = [1lfvda <& (E=1,...,s).
Let M =max{|lp;l,} and ¢ = v~*(»). By the Fuzin theorem, for
1gigs

every 5 > 0 there exists a compact set F such that g|, is continuous
and u(XN\F)< 7. We can extend ¢|p to a continuous function on X,
G20, llglples = 13l and [gdi>>1—8> 0, for a certain 6> 0. Next
we have

|[ o gdu— [ ipgau

< J ol lg~Glap

ZNF
< 22 [0l g (X NTY 5 2 M 0] e
Since 7 is arbitrary, this implies that

(%) [loljap<2e tor i=1,..,s.
() A function algebra A on X is approximating in modulus if for every positive,
continuous funetion v on X there exists a gequence hy e A such that

]|’U— Ihanm = gup ]w(w)_mn(m)” ().
weX

P00
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Let {k,} = 4 and 1% — Glioo—>0. By inequality (+) we have
Wy Teal? = [ lgal kald <32 for' n>m, and i — 1,...,s.
But [§du>1—6 and consequently there exists a ¢ > 0 such that
f[knlzd,u?, o for m=my, and so  Ocoy(T,, A |
Lmyma 2. Let A be as in Lemma 1. If gie A (i =1, ..., ), then
0a(Lyyy s Lp,) = {(02(®), ..., g5(a)), we X}.

Proof, Since the proof is similar to the prootf of Lemma 1, we omit it.

It is an interesting question whether Lemma 1 is true for more general
function algebras. The following reasoning shows that it may be true for
a more general case. Let 4 be a function algebra on X. We claim that there
are me M, for which (¢,(m),...,$,(m)) belongs to 01r(Tps -y T,)s
where ;e H* (u), ¢ =1, ..., s. Indeed, denote by s« the smallest commu-
tative and closed algebra in L(H*(u)) which contains T, (i=1,...,).
Let # be the closed subalgebra of L®(u) generated by ¢, (4 =1, ..., s).
Then, by Theorem 1.11 in [6], every point (£(7,), ..., £(7T,)) belongs
to op(Ty,, ..., Tp,), where £e I'(o7) is the Shilov boundary of /. Next
note that |T,| = llpsl. Indeed, we can assume u(X) =1; then for
pe H®(u) and n =1,2,...

1511 < TP < T I,

which implies that [(p|/|Z,l)*dx <1 and so |lpl, < |T,l. Therefore the
algebras o and # are isometrically isomorphic. Denote this isomorphism
by v: &—4. It induces a homeomorphism 7*: I'()-~I"(%) of the Shilov
boundaries and we have for p< H®(u) the equality

§(Ty) = E(v7 () = 7" (&)(p), where fel(o).
Since 7*(&)e I'(#), there exists an extension of ¢*(£) fo a certain ne M oo
and so we get the e.qgality
(E(Tg)s ovy E(Ty)) = (*(E)(p1), vy T (E)(0s)
' = (n@2)s o es n(@) € on(Lgys -5 L)
The proof of the claim is complete.

In the case where X = I'it is well known [2] that & joint approximate
point spectrum of the family {T,, peH*(x)} is homeomorphic with M.
If A is approximating in modulus, then by Lemma I

O Tyyy ooy Tgp) = {(Brm) ooy Bo(m), me My}
for g eH®(p), t =1,...,8.

4 — Studla Mathematica L.V.2
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Assume also that the set {py, ¢, pe H®(p)} is linealy dense in I™(u).

Then ¢z{T,, pc (@)} is homeomorphic with M Lw,qu}deed, denote by
% the family of all finite sets contained in H%(u). For afinite set (¢, ..., ¢,)
= aeZ, write

Xo={(B(m)y .oy u(m))y me M ).

Then the mapping

vy M2 m—{fuyelim{X} < HX“, where fu(a) == (F1(1m); ...y @, (m)).
v m acdf

and lim X, is the inverse limit of {X .}, is the homeomorphism of A 100
tand o7 {T,, p e H®(u)}. To check this, note thzw_r is c()r]iﬁ}.nuf)ua by de‘tlmmqn
and is a bijection, since the set {py, ¢, pe H*(u)} Iy llxx(azU‘F].y hclense in
I? (). Thus 7 is a homeomorphism. Now by Proposition 4 of [1] we can
identify a O*-algebra @ generated by {T',,¢eL*} modulo commutator
ideal in %. Denoting this commutator ideal by @ we conclude that ¢/¢
is isometrically isomorphic with C(oz{T,,pe H"(u)}). Since g (F”{T"”
pe H(u)}) = O(M ) = L®(p) (= means isometrically isomorphie), we
have %[G = L*(u). Summing up, we geb

THEOREM 1. Let A be a function algebra approwimating in modulus.
Assume that the set {gp, @, pe H*} 48 linearly dense in L (u). Then we have

/6 = L (u),

where ¥ is the O*-algebra generated by {T,, pe L*} and G is the commutator
ideal in €.

Now we consider a O*-algebra generated by the set {1',, pe 4} First
of all note that for the function algebra A4 approximating in modulus
the set oy {T,, e A} is homeomorphic with X. Indeed, by Lemma 2
we have the equality . ’

UH(T¢17~~,T¢8) = {p1(@); ooy po(@), we X} for  gued.

Denote by £ the family of all finite sets contained in 4. For the finite
set (P, .0y @) =0 Z write. X, = {g(®), ..., p,(), we X} Then the
mapping

hi Xoo>{fe [[ X where  fu(a) = (p,(0), ..., 94 (@),
. E ack
is the homeomorphism of X and o,{T,, pe.4}. . ‘
To prove this note that 4 is continnous by detinition and is a bijection
since A separates the points. of X. Therefore % is the homeomorphism.
Applying the theorem of Bunce once again, we get Theorem 2.

icm°
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TreoREM 2. Let 4 be o function algebra approximating in modulys.
Denote by € the -algebra generated by {T,, pe A} and by @ the commutator

ideal in €. Then there exists an #~homomorphism o from % onto ¢ (X)) such
that the sequence

(0)>G-L+ %25 0(X)~>(0)
is ewact, and o(T',) = ¢.

“Examern. Let U be an arbitrary open and bounded set in C. Denote

by H®(U) the Banach algebra of all bounded and holomorphic funections
A
in U.T. Gamelin proved in [4] that H>(U) is a logmodular function

algebra on its Shilov boundary. Since every logmodular function algebra
is approximating in modulus, Theorem 2 applies in this situation.

We can extend Theorem 2 to the matrix case. To do this we apply
Lemuma 2.3 in [2]. Let us recall it now.

LevymA If 04 +B->0->0 is an esact sequence of O*-algebras, then
the sequence

(0)>4 @ M,~B Q@ M, ~C @ M,—>(0)
is also ewact. (M, denotes the *-algebra of all complex matrices.)

We leave to the reader the precise formulation of the extension of
Theorem 2.
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