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Integral solutions for non-linear evolution
equations on Banach spaces

by
NICOLARE PAVEL (Tagi)

Abstract. One extends locally a result of Barbu [1]. Also, a general result,
ugeful in the construction of e-approximate solutions for some functional equations
on Banach spaces, is given.

Introduction. First, in this paper there is given a general result (i.e.,
Lemma 2.1) useful in the construction of approximate solutions for a large
clags of functional equations in Banach spaces (evolution equation [4],
(6], {7], [8], [10], some integral equations [6], [9], integral inequalities
[1]). We shall use the above result for proving the existence and uni-
queness of the solution of the following evolution equation

(E)—‘%« +AusBu(t), u(0) =2, ve X,

where X is a general Banach space, A is a.non-linear m-accretive set
of X x.X, the funection (f, u)->B(t)u is centinuous from [0, 7] x X into
X and B(1): X-»X is a non-linear dissipative operator. Our result (The-
orem 2.1) extends locally aresult of Barbu [1]used in the proof of a general-
ization of a result of Webb on continuous perturbation of linear m-ac-
cretive operators in Banach spaces [9].

1. Preliminaries. Ag usual denote by I the duality mapping of X,
e, F() = {o*c¢ X* |2} = |o*|* = (v, 0*)}, where (v, ") is the value
of o* at o Set ‘

(), = sup{(y, 2*), o*e< F(2)}.
A subset A < X xX iy said to be acoretive if
(1.1) (1-~Uay By —wy)g 220 for every [my, yJed, ¢ =1,2

(Lo. ;e D(A) and y;e Am,).
The condition (1.1) is equivalent to

(L.2)  There exists w*e I (@) — y) such that (Y, —Ys, %) > 0 (see e.g. [2]).
. The subset A < X xX is said to be m-aceretive if it is accretive and in
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A is called dissipative (m-dissipative) if —4. is accretive (m-accretive).
Reecall that if A is m-accretive then the limit (1.3) exists,

' -1 I
(1.3) hm(I—{— 11) 2 = S(t)w, weD(A4),
N0
uniformly on compact subsets of [0, --o0).

Moreover, S(¢) is a semi-group of contmcmons on J)(A) (see Crandall
and Liggett [3]). Here B denotes the closure of B. Recall that by a result
of Martin [4] it follows that a continuous operator L: X -+X is accretive
iff for every =, ®,¢ X we have

(Lwy — Ly, #%) 2> 0 for every o*e F(m, —a,).

DeriNirion. Let 4 = X x X be accretive and fe L'(0, T; X), T > 0.
A function e C(0,T; X) is said to be an integral solution on [0,T] of
the equation

(1.4) ﬂ +dusf

if the following inequality is satistied

(1.5). Nl (9) — @l < s (5) — ] +-2 f — 5 (%) — @), dr

for every [z,yled, 0 L s <<t T

By'a result of Benilan [2], if 4 is m-accretive, then for each x¢.D(4)
there is a unique integral solution on [0, T'] of (1.4) such that % (0) = .
Actually, if the initial condition %(0) = z, (#,¢ D(A)) is given, the uni-
queness of the integral solution of (1.4) follows from the following result
(due to Benilan [2] and proved independently by Barbu [1])

LemmA- 1.1, Let A < X xX be m-accretive and f, ge I*(0, T; X).

If w and v are integral sblutions of u' --Ausf, v' +.Av >y (respectively) on

[0, T'], then the following inequality holds :

[
(16)  lw(®) — o () < Ju(s) =0 ()P +2 [ (£(v) ~g(x), w(z) —0(z))ydv

for 0<s<<iII.
Since (a, b), < |la|[b], @,be X, by a classical result on integral in-
equalities, (1.6) yields

(1.7 @) —v@)) < llu(s)—o(s \|+f|1f 7)ldv  (see Appendix).

’that it L, exmm then llm fm
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2. The main results.
Limvma 2.1, Suppose that the following conditions are satisfied.

(a) The function (t,u)—B(t)u Sfrom [0, TIxX into X is continuous.

(b) For each &> 0 there are the sequences 1=, u=u; with the
properties

1)ty =0, 4e[0,T] for 4 = 0,1,2, .., ty~ty = &, and &; is
the mamimal positive number such that .

o) WB (4w~ Bty il < e,

Jor all 1, w, sueh that (t,w)— (t,_;, u,_ ,)|\<fi ), where fi: B.—~R, is
a continuous strictly inoreasing fum:tw'n, Fe(0) = 0 R, =10, o).
(2) If ¢ < T for all § = 1,2,..., then limu; = u, ewists and 111nf,(6,)

=0, 1->00

Then there is a natural number n = n(s) such that t, =1T.

Proof. If we assume for contradiction that ¢, < T for all 5 — 1,2,
then limt; = ¢ exists (since %, is strictly increasing). Since f; is strmtly

t-»00

increasing and continuous, it follows that fi(8;) is the maximal positive
number such that (2.1) holds, Therefore, for each ¢ there are %, y, such
that

(2.2) 00 < Uiy 90 = (e w62 < Ful00 +
(23) VB () 9o — B (ty) gl > 5.

By the hypothesis (2) and (2.2) it follows that hmuL = Uy, hmt = 1.

Lettmg i—>o00 in (2.3) and taking into account that B(t)u is contmuous,
we get the contradiction 0 > &. The proof is complete.

Remark 2.1. (1) In the case of Theorem 2.1 [5], f;(r) = 70, where
0 is a congtant independent of Ty fl, — gy | < 6,0, & = 1 /m. ’l‘he conditions
of Lemma 2.1 ame obviously satistied. (If #,< T for all § = 1,2,..., then

26£< 00, §0 2 (s~ 14..q) is convergent too, that is, limu, exists.) The
4~>00

same argumema can be used for the lagt part of the proof as in Theorem
1.8.1 in Qartan [107.
(2) In the case of Lemma 2 [1], Theorem 1 [6], Proposition 3.1 [9]
we have
fi(r) =r M+ Sup 18(8) —I)wssll, M > 0.

COlearly, fi: R, 0y 14 oontmuous]y and strictly increasing. Taking into
account that: S( t), is "a aeml-gwup of contraction, we can easily prove
= (. On the other hand, in the above

i-r00
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cases it is proved that if ; < T’ for all 4, then limu, exists. Thus the con-

i->00

ditions of Lemma 2.1 ave satistied for each. of the above cases.
TrmoREM 2.1. Let A be a m-accretive subset of X xX and in addition
(i) The fumction (1, w)—~>B(t)u is continuous from [0,T) xX into X,
(ii) For each te[0,T), T), B(t): X=X is dissipative.
Then for each ®ye D(A) there exmists a unigque iniegral solution on [0, Ty]
< [0, T) of the problem i

(2.4) ' (8)+Au(t) (W2 BMu(ty, w(0) =y, where ' =
i.. there is @ wnique function we CL0, T'y; X such that

R . t
(25) ol < (s —alf +2 [ (BEu—y, ul) ~a)ydr

for every [w,y]e d, 0<s << Ty,

Proof. Let r > 0, T1¢(0, T] and M > 0 be such Lhm,
.(2.6) IBHul< M for every ( e [0, Ty %8 (@ 1),
(2.7) . MT, +{supliS(?) wo“wolly %1,%11}%7“,

where S (2, r) = § is the closed convex ball of radius # about @,, and
8(¢¥) is given by (1.3). Let n >0 be a natural number and let 8, = &}
be the largest positive number such that

1 «

(2.8)  IBMu—Blul<— for It u)= (o )l < b,

] . =0, %y = 8.
Recall that with respect to the morm ||(¢, w)|l = [t |lul, te R, welX,
‘ohe space R xX is a Banach space. Smee the function
falr) = r Mo+ {sup |8 (£)t — tholl, O < <7} (where My = M+1)
iy a continuous strletly increasing function from R, into B, fi(0) =0,
it follows that there is a &, > 0 such thatb
By = 0. M, +{sup IS (B) wo — %], 0 81}
and moreover, 8, is the largest number with such a property.

o - Set = t”+ o7 where i =1, = 0. (When there is no danger of confusion
" we drop n) Define u® = v,(t,—1,), where v, is the integral golution on
[0, T,] of o' 4 Av 2 B(lg) g, v(0) = t,. Inductively detine 1 = t; = b, -+ 6
where 9, is the largest number such that

A2.9) | IB(#w— B )ull<—  for every (t, u) satisfying

108, ) — (81 s e )l < 02+ {Sup IS (B vy — Ugall, 02 <4

icm°
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Now we seb u; = v;(t; —1,_,), wheve v, is the i
integral solution on [0,
of v+ A’U-"B( 4—1) %15 4(0) = w;_;. Define o
(2.10) U (1) = %(FEMI) for 4 <t
Tirst we prove that w,(t)e S for all teDu,. ertmg
Ialt) = B(t;1)w;.; for te(tin, 4]

and ,talking‘ into account that S(t)u, is the integral solution on [0, 7]
of u' +A4u30, ’M;(.O) = @y == 1ty (see [2]), by Lemma 1.1 (more preelsell
by (1.7)), we derive v

[
(2.11) Nt (8) — 8 (2 o < f Ign () dz,  te Du,.

Here we have used the fact that u, is an integral solution on [0, T,] of
w +Ausg,, u(0) = my (see also [2]). Using once more Lemma 1.1 for
w(s) = 0(8) =y, f =0, g =B({_, )“1—1: § =1, we get

(2.12)  loay (8) = S (B —g) gy | < (8 “ti_l)”B(ti—l)u.i—lny b ST e

From (2.12) it follows (for te [t,_;, 1))

(2.13) (94 (8) — g || 5 ;1B (b)) gy | H-1IS (2 - byt Uiy — gl

Similarly, by (2.11) we derive

(2.14) Yoy (8) == ]| < qu,, (@l de-+18 () wg—mo  for all fe Du,.

Using (2.13) with ¢ = ¢, and taking into account

ot s 1 g count that w, (¢ ) = u;, We
lloty — o]l <5 2y 1B (o} atgl| - 1S (11) g — ]| < Ty M A-|IS (8) g — o]l < 7

Thus it is proved that w,e 8.
Suppose now that u;_,¢ 8, so

(B (by)wymyll < M for  §=1,2,...,14.
Then by (2.14) it follows
lloty, (£) — ap] = :2,(7‘ wo by ) M {3 18 () a0y — woll, 0 <8< Ty},

el

that i, u,(¢)e S for all 0st<5t, which bhOWS, in particular, that wu,
=, (%) e 8 (thus it follows that w,(t)e S for all te Du,). Moreover, from
(2.13) we derive

108, 00 0) = (st )| = (= tpm) 0 () =20
< 0+ 8,0 - {wup || (8 (2) — T)uwsy |, for ¢, <E< 4},
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50 by (2.9) we get
1
(2.15) 1B (1) 2y, (8) — B (t;_1) w1 ]| < . for te[t;, %]

To prove that there is a matural number N(n) =N such that ¢ty =T,
we apply Lemma 2.1 as follows: Assame that ¢, < T, for all¢ =1,2, ...
Sinee in this case )
filr) =r M+ {sup IS (&) sy — w4, 0 ST 7}

satisfies the conditions required by Lemma 2.1, it remains to prove only
that limu; as ¢-»o0, exists. In this way, write &y = t;,—1, for j> 4. For
“all ¢ and 4, j such that ¢t+1; < i, where ? = lim#;, u,(¢-+1y) is an integral
solution of w(t-1,)-FAu(t+1y) 2g(E+1y). = »

It we apply (1.7) with ¢ =1, s = 0, we getb

(216) oy — gl < o (85) — u,,(0>u +

+2 f (9 (7 + 1) = 9 () U (7 + Bys) =205, (7)) .
Since |lg,(#)|| << M for all te [0, F], (2.16) becomes
(21T) oty — il < oty (ty) — (O 42 f o (4 tyg) — w0, (3) | .

Let ¢ > 0 be arbitrary and h = k(e) > 0 be such that
S h—t< o
va' T T 24 M (r )’

Let £, > 0 be such that #,+&, <% and let h > % be such that ty < &y
for j >4 >= hy. Since w, i3 uniformly continuous on [0, ¢,+,], there is
hg > hy such that

(219) (v + ty) —u, (7)1 <

(2.18) Jly (ty) — 10, (O)]| < j>i>hie).

12Mt for j =i h, and for all z[0,1,].

Finally, taking into account. |ju, (£)]| < 7+ |w,ll for all ie[0,5), by (2.17),

(2.18) and (2.19), we derive
b

(220) Iy =l < 3o+ [ (4 g) — ()l +
0
2

1aM f Mt (7 4 By) — () |

'«:

<ot

e 8ol (1)

<t dedtiet =6, =iz D,
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Thus, by (2.20), imu; as ¢ tends to co exists, so by Lemma 2.1 there is
a natural number & such that ¢y = T,. If m and 7 are natural numbers,
by Lemma 1.1 and (1.7) (inasmuch as w,(0) = U (0) == ;) we get

(2.21) [l (8) — 1 (DF < 2 f Ia (%) = G (%) 5 20 () — thy (7)) .
Let e {1,..., N(m)},je (L, .., N (m)} such tht ve[#_ l,t”]n[tf’”l,t’”] '
Since (B(v)U,(7) = B(v) U (), 1, (v) — (7)), < 0, we have
(2:22)  (gu(®) = G (7)5 U0 (%) — (7)),
< (Bltima) gy ~ B{z) Uy (1), U(7) U(7))s +
(BTt (1) = Bty 2 sy, () — (),

1.1 LR
< (n + m) “"l/n(T)_’u’m(t)” < K(jﬂ‘ +';;)

Here we have used (2.15) and [ju,(t)] < 7 -+lwl, so K = 2(r +1@oll)- There-
fore, (2.21) and (2.22) show thsut thy, I8 uniformly convergent on [0, 7,].
Write w(t) = limw,, (1). Slnee Uy, I8 an integral solution of u'4- Awsg,,
we have e

1
(2.23) o (t) =2l < () — @I’ +2 [ (90(v) ¥, (1) — @), dx,
L]
O<s<ig Ty,
for every[w,yle A. Let ve [t;_;, t;]. By (2.15) it follows

(gn(";) —Y, ’Mn(‘[) —!U)s
= (B(tiw1) thsy —B(v) 4, (7) + B(%) 4, (7) — 9, (1) — g

il[\

< :‘L ”un(r) —"w” -+ (B(T) 'M'ZL(T) —Y, 'M'TA(T) “‘;”)s'

Since w,, is uniformly convergent on [0,T,] (to u), so does B(-)u, (according
to (1)). Letting n-+oo in (2.23), we get

. i
(2:24) N (1) —lf << () @l +2 [ (B(v)u(2) —y, u(x) ~ a),dv,

0<sgigT,,

for every [@,y]cA. The condition u(0) = @, is a consequence of u,(0)
=Wy, N = 1,2, .

The uniqueness of w follows as below: Write w(t) = u(t, z,). If v(f)
=0(l, y,) is an integral solution of the equation (2.4) with »(0) = ¥,,
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then according to (1.7) we have
lhe (1) — v ()1

4
< llwo—olf +2 f (B(T)“(Ty %) —B ()0 (7, Yo), w(7, ) —v(v, ?/o))sd'f

< lmo—9ol?,  for all 20, T4],

which shows the uniqueness of 4. The proof is complete.

Remark 2.2. If B(f) = B is independent of t, we can extend the
solution # to the whole [0, T), 80 it ' = oco we got a result of Barbu [1].
However, in time-dependent case (L.e. our case) the problem of the exten-
sion of u to the whole [0, T') remains open.

Appendix. In our paper we have used some clasical results on integ-
ral inequalities of the following type:

THEOREM 1. Let h be a continuous strictly increasing function defined
on-an open subset D (k) = (0, o0) and ge L, (0, T3 R,). If f is o continuous
fumetion on [0, T] with Rf < Dh satisfying the integral inequality:

(1) h(f(5) < M+ j g(Of(Ddr, 0<s<t<T, Hek,
then the following estimation holds
t -
(2) Fy < i [6 (@an + [ g(ras)]
; ‘
for all te[s, T] such that the right;hmd side of (2) is defined.
Here G denotes & primitive of 1/~ and »~" is the inverse of h.
i
Proof. Set y(t) = M-}-.j'g(r)f(r) dv. Therefore
(3) y'(t) = g(0)f(1) ae. on [s, T].
Brom (1) we have f(f)<h™*(y(t)) so (3) hecomes
(4) yM<gh™(y() ae on [s, 1], y(s) = M.
By standard arguments, (4) yields
11
(5) y(0) < 6 [6(ar) + f 9(%)dx].

Using once again f(?) < ™ (y(2)), from (5) we get; {2). Taking into account
that R(@) is an open subset of (0, oo), it follows that the right-hand side
of (2) is defined-at least for ¢ sufflelently close to s. Thus the proof iy
complete,

e © '
lm Inbegral solulions for equalions on Banach spaces 149

CoroLLARY 1. If f is a continuous function from [0, T] into R,
11

(6) PW< M+ [g@f@dn, 0<s<i<T,

8
where ge Lio(0, T3 B), then we have the following estimation

M ) < Vsz g@dc for tels, T).

Proof. Take h == @*/2, » > 0, and then, applying Theorem 1, we
geti (7). Indeed, in this case A~ Ua) = V2w Obviously, we can choose

=Voz, w0, since & (w) =12 =1/k" (2), for o> 0. Thus
@t = G671 = I so (2) implies (7). m

Remark L. For h =, ®> 0, we choose G(z)} = Inz, so by (2) we

i
derive f(t) < Mexp([g(v)dr), that i, the classical result of Gronwall.
8

Remark 2. Similarly to Theorem 1, we can givé an estimation for
the function f below

]
@) WF®) < M+ [ g) L(f(w)dz, 0<s<i< T,

‘We omit to formulate here for (8) the theorems corresponding to Theorem 1,
as well as the corresponding references.
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