

Integral solutions for non-linear evolution equations on Banach spaces

by

NICOLAE PAVEL (Iași)

Abstract. One extends locally a result of Barbu [1]. Also, a general result, useful in the construction of ε -approximate solutions for some functional equations on Banach spaces, is given.

Introduction. First, in this paper there is given a general result (i.e., Lemma 2.1) useful in the construction of approximate solutions for a large class of functional equations in Banach spaces (evolution equation [4], [5], [7], [8], [10], some integral equations [6], [9], integral inequalities [1]). We shall use the above result for proving the existence and uniqueness of the solution of the following evolution equation

$$(E)\frac{du}{dt} + Au \ni B(t)u(t), \quad u(0) = x, \ x \in X,$$

where X is a general Banach space, A is a non-linear m-accretive set of $X \times X$, the function $(t, u) \to B(t)u$ is continuous from $[0, T] \times X$ into X and $B(t) \colon X \to X$ is a non-linear dissipative operator. Our result (Theorem 2.1) extends locally a result of Barbu [1] used in the proof of a generalization of a result of Webb on continuous perturbation of linear m-accretive operators in Banach spaces [9].

1. Preliminaries. As usual denote by F the duality mapping of X, i.e., $F(x) = \{x^* \in X^*, ||x||^2 = ||x^*||^2 = (x, x^*)\}$, where (x, x^*) is the value of x^* at x. Set

$$(y, x)_s = \sup\{(y, x^*), x^* \in F(x)\}.$$

A subset $A \subset X \times X$ is said to be accretive if

$$(1.1) \qquad (y_1 - y_2, \, x_1 - x_2)_s \geqslant 0 \quad \text{ for every } [x_i, \, y_i] \in A, \, i = 1, 2$$

(i.e. $x_i \in D(A)$ and $y_i \in Ax_i$).

The condition (1.1) is equivalent to

(1.2) There exists $w^* \in F(x_1 - x_2)$ such that $(y_1 - y_2, x^*) \ge 0$ (see e.g. [2]). The subset $A \subset X \times X$ is said to be *m*-accretive if it is accretive and in addition R(I + A) = X.

A is called dissinative (m-dissipative) if -A is accretive (m-accretive). Recall that if A is m-accretive then the limit (1.3) exists,

(1.3)
$$\lim_{n\to\infty} \left(I + \frac{t}{n}A\right)^{-n} x = S(t)x, \quad x \in \overline{D(A)},$$

uniformly on compact subsets of $[0, +\infty)$.

Moreover, S(t) is a semi-group of contractions on D(A) (see Crandall and Liggett [3]). Here \bar{B} denotes the closure of B. Recall that by a result of Martin [4] it follows that a continuous operator $L: X \rightarrow X$ is accretive iff for every $x_1, x_2 \in X$ we have

$$(Lx_1-Lx_2, x^*) \geqslant 0$$
 for every $x^* \in F(x_1-x_2)$.

DEFINITION. Let $A \subset X \times X$ be accretive and $f \in L^1(0,T;X), T > 0$. A function $u \in C(0,T;X)$ is said to be an integral solution on [0,T] of the equation

$$\frac{du}{dt} + Au \ni f$$

if the following inequality is satisfied

(1.5)
$$||u(t) - x||^2 \le ||u(s) - x||^2 + 2 \int_s^t (f(\tau) - y, u(\tau) - x)_s d\tau$$

for every $[x, y] \in A$, $0 \le s \le t \le T$.

By a result of Benilan [2], if A is m-accretive, then for each $x \in D(A)$ there is a unique integral solution on [0,T] of (1.4) such that u(0)=x. Actually, if the initial condition $u(0) = x_0$ $(x_0 \in D(A))$ is given, the uniqueness of the integral solution of (1.4) follows from the following result (due to Benilan [2] and proved independently by Barbu [1])

LEMMA 1.1. Let $A \subset X \times X$ be m-accretive and $f, g \in L^1(0, T; X)$. If u and v are integral solutions of $u' + Au \ni f$, $v' + Av \ni g$ (respectively) on [0, T], then the following inequality holds:

$$(1.6) \quad \|u(t) - v(t)\|^2 \leqslant \|u(s) - v(s)\|^2 + 2\int_{s}^{t} (f(\tau) - g(\tau), u(\tau) - v(\tau)) d\tau$$

for $0 \le s \le t \le T$.

Since $(a, b)_s \leq ||a|| ||b||$, $a, b \in X$, by a classical result on integral inequalities, (1.6) yields

$$(1.7) \quad \|u(t) - v(t)\| \leqslant \|u(s) - v(s)\| + \int_{s}^{t} \|f(\tau) - g(\tau)\| d\tau \quad \text{(see Appendix)}.$$

2. The main results.

LEMMA 2.1. Suppose that the following conditions are satisfied.

- (a) The function $(t, u) \rightarrow B(t)u$ from $[0, T] \times X$ into X is continuous.
- (b) For each $\varepsilon > 0$ there are the sequences $t_i^{\varepsilon} = t_i, \ u_i^{\varepsilon} = u_i$ with the properties
- (1) $t_0 = 0$, $t_i \in [0, T]$ for $i = 0, 1, 2, ..., t_i t_{i-1} = \delta_i$, and δ_i is the maximal positive number such that

for all t, u, such that $||(t, u) - (t_{i-1}, u_{i-1})|| \le f_i(\delta_i)$, where $f_i \colon R_+ \to R_+$ is a continuous strictly increasing function, $f_i(0) = 0$, $R_{\perp} = [0, \infty)$.

(2) If t < T for all $i = 1, 2, ..., then <math>\lim_{i \to \infty} u_i = u_0$ exists and $\lim_{i \to \infty} f_i(\delta_i)$

Then there is a natural number $n = n(\varepsilon)$ such that $t_n = T$.

Proof. If we assume for contradiction that $t_i < T$ for all i = 1, 2, ...,then $\lim t_i = t_i$ exists (since t_i is strictly increasing). Since f_i is strictly increasing and continuous, it follows that $f_i(\delta_i)$ is the maximal positive number such that (2.1) holds. Therefore, for each i there are $\overline{t}_i,\ y_i$ such that

$$(2.2) f_i(\delta_i) < \|(\bar{t}_i, y_i) - (t_{i-1}, u_{i-1})\| \leqslant f_i(\delta_i) + \frac{1}{\cdot},$$

(2.3)
$$||B(\bar{t}_i)y_i - B(t_{i-1})u_{i-1}|| > \varepsilon.$$

By the hypothesis (2) and (2.2) it follows that $\lim u_i = u_0$, $\lim \bar{t}_i = t_1$. Letting $i \to \infty$ in (2.3) and taking into account that B(t)u is continuous, we get the contradiction $0 > \varepsilon$. The proof is complete.

Remark 2.1. (1) In the case of Theorem 2.1 [5], $f_i(r) = rC$, where C is a constant independent of $i, \ \|u_i-u_{i-1}\|\leqslant \delta_i\mathit{C}, \ \varepsilon=1/n.$ The conditions of Lemma 2.1 are obviously satisfied. (If $t_i < T$ for all i = 1, 2, ..., then $\sum_{i=1}^{\infty} \delta_i < \infty, \text{ so } \sum_{i=1}^{\infty} (u_i - u_{i-1}) \text{ is convergent too, that is, } \lim_{i \to \infty} u_i \text{ exists.) The}$ same arguments can be used for the last part of the proof as in Theorem 1.3.1 in Cartan [10].

(2) In the case of Lemma 2 [1], Theorem 1 [6], Proposition 3.1 [9] we have

$$f_i(r) = rM + \sup_{0 \le t \le r} ||S(t) - I)u_{i-1}||, \quad M > 0.$$

Clearly, f_i : $R_+ \rightarrow R_+$ is continuously and strictly increasing. Taking into account that S(t) is a semi-group of contraction, we can easily prove that if $\lim u_i$ exists, then $\lim f_i(\delta_i) = 0$. On the other hand, in the above

cases it is proved that if $t_i < T$ for all i, then $\lim_{i \to \infty} u_i$ exists. Thus the conditions of Lemma 2.1 are satisfied for each of the above cases.

THEOREM 2.1. Let A be a m-accretive subset of $X \times X$ and in addition

- (i) The function $(t, u) \rightarrow B(t)u$ is continuous from $[0, T) \times X$ into X.
- . (ii) For each $t \in [0, T)$, B(t): $X \rightarrow X$ is dissipative.

Then for each $x_0 \in \overline{D(A)}$ there exists a unique integral solution on $[0, T_1]$ $\subset [0, T]$ of the problem

(2.4)
$$u'(t) + Au(t) \ni B(t)u(t), \quad u(0) = x_0, \quad \text{where} \quad u' = \frac{du}{dt},$$

i.e. there is a unique function $u \in C[0, T_1; X]$ such that

$$(2.5) ||u(t) - x||^2 \leqslant ||u(s) - x||^2 + 2 \int_{s}^{t} (B(\tau)u(\tau) - y, u(\tau) - x)_s d\tau$$

for every $[x, y] \in A$, $0 \le s \le t \le T_1$.

Proof. Let $r>0,\,T_1\epsilon\,(0\,,\,T]$ and M>0 be such that

(2.6)
$$||B(t)u|| \leqslant M$$
 for every $(t, u) \in [0, T_1] \times S(x_0, r)$,

(2.7)
$$MT_1 + \{\sup ||S(t)x_0 - x_0||, \ 0 \le t \le T_1\} \le r,$$

where $S(x_0, r) = S$ is the closed convex ball of radius r about x_0 , and S(t) is given by (1.3). Let n > 0 be a natural number and let $\delta_1 = \delta_1^n$ be the largest positive number such that

$$(2.8) ||B(t)u - B(t_0)u_0|| \leq \frac{1}{n} \text{for} ||(t, u) - (t_0, u_0)|| \leq \overline{\delta}_1,$$

$$t_0 = 0$$
, $u_0 = x_0$.

Recall that with respect to the norm ||(t, u)|| = |t| + ||u||, $t \in \mathbb{R}$, $u \in X$, the space $\mathbb{R} \times X$ is a Banach space. Since the function

$$f_1(r) = rM_1 + \{\sup \|S(t)u_0 - u_0\|, \ 0 \leqslant t \leqslant r\}$$
 (where $M_1 = M + 1$)

is a continuous strictly increasing function from R_+ into R_+ , $f_1(0)=0$, it follows that there is a $\delta_1>0$ such that

$$\delta_1 = \delta_1 M_1 + \{\sup \|S(t)u_0 - u_0\|, \ 0 \le t \le \delta_1\}$$

and moreover, δ_1 is the largest number with such a property.

Set $t_1^n = t_0^n + \delta_1^n$ where $t_0^n = t_0 = 0$. (When there is no danger of confusion we drop n.) Define $u_1^n = v_1(t_1 - t_0)$, where v_1 is the integral solution on $[0, T_1]$ of $v' + Av \ni B(t_0)u_0$, $v(0) = u_0$. Inductively define $t_i^n = t_i = t_{i-1} + \delta_i$, where δ_i is the largest number such that

$$\begin{split} \|B(t)u - B(t_{i-1})u_{i-1}\| &\leqslant \frac{1}{n} \quad \text{ for every } (t,u) \text{ satisfying} \\ \|(t,u) - (t_{i-1},u_{i-1})\| &\leqslant \delta_i M_1 + \{\sup \|S(t)u_{i-1} - u_{i-1}\|, \ 0 \leqslant t \leqslant \delta_i \}. \end{split}$$

Now we set $u_i = v_i(t_i - t_{i-1})$, where v_i is the integral solution on $[0, T_1]$ of $v' + Av \ni B(t_{i-1})u_{i-1}$, $v_i(0) = u_{i-1}$. Define

(2.10)
$$u_n(t) = v_i(t - t_{i-1}) \quad \text{for} \quad t_{i-1} \leqslant t \leqslant t_i.$$

First we prove that $u_n(t) \in S$ for all $t \in Du_n$. Writing

$$g_n(t) = B(t_{i-1})u_{i-1}$$
 for $t \in (t_{i-1}, t_i]$

and taking into account that $S(t)u_0$ is the integral solution on $[0, T_1]$ of u' + Au = 0, $u(0) = x_0 = u_0$ (see [2]), by Lemma 1.1 (more precisely by (1.7)), we derive

$$||u_n(t) - S(t)u_0|| \le \int_0^t ||g_n(\tau)|| d\tau, \quad t \in Du_n.$$

Here we have used the fact that u_n is an integral solution on $[0, T_1]$ of $u' + Au \ni g_n$, $u(0) = x_0$ (see also [2]). Using once more Lemma 1.1 for $u(s) = v(s) = u_{i-1}$, f = 0, $g = B(t_{i-1})u_{i-1}$, $s = t_{i-1}$, we get

$$(2.12) \quad \|u_n(t) - S(t - t_{i-1}) \, u_{i-1}\| \leqslant (t - t_{i-1}) \|B(t_{i-1}) \, u_{i-1}\|, \qquad t_{i-1} \leqslant t \leqslant t_i.$$

From (2.12) it follows (for $t \in [t_{i-1}, t_i]$)

$$(2.13) ||u_n(t) - u_{i-1}|| \leqslant \delta_i ||B(t_{i-1}) u_{i-1}|| + ||S(t - t_{i-1}) u_{i-1} - u_{i-1}||.$$

Similarly, by (2.11) we derive

$$(2.14) \quad \|u_n(t)-x_0\| \leqslant \int\limits_0^t \|g_n(\tau)\| \, d\tau + \|S(t)\,x_0-x_0\| \quad \text{ for all } \ t \in Du_n.$$

Using (2.13) with $t=t_1$ and taking into account that $u_n(t_i)=u_i$, we get at once

$$\|u_1-x_0\|\leqslant t_1\|B(t_0)u_0\|+\|S(t_1)x_0-x_0\|\leqslant T_1M+\|S(t_1)x_0-x_0\|\leqslant r.$$

Thus it is proved that $u_1 \in S$.

Suppose now that $u_{i-1} \in S$, so

$$||B(t_{j-1})u_{j-1}|| \leq M$$
 for $j = 1, 2, ..., i$.

Then by (2.14) it follows

$$\|u_n(t) - x_0\| \leqslant \sum_{j=1}^{s} (t_j - t_{j-1})M + \{\sup \|S(t)x_0 - x_0\|, \ 0 \leqslant t \leqslant T_1\},$$

that is, $u_n(t) \in S$ for all $0 \le t \le t_i$, which shows, in particular, that $u_i = u_n(t_i) \in S$ (thus it follows that $u_n(t) \in S$ for all $t \in Du_n$). Moreover, from (2.13) we derive

$$\begin{split} \big\| \big(t,\, u_n(t) \big) - (t_{i-1},\, u_{i-1}) \, \big\| &= (t - t_{i-1}) + \|u_n(t) - u_{i-1}\| \\ &\leqslant \delta_i + \delta_i \, \mathcal{M} + \big\{ \sup \big\| \big(S(t) - I \big) u_{i-1} \big\|, \text{ for } t_{i-1} \leqslant t \leqslant t_i \big\}, \end{split}$$

so by (2.9) we get

$$(2.15) ||B(t)u_n(t) - B(t_{i-1})u_{i-1}|| \leq \frac{1}{m} \text{for} t \epsilon [t_{i-1}, t_i].$$

To prove that there is a natural number N(n) = N such that $t_N = T$, we apply Lemma 2.1 as follows: Assume that $t_i < T_1$ for all i = 1, 2, ...Since in this case

$$f_i(r) = rM_1 + \{\sup ||S(t)u_{i-1} - u_{i-1}||, \ 0 \le t \le r\}$$

satisfies the conditions required by Lemma 2.1, it remains to prove only that $\lim u_i$ as $i \to \infty$, exists. In this way, write $t_{ij} = t_i - t_i$ for j > i. For all t and i, j such that $t+t_{ij} < \bar{t}$, where $\bar{t} = \lim t_i$, $u_n(t+t_{ij})$ is an integral solution of $u(t+t_{ij}) + Au(t+t_{ij}) \ni g(t+t_{ij})$.

If we apply (1.7) with $t = t_i$, s = 0, we get

$$\begin{split} (2.16) \qquad & \|u_j-u_i\|^2 \leqslant \|u_n(t_{ij})-u_n(0)\|^2 + \\ & + 2\int\limits_{-t_i} \big(g_n(\tau+t_{ij})-g_n(\tau),\, u_n(\tau+t_{ij})-u_n(\tau)\big)_s \, d\tau \,. \end{split}$$

Since $||g_n(t)|| \leq M$ for all $t \in [0, \tilde{t}]$, (2.16) becomes

$$(2.17) \quad \|u_j-u_i\|^2 \leqslant \|u_n(t_{ij})-u_n(0)\|^2 + 4M\int\limits_0^{t_i} \|u_n(\tau+t_{ij})-u_n(\tau)\|\,d\tau\,.$$

Let $\varepsilon > 0$ be arbitrary and $h = h(\varepsilon) > 0$ be such that

$$(2.18) \quad \|u_n(t_{ij})-u_n(0)\|\leqslant \frac{\varepsilon}{\sqrt{3}}, \quad t_j-t_i\leqslant \frac{\varepsilon^2}{24M(r+\|x_0\|)}, \quad j\geqslant i\geqslant h(\varepsilon).$$

Let $\varepsilon_1 > 0$ be such that $t_h + \varepsilon_1 < \bar{t}$ and let $h_1 \ge h$ be such that $t_{ij} < \varepsilon_1$ for $j \ge i \ge h_1$. Since u_n is uniformly continuous on $[0, t_h + \varepsilon_1]$, there is $h_2 \geqslant h_1$ such that

$$(2.19) \quad \|u_n(\tau+t_{ij})-u_n(\tau)\|\leqslant \frac{\varepsilon^2}{12\,M^{\frac{1}{4}}} \quad \text{for } j\geqslant i\geqslant h_2 \text{ and for all } \tau\,[0,\,t_h].$$

Finally, taking into account $||u_n(t)|| \le r + ||x_0||$ for all $t \in [0, \bar{t})$, by (2.17), (2.18) and (2.19), we derive

$$\begin{split} (2.20) & ||u_{j}-u_{i}||^{2} \leqslant \tfrac{1}{3}\varepsilon^{2}+4 \, M \int\limits_{0}^{t_{i}} ||u_{n}(\tau+t_{ij})-u_{n}(\tau)|| \, d\tau \, + \\ & + 4 \, M \int\limits_{t_{i}}^{t_{h}} ||u_{n}(\tau+t_{ij})-u_{n}(\tau)|| \, d\tau \, \\ & \leqslant \tfrac{1}{3}\varepsilon^{2}+\frac{\varepsilon^{2} \, 4 \, M t_{i}}{12 \, M t} \, + 8 \, M \, (r+||w_{0}||) \, (t_{h}-t_{i}) \\ & \leqslant \tfrac{1}{3}\varepsilon^{2}+\tfrac{1}{3}\varepsilon^{2}+\tfrac{1}{3}\varepsilon^{2}=\varepsilon^{2}, \quad j\geqslant i \geqslant h_{0}. \end{split}$$

Thus, by (2.20), $\lim u_i$ as i tends to ∞ exists, so by Lemma 2.1 there is a natural number N such that $t_N = T_1$. If m and n are natural numbers, by Lemma 1.1 and (1.7) (inasmuch as $u_n(0) = u_m(0) = x_0$) we get

$$(2.21) ||u_n(t) - u_m(t)||^2 \leqslant 2 \int_0^t (g_n(\tau) - g_m(\tau), u_n(\tau) - u_m(\tau))_s d\tau.$$

Let $i \in \{1, ..., N(n)\}, j \in \{1, ..., N(n)\}$ such that $\tau \in [t_{i-1}^n, t_i^n] \cap [t_{i-1}^m, t_i^m]$. Since $(B(\tau)u_n(\tau)-B(\tau)u_m(\tau), u_n(\tau)-u_m(\tau))_s \leq 0$, we have

$$\begin{split} (2.22) \qquad & \left(g_{n}(\tau) - g_{m}(\tau), \ u_{n}(\tau) - u_{m}(\tau)\right)_{s} \\ \leqslant & \left(B(t_{i-1})u_{i-1} - B(\tau)u_{n}(\tau), \ u_{n}(\tau) - u_{m}(\tau)\right)_{s} + \\ & + \left(B(\tau)u_{m}(\tau) - B(t_{j-1})u_{j-1}, \ u_{n}(\tau) - u_{m}(\tau)\right)_{s} \\ \leqslant & \left(\frac{1}{n} + \frac{1}{m}\right) \|u_{n}(\tau) - u_{m}(\tau)\| \leqslant K\left(\frac{1}{n} + \frac{1}{m}\right). \end{split}$$

Here we have used (2.15) and $||u_n(t)|| \leq r + ||x_0||$, so $K = 2(r + ||x_0||)$. Therefore, (2.21) and (2.22) show [that u_n is uniformly convergent on $[0, T_1]$. Write $u(t) = \lim u_n(t)$. Since u_n is an integral solution of $u' + Au \circ g_n$, we have

$$(2.23) \qquad \|u_n(t)-x\|^2 \leqslant \|u_n(s)-x\|^2 + 2\int\limits_s^t \left(g_n(\tau)-y\,,\,u_n(\tau)-x\right)_s d\tau\,,$$

$$0\leqslant s\leqslant t\leqslant T_1,$$

for every $[x, y] \in A$. Let $\tau \in [t_{i-1}, t_i]$. By (2.15) it follows

$$\begin{split} \left(g_n(\tau)-y\,,\,u_n(\tau)-x\right)_s \\ &=\left(B(t_{i-1})\,u_{i-1}-B(\tau)\,u_n(\tau)+B(\tau)\,u_n(\tau)-y\,,\,u_n(\tau)-x\right)_s \\ &\leqslant \frac{1}{n}\left\|u_n(\tau)-x\right\|+\left(B(\tau)\,u_n(\tau)-y\,,\,u_n(\tau)-x\right)_s. \end{split}$$

Since u_n is uniformly convergent on $[0, T_1]$ (to u), so does $B(\cdot)u_n$ (according to (i)). Letting $n \rightarrow \infty$ in (2.23), we get

$$(2.24) ||u(t) - x||^2 \le ||u(s) - x||^2 + 2 \int_s^t (B(\tau)u(\tau) - y, u(\tau) - x)_s d\tau,$$

$$0 \le s \le t \le T_1,$$

for every $[x, y] \in A$. The condition $u(0) = x_0$ is a consequence of $u_n(0)$ $= x_0, n = 1, 2, \dots$

The uniqueness of u follows as below: Write $u(t) = u(t, x_0)$. If v(t)= $v(t, y_0)$ is an integral solution of the equation (2.4) with $v(0) = y_0$, then according to (1.7) we have

$$\begin{split} &\|u(t)-v(t)\|^2 \\ &\leqslant \|x_0-y_0\|^2 + 2\int\limits_s^t \big(B(\tau)u(\tau,\,x_0) - B(\tau)v(\tau,\,y_0),\,u(\tau,\,x_0) - v(\tau,\,y_0)\big)_s d\tau \\ &\leqslant \|x_0-y_0\|^2, \quad \text{for all } t \in [0,\,T_1], \end{split}$$

which shows the uniqueness of u. The proof is complete.

Remark 2.2. If B(t) = B is independent of t, we can extend the solution u to the whole [0, T), so if $T = \infty$ we get a result of Barbu [1]. However, in time-dependent case (i.e. our case) the problem of the extension of u to the whole [0, T) remains open.

Appendix. In our paper we have used some clasical results on integral inequalities of the following type:

THEOREM 1. Let h be a continuous strictly increasing function defined on an open subset $D(h) \subset (0, \infty)$ and $g \in L^1_{loc}(0, T; R_+)$. If f is a continuous function on [0, T] with $Rf \subset Dh$ satisfying the integral inequality:

(1)
$$h(f(t)) \leqslant M + \int_{s}^{t} g(\tau)f(\tau)d\tau, \quad 0 \leqslant s \leqslant t \leqslant T, M \in \mathbf{R},$$

then the following estimation holds

(2)
$$f(t) \leqslant h^{-1} \left[G^{-1} \left(G(M) + \int_{s}^{t} g(\tau) d\tau \right) \right]$$

for all $t \in [s, T]$ such that the right-hand side of (2) is defined.

Here G denotes a primitive of $1/h^{-1}$ and h^{-1} is the inverse of h.

Proof. Set
$$y(t) = M + \int_{0}^{t} g(\tau)f(\tau) d\tau$$
. Therefore

(3)
$$y'(t) = g(t)f(t)$$
 a.e. on $[s, T]$.

From (1) we have $f(t) \leq h^{-1}(y(t))$ so (3) becomes

(4)
$$y'(t) \leq g(t)h^{-1}(y(t))$$
 a.e. on $[s, T], y(s) = M$.

By standard arguments, (4) yields

(5)
$$y(t) \leqslant G^{-1} \left[G(M) + \int_{0}^{t} g(\tau) d\tau \right].$$

Using once again $f(t) \leq h^{-1}(y(t))$, from (5) we get (2). Taking into account that R(G) is an open subset of $(0, \infty)$, it follows that the right-hand side of (2) is defined at least for t sufficiently close to s. Thus the proof is complete.

COROLLARY 1. If f is a continuous function from [0, T] into R,

(6)
$$\frac{1}{2}f^2(t) \leqslant M + \int\limits_s^t g(\tau)f(\tau)d\tau, \quad 0 \leqslant s \leqslant t \leqslant T,$$

where $g \in L^1_{loc}(0, T; R_+)$, then we have the following estimation

(7)
$$f(t) \leqslant \sqrt{2M} + \int_{s}^{t} g(\tau) d\tau \quad \text{for} \quad t \in [s, T].$$

Proof. Take $h=x^2/2$, x>0, and then, applying Theorem 1, we get (7). Indeed, in this case $h^{-1}(x)=\sqrt{2x}$. Obviously, we can choose $G(x)=\sqrt{2x}$, x>0, since $G'(x)=1/\sqrt{2x}=1/h^{-1}(x)$, for x>0. Thus $h^{-1}\cdot G^{-1}=G\cdot G^{-1}=I$ so (2) implies (7).

Remark 1. For $h=x, \ x>0$, we choose $G(x)=\ln x$, so by (2) we derive $f(t)\leqslant M\exp\left(\int\limits_{-t}^{t}g(\tau)\,d\tau\right)$, that is, the classical result of Gronwall.

Remark 2. Similarly to Theorem 1, we can give an estimation for the function f below

(8)
$$h(f(t)) \leqslant M + \int_{s}^{t} g(\tau) L(f(\tau)) d\tau, \quad 0 \leqslant s \leqslant t \leqslant T.$$

We omit to formulate here for (8) the theorems corresponding to Theorem 1, as well as the corresponding references.

References

 V. Barbu, Continuous perturbations of nonlinear m-accretive operators in Banach spaces, Boll. U. M. I. (4) 6 (1972), pp. 270-278.

[2] P. Benilan, Thèse de doctorat d'Etat, Orsay 1972.

[3] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformation on general Banach spaces, Amer. J. Math. 93 (1971), pp. 265-298.

4] R. H. Martin Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc. 26 (1970), pp. 307-314.

[5] N. Pavel, Équations non-linéaires d'évolution, Mathematica Cluj 14 (37), 2 (1972), pp. 289-300.

[6] — On an integral equation, Rev. Roum. Math. Pure et Appl. 19 (1974), pp. 237-244.

[7] — Sur certaines équations différentielles non linéaires dans un espace de Banach,
C. R. Acad. Sci. Paris 275 (1972), pp. 1183-1185.

 [8] — Approximate solutions of Cauchy Problem for some differential equations in Banach spaces (to appear).

[9] G. F. Webb, Continuous nonlinear perturbation of linear operators in Banach spaces, J. Functional Anal. 10 (1972), pp. 191-203.

[10] H. Cartan, Calcul Différentiel, Paris 1967.

Received June 10, 1974

(843)