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STUDIA MATHEMATICA, T. LIV. (1975)

Examples of separable spaces which do mot contain I, and whose duals
are non-separahle '

by
J. LINDENSTRAUSS (Jerusalem) and C. STEGALL (Binghampton)

Abstract. Two cxamples of separable Banach spaces which do not contain !
and whose duals are non-separable are presented. '

L. Introduction. We are concerned here with two (negative) solu-
tions to a problem in Banach space theory which was open for some time.
The problem is the following

(P) Assume that X is a separable Banach space such that X* is non-
separable. Must X contain a subspace isomorphic to 1,%

The two solutions to (P) which we Present here were obtained inde-
pendently and at about the same time. One counterexample to (P) which
we denote by JI' and call the James Tree was obtained by R. C. James [7].
The second space which we denote by JF and call the James function
space was obtained by one of the present authors. The space JF has been
studied for some time by M. Zippin and it was he who suggested it to
one of the authors in connection with some problems related to (P).

Both spaces JT and JF are closely related to the famous example J
of James [3] of a sequence space which satisfies dimJ™*/@QJ =1 (Q de-
notes the canonical embedding of a space into its second dual). The space
J I is the natural function space analogue of J. The space JT is obtained
from J by replacing the index set on which the space J is defined by a
suitable infinite tree.

The space JF iy easy to define and it is a space which ig also of inter-
st outdide the framework of Banach space theory. Before we define JF,
let us recall (one of) the definition(s) of J. The space J consists of those
Sequences § == (14, %5, ...) of reals such that

Ic:-"l N1 A2
(L.1) Il =sup( 3 3 4" < o

{0 J=n;+1 »
where the sup is taken over all increasing finite sequences of integers
0 = my<m < ...< m. The function space analogue JF of J is defined
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as the completion of the linear span of characteristic functions of sub-
intervals of [0, 1] with respect to the norm
k-1 byl

Wi = sup (2] f(t)dt)z)m

e S

(1.2)

i itions 0 =y <ty < ... <t = 1 of
where the sup is taken over all pa.rtltlonb‘O 0 <ty <
[0, 1]. A somewhat more elegant way to consider JI' is obtained by work-
; .

ing with g(f) = [f(u)du. In this"way JF becomes the completion of
1]

the space of piecewise linear functions g on [0, 1] with respect to the
“square variation” norm, i.e.

-
-

(1.3) gl = sup | ) {gtte) —g @)

i

where the sup is again over all partitions of [0, 11 (in order to get a 1.101'1?1
in (1.3) we have to normalize g, e.g. by requiring ¢(0) = 0). The ‘defi-
nition of J7 will be given later (in the beginning of Section 2).

We devote one section to the study of each of the spaces JI' and JT.
There is no dependence relation between these sections and the reaider
interested only in ome of these spaces may read only the appropriate
section. Also, in our presentation of the properties of JT' we do not assume
that the reader is familar with James’s work on this space (i.e. [7]). Though
JF is perhaps a more “natural” space than JT it turns out that it.is more
difficult to amalyze its structure. From a Banach space theoretic point
of view the information known thus far on these two spaces makes JT'
% more interesting (as well as more transparent) counterexample to (I).

In proving that JT is a counterexample to (P) James proved that
(1) JT* is non-separable (this is easy) and the rather deep fact tlha,t (2)
every infinite dimensional subspace of J7I' contains a subspace isomor-
phic to I,. Thus, in particular, (3) JT does not contain a subspace isom.m.?-
phie to ¢, or I;. We do not prove (2) here. Instead, we give an exphc;i;
description of the conjugates of J7. It follows in particular that (4) JI'
is equal to QJT @ X where X is isometric to [,(I") with I" a set of the car-
dinality of the continuum. The proot of (4) is much simpler than James’s
proof of (2). It is clear that (4) implies (3). Moreover, the information
on the conjugates of JT enables the deduction of further properties of
JT which show that JT answers negatively some other open problems
besides (P). We show in particular that (5) QJT is w* sequentially dense
in JT* and (6) every bounded sequence in JT has a weakly Cauchy sub-
sequence. (It has been asked whether a separable space which has the
properties of (5) or (6) must have also a separable dual. This question
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goes back to Banach [1], p. 243.) We show also that (7) there is a weakly
meagurable function with values in JT* which is not equivalent to a strong-
ly measurable function. For definitions of these notions see below in
Section 2; it was a conjecture in the theory of vector measures (this con-
jecture was communicated to us by D. R. Lewis) that a space which ad-
mits & weakly measurable function not equivalent to a strongly measur-
able one must contain 1.

Concerning the space JF we show in Section 3 the following: (i)
JI* iy non-separable (this is trivial), (i) JF contains a subspace isomor-
phie to ¢, (this is an immediate consequence of a result of Giesy and James
[2] concerning J), and (iii) JH contains no subspace isomorphic to 7,
(the proof of this fact is the most delicate part of the present paper).

It can be expected that further investigations into the structure of
JI and its conjugates will reveal some new interesting facts.

Let us mention that in an attempt to prove that the answer to ()
is positive the second named author undertook a study of the structure
of the separable spaces whose duals are non-separable. The examples
presented here and especially the space JT illuminate the results of [14]
and show in a sense that they cannot be improved. We shall mention the
main result of [14] in the end of Section 2.

Acknowledgement. We are indebted to several mathematicians who
contributed much to the material presented in this paper. Our greatest
indebtedness is to R. C. James who made available to us a preprint of [7]
and whose ideas underlie all parts of the present paper. As mentioned
already above we owe to M. Zippin the suggestion to consider JF. We
want also to thank 'W: J. Davis, T. Figiel, W. B. Johnson and H. P. Rosen-
thal for some helpful comments and suggestions in connection with our
study of J7'. The second named author would like to thank James Hagler
for many conversations about these questions.

2. The James tree J7T'. The space J7T is defined as a space of functions
defined on an infinite tree 7. Let

T ={(n,i); n=0,1,2,..., 0<<i<<2".
We partially order 7' by putting (m, ) = (n, i) if m > n and then exist
integers 4y = i, 4y, ..., G = with &k =m—n and ¢;e{2,204+1}, i,
{24y, 20, -+ 1}, ..., dpe{2i4_q, 29, +1). Such a set of indices {(n, 1),
(m-1,141), ...y (m, J)} is called a segmeni. By a branch we mean a maximal
segment, i.e. a set of indices of the form
{(0, 0), (1, i), (2, )y vney (My dy)y e}

with iy e{24;_,, 24, _; + 1} for every k. The space JT' consists of all funections
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2 from T to the reals so that

L 12
(2.1) ol =sup (D)) atn, i)f)" < oo
=1 (nd)ey

where the supremum. is taken over all choices of pairwise disjoint seg-
ments L1, Fsy.eey Fpe . .

Let ¢, ; be the unit vectors in JT, i.e. the elements defined by e,,.(m, j)
= 8.0 0;;. It is straightforward to show that JT' is a Banach space and
that  {en, om0 o (enumerated 65,0, €1,0; 61,15 -1 En07 Or,1y s On,2n-15
€10 --+) I8 & boundedly complete basis of JT. Hence (cf. [2]) J%’ is
canonically isometric to B* where B is the closed linear span in JT™ of
the biorthogonal functionals {f, .} to the {e,.} (l.e. fui(lns) = Onm 6}',,-)‘
Clearly, also [lfa,ll = llenqll = 1 for all » and ¢. There are many projec-
tions of norm one on ' J7T. We shall define here some such projections which
will be of use in the future. For

oo 21
= ¥ ¥ty i6,,6dT
n=0 i=0
define
oo 2%—1 .
\ |
(2.2) ) P,e = ZZ bribugs M =0,1,2,...,
n=mi=0
. o0
(23) Ppgo = 3 fagtnis M =0,1,2,..., 0<j< 2™,

n=m (n,1)=>(m,7)

and, finally, for every branch B of T

(24) Ppo = D ti60.

' (n,9)eB .
The verification that (2.2), (2.3) and (2.4) all define projections of norm 1
on JT' is immediate.

Let 0y, ..., 0, denote finite subsety of T such that any segment &
of T' intersects at most one o,,. Then, as easily checked, for every choice
of scalars t,,; we have

r

(2.5) |3 tustas

4
(n,z')spglup

i = j“ 2 bn,iOnys
p=1

('n',i)wp

In particular, for every zeJT and every integer m

am—y’

(2.6) Ppall = 3 1|2, ;2]
. =0
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For every pair (m, j) the space P, ;JT iy isometric to JT and for
every branch B of T the space PpJT is isometric to the clagsical James
space J (see (1.1)). Let us recall that the unit vectors {e;} clearly form
a boundedly complete basis for J. The space J* contains besides the
span J of the biorthogonal functionals {fi} to {e}, also the functional g

defined by g(y1,¥s,...) = 3 y;. Since dimJ*/J =1, it follows that
N =1 .
J* = J ®{spang}. Hence, for every jeJ*, lim f(e,) exists and this
limit is 0 if and only if feo. o '
We consider now the dual JT* of J7 and define a map §: JT* 1, (T")

where I"is the set of all branches of T, i.e. a set of the cardinality ef the
continuum. The definition of § ig

2.7 ' Sa*(B) = lim *(e,).
(n,i)eB

The following theorem is our main result on the structure of JT*.
All other facts concerning JT which we are going to establish will be
easy consequences of this theorem.

TumorEM 1. The operator § defined in (2.7) is @ quotient map from JT*
onto Uy(I'). The kernel of S is equal to B = span{f, 3o, 2t In partioular,
B* QB is isometric to 1,(I). .

Proot. We check firgt that §is a well defined operator of norm <1
The limit in (2.7) exists by the preceding remarks concerning the prop-
erties of J". Let now {B,}2_, be distinct branches of 7. There is an inte-
ger m such that the sets B,n{(n,7); n=m}, p =1,..., ¢, are pairwise
disjoint. It follows that if (n,, i,)e B, with n, > m and if {t,}2_, are scalars
then ‘

2

JQ

= )1

a
l' 2 ty Onpriy »
p=1 Pl

(this is a special case of (2.5)). Hence, for every z*eJ T,

q
2.’)3"'((3,111_5“)2 = Um*llz
=l .
The same vemains true as (m,,4,) tends to oo in B,,p=1,...,¢qand
hence § is bounded and of norm < 1. o
It is also easy to prove that § is a quotient map. Indeed, let {B,)2..
and m be as above. Let {1,}2_., be also given. Define #*<JT* by

co 2M—1 a
* T 1
@ (2,2, tﬂ.,ien.j) =D by 2 Z¥E
.m0 f=0 p=lv (n,j)slﬁ,
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Tt is easy to verify (directly from (2.1)) thab l#*| = 1. Also by (2.7) S«*(B,)
=1, and So*(B) =0 if B is not any of the By, p =1,...,4. Thus S
is a quotient map.

Let ¥ be the kernel of §, i.e.
(2.8) Y = {o*eJT*; lim o*(e, ;) = 0 for all B}.

(n,5)eB
=00

Tt is evident that B < Y. The main point in the proof of Theorem 1 is to
verity the reverse inclusion, i.e. that ¥ is equal to B. We prove first
a lemma. :

LeEMMA 1. Por a*eY

lim (max [P} ,#*]) =
00 0Li<2”

Proof. Suppose there is an o > 0 and a sequence (ny, 4;) such that

(2.9) 125 ,,i,CW*H >a, k=1,2,...

‘We show first that among the (1, 4,) there exists only a limited number
of mutually incomparable elements (with respect to the partial order
of T). Indeed, assume that (ny, i), ¥ =1, ..., j, are all mutually incom-
parable. By (2.9) there is, for every k, an <P, JT with |z =1
and o*(2,) > a. By (2.5) _
J
| Yol =5
k=1

gy

and hence

j
< ja<a( Ym) < e,
: Je=1
ie. §< (Io"]/a).

It follows from the preceding argument that there is no loss of
generality to assume that the sequence (ny, 7,) satisfying (2.9) is totally
ordered and thus determines a unique branch B of T. By passing to a sub-
sequence if necessary we can further assume without loss of generality
that ng,; > n, and

(2.10) ey — P

gy ’L]G W10 4 }_1’1’ ” > o

for all k. -

(Observe that, for every y*eJT* and any choice of 0.4, << 2%
limly* — P} 4% = lly*|l) Since #*¢Y, it follows from our discussion

N—>00 i

of J preceding the statement ‘of Theorem 1 that P}, o* espan{ Fuis
(n,1)eB}. Thus for sufficiently large % (and therefore without loss of
generality of every %) .

(2.11) (PE — P \Pha*| < }a.

"h'+1)
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Put now for k =1 2, ... .
(2.12) = Pt =Py niee T (P — Pl )P

(0=

It is easily checked that each Uj is the dual of a projection U, on JT ‘
such that the support o, of the elements in U, JT is given by

o = {(n, 1); (n, %) < (ng, 4), (n,1) L gegers Tpa) s

Tt is easily verified that these {s;}3%, verifty the assumption of (2.5) (i.e.
each segment intersects at most one of them) and hence for every j

R i
= Y.

k=1
[ > %o by (2.10) and (2.11) while by (2.12)
4 for all j. This contradicts (2.13) for j > 64 ll5*12/a2, and thus

(n, 4)¢B}.

(2.13) H _5:’ Ut
T=1

However, for every k, |Ura®
i

PAAE

concludes the proof of the lemma.

‘We return to the proof of Theorem 1 itself. Assume that B is a proper
subspace of ¥. Let § > 0 be such that

(2.14) 3,5< 4(1—8)?
and pick #*eY such that
(2.15) d@*, By>1—06, | =1.

Let m be an integer so that

(2.16) l* — Pra™| > 16,
and let ¢ > 0 be such that
(2.17) M E < (L —9).

By Lemma 1 there is a ¢ > m such that

IPg2"l <e, 0<j<20

By (2.15) |[Pja* 3 1 — 6 and hence by (2.6)

21

2 PG ¥ > (1— o).

0 << § < 27 there exist wjeJT with [loll = 1, Py = a;

It follows that for
and
o1 901
Al
= > P} ;0% (@) —2 la* ()
j=0

(2.19) (1—8)%
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Define next
291

(2.20) ‘ o= o (w)m/0.

j=0
Note that by (2.6), (2.18), (2.19), and (2.20) we have
(2.21) fol =1, & @)21—0, [Pyuo] =a")/C<e/(1-0),
0<j< 2%
It will be convenient to assume also (and we clearly can do this without

loss of generality) that P,(x) = 0 for some p > ¢. By (2.16) thereis a y«JT
with

(2.22) Wl =1, Pupay=0, &y >1-4¢,
and thus, in particular,
(2.23) wF(wy) > 2(1—0).

Our next aim is to obtain an estimate for |z y| and use this via
(2.14) to obtain a contradiction to (2.23). and thus prove the theorem.
Let

pﬁ P |
y+o = ZZ l ,iOn,i3
n=0 =0
then by our construction ¢,; = 0 for m < n< ¢. By the definition of
the norm in JT there are pairwise disjoint segments &, %y, Ty
A<ESE(S), 1<K <SF(r), L<E' E'(?)) such that each 2, contains
no element (n, ¢) with n > g, each 7. does not contain an element (, %)
with # < m, and each &, contains elements of the form. (m, k) and (q, 1)
so that

@224)  lo+ylf =k(2)( D ) + f( D) tnaf + ;Sm( D )
. k=1 (n,1)eSp, E=1. (n,d)edty, =1 (n,d)ed k"
=87+t

First note that

(2.25) 1< ot =

Next since (a -+ 8)2 < 2(a2-+2) for all ¢ and g, we get that

. (s) ’
(2.26) sgz(Z( 2 n') %Z( y n’i)ﬁ)——z(»‘«}‘su)'
k=1"(n,1)ePy k=1 (n, i)ey“,c
n<q
Note that ) )
(2.27) , : 28" +r < 2(8'+7) L 2y|12 = 2.

©
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Observe also that the number of the &, i.e. k(s), is less than 27 Let
(g, J)e L L <K< k(s). By (2.21)

k(s) k(s)
(2.28) 8" = 2( Z t, 1) < VI]Pqu““ < 2™ (1 — 8

E=1 - (0,032
Combining (2. 11) (2.24)—(2.28), we get that
(2.29) le+yl? <t +2(s"-+7)+ 28" <14+24+0,5 = 3,5.
This however contradicts (2.14) and (2.23) and concludes- the proof of
the theorem.

‘We pass now to some corollaries of the theorem. We would firgt
like to recall the obvious fact that if B is the space appearing in the
statement of Theorem 1 then B* is isometric to J7T.

CoROLLARY 1. For every imieger k>1, B® ~ B*@L(F) and
BPFY & BY*@ly(I). Thus none of the conjugates of B contains a subspace
isomorphic to ¢, or I, The conjugates of odd order of B are all weakly
compactly generated (WCG in short) while those of even order (except B itself)
are not WOG. .

Proof. By the Theorem, B™/QB is isometric to I,(I'). By standard
facts concerning duality (cf. e.g. [2]) B™* = @Bl ®@,B" Where Q.:
B*—>B"™" denotes the canonical embedding). Hence B*** ~ 1,(I') ®B*.
The first assertion of the corollary follows now by trivial induction on %
using the fact that 1,(I") @D (I") ~ l,{I"). The second assertion follows
easily from the first one (use e.g. the fact that the cardinality of all the
conjugates of B is less than that of I%). As for the third assertion recall
that a Banach space is said to be WCG if it is the closed linear span of
a weakly compact set. Separable and reflexive spaces are trivially WCG
and hence the same is true for B®~" for all integers k. Also, trivially,
a non-separable conjugate of a separable space is non-WCG and a comple»
mented subspace of a WOG space is WCG hence B™ for k=1, 2,
is non-WCG.

Remark. The even conjugates of B are thus exainples of non-WCG
gpaces whose duals are 'WCG. This answer question 3 in survey paper
[10] on. WCG spaces. Another (much simpler) answer to this question
was recently given in [9].

CoROLLARY 2. JT' is w*-sequentially dense in (JT)*.

Proof. For every branch B of 1, Tet fued T* be defined by

m 2". 1 l
(2.30) f]l( / by, L()'IL,) = Z by
. ) e 0 i =0 (n,3)eB -
For each such B define Iy e JT™* by Ty (f,q) = 0for all % and 4, Fg(fg) = 1
and Fy(fy) = 0 if B # B'. The representation of B™ = JT™ given

4
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in the beginning of the proof of Corollary 1 means explicitly that each
2™ JT** has a unique representation of the form

0
m** = ZS] 11;]. + Qm
Jj=1

where zeJT, the B; are distinct branches of 1' and s} < oo (actually
to ensure iniqueness we have also to require that s; % 0 for all j, so the
sum on j may also be finite or even empty). Moreover, || < ")l and
(¥ &) < |o**|. Choose now a sequence n; <<m,<C... of integers - o
that {B;}}_,; do not intersect on or below the n;th level. Pick 4, so that
k

(Mg igs) eB; and put a, :j;z: 81€ngiyyye Then [yl < o™ for all k. It is
obvious that &*(z+ ,)—~**(2") for " = f,, for some n and 4 or for
#* = fg for some B. Hence @ (z-+u,)2 s z**.

Remark. The sequence & o, satisfies ||z 4, < 2 |#™*|. It follows,
however, from the Corollary and an observation of McWilliams [11]
that there is a sequence {z,}s>, in X such that ||zl = [2**| and Qz2»z**.

COROLLARY 3. Hvery bounded sequence in JT' has o weakly Cauchy
subsequence. . . :

Proof. Let {yn)o., c JT = B* with [jy,/l <1 for all m. There is a
subsequence of {y/,,}r~; (Which we may assume without loss of generality to
be the sequence itself) which converges w* to some y eJT, i.e. lim (,, —v) (b)

M0

=0 for all beB. Put %, = ¥, —y. Since all the coordinates of ,, tend
to 0 as m—>o0, it follows from (2.5) that for every choice of distinet
branches {B;}i_, of T

(2.31) Umsup Y | (@)1* < Nl < 4.

m-co  iT

By (2.31) there is a subsequence {mj};2, of the integers and an integer

0 < %, <16 such that, for &, distinet branches B;, Iimf,,j(a;m;) exists and
i-+00

is of absolute value >4 while for all other branches limsup |f,,(m,m‘;)| < 4.
. ; ]

By using again (2.31) we can find subsequences {mi}32, of {mi}>, and
a ky with &y < %, < 2° such that, for k, distinet branches By, lix.nf,,j(m,,‘g)
v

exigts while for all other branches the absolute value of the corresponding

sequence has limsup at most 1/22 Continuing in the same manner and

passing to the diagonal sequence, we get finally a subsequence {m,} of

the integers so that limfp(s,,) exists for all branches B of T. Since by
%

Theorem 1 the elements of the form fj together with QB span JT¥ it
follows that lima*(y,,) exists for every z*<JT* and this proves the

Corollary. e

icm®
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H. . Rosenthal pointed out to us that Corollary 3 is actually a special
case of a general result.

ProposrrioN (H. P. Rosenthal). Let X be o separable Banach space
such that X**[QX is reflewive. Then every bounded sequence in X* has
a weakly Cauchy subsequence.

Proof. As in the first part of the proof of Corollary .3 it is easily
seen. that without loss of generality we may assume that the given se-
quence {m, 12, satisties limay(#)= 0 for all xeX. Let Q,: X*—X**pe

H~»00

the canonical embedding. Since 2250, it follows immediately that the
get K of limiting points of {@Q.zn} in X™* in the w*-topology (i.e. the
topology induced by X*) is a w*-bounded and closed subset of QX<.
By assumption, QX+ is reflexive and hence K in its «*-topology is an
Eberlein compact (in the terminology of [10]). By Theorem 3.8 of [10],
K has a G, point, ™ say. In other words, there is a sequence of w*-open
sets {0,152, in X*** such that

o
(2.32) " = Knﬂ Oy

By the definition of K there is for every k an integer n, such that @,#,, ¢0y.
By (2.32) the sequence {2, }7., tends o to &™* and thus {z,}2,
is & w-Cauchy sequence in X*.

Qur tinal two corollaries to Theorem 1 are related to vector meas-
ures. Before we state them, however, we would like to recall the main
result of [14] and observe the form it takes in J7. The main theorem in
[14] is & certain representation theorem for any separable space X whose
dual ig non-separable. For JT' thig representation can be verified directly
and very easily. This representation will be of importance in the two
remaining corollaries. Thus, though we do not need here the result prov-
ed in [14] we mention it since it shows that, like the case of Corollary 3,
the remaining corollaries can. also be extended to a more general setfing.

Let A = {0, 1}% be the usual Cantor set: Let {h,}: i’ be the
usual Haar system on A. The function hy, 5 is defined as the characteristic
function of the clopen subset A, ; of 4 defined by

Observe that
(2.34) By = hygagl ey m =0, 1, 4 =0,...,2"—1.

The main vesult of [L4] is the following: Let X be a separable space.
Then X* iy non-separable if and only if for every &> 0 there exists an
operator RB: X-»C(4) (= the space of continuous functions on A with
the sup norm) of norm 1, and a set {#,,} = X such that |, |<1+e
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for all » and 4 and
LB ]

_§j IR,

i=0

hn,i” < €.

[\/ 12

1
=

n
The non-trivial part of this result is clearly the “only if” part. For the
space JT there is a natural and simple candidate for B which has the re-
quired property, even with & = 0. It is clear that

(2.35) Rey;=lygy n=0,1,2,...54=0,1,...,2"~1,

defines an operator of norm 1 from JT into (4). Let us observe that
this operator R defines a 1-1 correspondence between A and the set I'
of branches of 7. Indeed, for every ¢4 there corresponds a unique Bel
such that Rxz(0) = fg(@)

Let us recall that a Banach space X has the Radon—Nikodym Property
(RNP in short) if for any finite measure space (S, 2, u) any u-continuous X
valued measure m on X of finite total variation is the indefinite integral
with respect to x4 of an X valued Bochner measurable function on S.
There are several equivalent formulations (which look entirely different)
of the RNP. We refer to [14] for background and further references.

COROLLARY 4. The spaces B®**), & = 0,1,2, ..., all have the RNP,
while the spaces B®®, § =0,1,2,
B is not a subspace of o separ able cowjugate space.

Proof. Since separable conjugate spaces and reflexive spaces have
the RNP (cf. [14]), the first assertion of Corollary 4 follows immediately
from Corollary 1. In order to prove the second (and third) assertion of
Corollary 4 it is enough to show that B does not have the RNP. Let R
be the operator given by (2.35) and let x be the Haar measure on 4 (de-
fined by f By du= 27" for all n and 4). We can consider the h, ; also ag
elements in I,(u) and thus in o canonical way as elements of ¢ (4"
Let Yn; = 2"R*hy,eJT" = B™. By definition, [y} ,(¢,,)] < 2™ and
hence, by Theorem 1, (y,1 ieY; cf. (2.8)) or bv a sm]pk chreet ventm%mn,
:‘/‘n'LEQB for all n and 1. We’ have that y'ni (’l/nllzl - /l/)b 11,2841 /) bV
(2.34)), Iy}l <1 and, ag easily checked, . |y} ; — gl 3= 1/2 unless (1, %)
= (m, j). It is known that a space which has a set like ffl/,, i does not
have RNP (again see [14] and its references; the set {s 4/71 o 18 & typical
example of a “non-cdentable” set).

Our last corollary answers a question from the theory of wvector
measures. Let K be a compact Hausdorff space and let 4 be a meagsure
on K. We say that a function ¢: K—X for some Banach space X is weakly
measurable (with respect to u) if for every o™« X* the function 2*c o belongs
to I (K7 #): We say that two such functions g and v are equivalent it
t*oo = a*or u-almost everywhere for every «*eX* Tt is well known

.y fail to have the RNP. In particular,
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that for separable X, every weakly measurable function is equivalent
to a Bochner (i.e. strongly) measurable function. ‘It is also known that

this is no longer the case if X >17,. The question was whether the exist-

ence of a weakly measurable function which is not equivalent to a strongly
measurable one implies that X > 7,. Our next corollary shows that the
answer is negative. »

COROLLARY D. There is a weakly measurable function o from the Cantor
set A (endowed with the Haor measure ) into JT* which is not equivalent
to any strongly measurable function.

Proof. The function o is simply the correspondence hetween 4
and I discussed above, i.e.

a(0) = R*(&), Oed,

where d, denotes the Dirac -measure. Clearly, o(0)(e,;) = h, ;e0(4)

and hence o(0) (%) « 0 (4) for every weJT. By Corollary 2 for every o™ e JT™

there is a sequence {#,} with Q2™ and hence
™00 (0) = lim o (0) (@) e Loy (4, u).
J~r00
Hence o is weakly measurable. Assume that there is a v: 4-JT* which
is strongly measurable and equivalent to ¢, By Lusing’ theorem there
is a closed subset K of A with g (K)> 0 such that

(2.36) ° The restriction of v to K is norm continuous
and
(2.37) Qe ;07 eC(K),

By (2.36) and (2.37) the set {Qe,;ov} is equicontinuous and bounded
and thus a relatively norm compact set in C(K). Since v is equivalent
to o, it follows also from (2.37) that

(lwn,io T(O) = Qan,iog(o) = hn,i(a)

for every 0 in K. It is however easy to verify that the restriction of the
Haar system iy not relatively compact on any set of positive measure.
This confivadiction proves Corollary 5.

Our final covollary to Theorem 1 is a wealker version of the result
proved in [7). Our proof is casier (though rather contrived) than the
argument given in [7] .

JOROTLARY 6. Let Y be any infinite dimensioned closed subspace of J T
Then Y has an infinite dimensional reflexive subspace.

Proof. From the results of [8] it suffices to show that Y has a sub-
space Z such that %™ is separable. It follows from Theorem 1 that if Z*
is separable then Z* is separable. Let R: JT—C(A) be the operator

n=0,1,2,...,4=0,...,2"—1.
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defined by (2.35). Let 1;{4) be the subspace of C(4)* consisting of the
purely atomic measures. It is easy to check that SR* defines the canon-
ical diagonal operator from [, (4) to 1,(4) (8 is the operator defined
in (2.7)), where I,(A) is naturally identified with J1™/B. Also note that
if u is & purely non-atomic element of C(4)* then R*(u) is in B.

Let Y De a subspaces of JT such that ¥* is non-separable and let
I: Y—JT denote the containment operator. Suppose there exists a 6 > 0
such that d|ly|| < IRyl < |y|l for all ¥ in ¥. Let @: ¥*—Y"/I"(B) denote
the quotient operator and V: JI*/B—Y"/I*(B) the induced operator;
that is, QI* = V8. Since I*R* is onto QI*R* and VSR* are onto. Thus
we have that FSE*(I;(4)) = ¥Y*/I*(B). Since SR*, when restricted to
1,(4), is the canonical diagonal operator from I,(4)to I,(4) and ¥*/I*(B)
is infinite dimensional, it is impossible  that VSE*(l;(4)) = Y*/I*(B).
Thus RI is not an isomorphism. To complete the proof, let ¥ be an infinite
dimensional subspace of JT. Let {b,}7>, be a normalized basic sequence
in ¥ (see [2]). We may assume that [b,]" is non-separable. Then there
exigts an integer N, and an element z, in [b;], L <k < N, o] = 1, such
that ||Reyf < 1/2. Since [b,]*, % > N, is non-separable, there exists an
Ny> N, and an element 2, in [b,], Ny <k <N, [Roll =1, such that
[lB2,)] << 1/4. Continuing in this manner, we obtain a normalized block-

. e .
basic sequence {z;};2, contained in [b,]7, such that }' [|Reyll < 1. Let
=1

Z = [#] and let I: Z—~JT denote the containment operator. Then RI
is & compact operator so I* R* has separable range. Since R*(C(4)*)+B
is dense in JT™, I"R*(C(4)*)+-I"(B) is dense in Z*. Both I*E*(C(4)%
and I*(B) are separable. So Z* is separable.

After we obtained the results presented here a number of related
results have come to our attention.

First, Davis, Johnson, Figiel, and Pelezyhski observed that their
general construction used for factoring weakly compact operators [3]
can be used also to produce examples of a type similar to those given
here. Their approach makes the proofs simpler but the examples they
obtained are more difficult to describe explicitly. They outlined their
approach in the short appendix to [4].

Second, H. Rosenthal [13] has shown that if X is a Banach space
that containg a bounded sequence which has no weakly Cauchy subse-
quence then X has a subspace isomorphic to ;. Also, H. Rosenthal and
E. O’dell [12] have shown that if X is a separable Banach space and there
exists an element of X that is not the weak® sequential limit of elements
of X, then X has a subspace isomorphic to I;. Thus Corollaries 2 and 3
also hold for the space JF.
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3. The James Function space JF. The space JF was defined already
in the inftroduction. We find. it more convenient to use it in the form given
in (1.2). Let us make some preliminary observations concerning this
space. For every feL, (0, 1) and every partition {t,}%_, of [0, 1]

k=1 lgp1 k-1 tigl

(Z(Af f(t)(lt)z)*s_;gllif ftyar

1
< [If@ta,
30 0
and hence |Ifll = Ifll,,. Moreover, if fz= 0 we get by taking the partition
0 =1ty =1 that |f| = |Ifl;. It follows that JF is separable (the
characteristic functions X of intervals I with rational endpoints span JF)
and that JF < L,(0,1). For every interval I the function X; can be
considered also ax an element of JF” in an obvious manner (X;(f) = [ £(z)dt).
I

Trom (1.2) it is evident that [ Xl < 1 and by applying X; on f = X;
we get that actually |X|;p =1 for every interval I. In particular,

1X0,69 — Xpo,qllrn = it t#s

and thus JF* is non-separable.

Consider the system. {r,(¢)};.; of Rademacher functions on [0, 1].
Recall that

7(t) = (—1)F  for  te(27", (k--1)27%), k = 0,1,...,2"—1.

It is easy to compute [r,||. The partition for which the supremum in (1.2)
is attained is the one determined by the points {k27"},.;, .. . and
thus [rjl = 272,

Computations similar to those made by Giesy and James ([4], Lemmal)
shiow that if {n,}{2, is a sequence of integers tending fast enough to co
then the sequence {r, /|, I};Z, is equivalent to the unit vector basis in .
The passage from Lemma 1 of [4] to the situation here is not, however,
immediate. The difficulty of using in the present context Lemma 1 of
[4] stems from the fact that (with the notation of [47]) &, there is not allowed
to become arbitrary close to e but only to 2e. Thus, if we uze this lemma -
iteratively we get that e, 3 2%s, and it follows that &), &, 5, ... 15 an
unhounded sequence. What we need, therefore, is a version of Lemma 1
of [4] where & i allowed to be close to e provided N is large enough.
We verified that Lemma L iy also true in this form. Our proof of this is
longer than the argument presented in [4]. (Moreover, it seems to us
that the argument in [4] is incomplete since in the formula preceding
formula (6) there it is not clear to us that without loss of generality y(ry)
<y (py) and y(pyq) < y (7). Since we shall not need this in the sequel,
we do not present the details herve.
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‘We state now our result concerning the space JF.

THROREM 2. The space JF has no subspace isomorphic to 1.

Proof. We shall present the proof in detail for a space which is
actually a slight variant of JF. We shall assume that the exponent 2
in (1.2) is replaced by some fixed p with 1< p < 2. Thus we shall use
in the proof the following expression for the norm

k=1 Y1

1
(3.1) il =sup (3] [ foyail’)’
2l

1=0

where the sup is over all partitions 0 =ty <t < ... <1 = 1 of the unit
interval. In our approach it turns out that the case 1 < p < 2 is somewhat
simpler to handle than taat of p = 2. Since the computations are long
enough already for 1< p<< 2 we choose to present this case in detail.
The assertion of the theorem ig, however, valid as stated (i.e. for p = 2)
and even for any 1< p < oo. At the end of the proof we shall indicate
briefly the additional argument which is needed for the case p = 2.

In order to make the proof easier we present it first without giving
the details in three places which involve somewhat lengthy computa-
tions. The details are presented after the end of the main paxrt of the proof
(cf. the proofs of Lemmas 2, 3, and 4).

It was proved by James [6] that if X is a Banach space containing
a subspace isomorphic to I; then for every ¢ > 0 there is a subspace ¥
= Y (&) of X whose Banach—-Mazur distance from 7, is < 14 ¢, i.e. for
which there is an onto operator T: Y—1, with |y| << Tyl < (14 &)yl
for all y Y. It follows from. this result that if X containg a subspace iso-
morphic to I, and e > 0 is given, then there is a ¢ X with |ly|| = 1 such
that for every finite set {}}? , in X™ there is a 2¢X satisfying

Bl =1,00(2) =0, i=1,2,..,n, lye|>2—de.

Indeed, choose Y = ¥ (&) as above and pick yeY such that |y| == 1
and Ty = le, for a suitable scalar A, where e, denotes the first unit vector
in 1,. Now if {u;}}., are given, a suitable vector z iy obtained by picking
any vector of norm 1 in the infinite-dimensional space

span{T e}, {w; @} (@) =0, ¢ =1, ..., n}.

Let us note also that obviously ¥ (and also 2) can be chosen so as to Dbelong
to any preassigned dense linear subspace of X.

Returning to the space JF we note therefore that in order to prove
Theorem 2 it is enough to prove that the following statement leads to @
contradiction.

- (3.3) | (D] (wtty+om)a
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(¥) For every ¢ > 0 there is a simple function « in JF with |lu) =1
o that for any integer » there exists a veJF satisfying

@) vl =1,
() Jutol>2~¢, lu—ovj>2—c¢,
(j+1)/n o
() [ o@)at=0,j=0,1,2,...,n—1.
i
Assume that a u satisfying (x) exists for ¢> 0 small enough (the
exact requirement on ¢ will be determined later). Let
8.2) K =suplu(t), n=I[100K/)?P-D]11
) 0<i1
where [1] denotes the largest integer < 1. Let v be a function satisfying

(i), (i), and (iii) of (x) for this value of n. By the first inequality in (ii)
there is a partition {#;}%, of [0,1] so that

k-1 Y41
>2—e.

D )llp
=0 iy
We come now to the first assertion whose proof will be given only later on

Limmya 2. We may assume withowt loss of generality that the partition
used in (3.3) satisfies t;,, —t, > 1/Vn for all 4.
" One obvious consequence of Lemma 2 is that % (the number of inter-

vals in the partition) is less than Vn. For every 1<i<k—1, let 1(3)
be the integer so that

(3.4) L) n < 6 < (L(3) + 1) [n.

It follows from Lemma 2 that for 4, = i, we have 1(3;) 5% I(4,). Pub next
for 4 =0,1,...,k—1

bl b1
(3.5) o= [ u(t)dt,y, = [ wmat,

U by

and for ¢ =1,2,...,k—1
(3.6) ; o= [w()a.

7 — Studia Mathematica LIV
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In view of property (iii) of v it follows that
(e)+1)/n
(3.7) —m= [ @@
i
and (if we put z, = 2, = 0)
(3.8) Ys = Zp1 %
From (3.3) and the triangle inequality in &, we get that

(3.9) (kZ'Imil”)l/p>l»—s, {2 ly )" > 1—e.

1=0
We state now the second assertion whose proof is postponed till after
the end of the main part of the proof. The assertion states that “as a rule”
the signs of #;, —#;, and #;,, are the same. .
TEMMA 8. Thereis a 6 = 8,(s) (with 6;(e)~0 as s—0) so that

()< 0@ (3 k)" <o)

i=0,1,...,k—1.

where the sum 3 (resp. 3'') emtends over those indices i for which #,2,> 0

(resp. #;2;.1<0).

Using the second inequality in (ii) of (), we can repeat for —wu--v
the same analysis made thus far for % +v. In other words, there is a pa.1{,1—
tion {s;}i-, of [0, 1] so that

h—1 &1

(3.10) (Z’[[ (—ult) +0() dt’ )1’”>2

i=0 85

and so that s;,; —s; > 1/1/';@w for every j (Lemma 2). Let m(j), j =1,...
., h—1, be such that

(3.11) - m(f)fn < 85< (m(§)+1)/n,
and define '
Sj+1 81
(3.12) &= [ —u®a, = [ va.
. sj s]'

‘We also define in an obvious way the numbers #;. Lemma 3 shows
also that “as a rule” the signs of 4;, —#;, and 2, are the same.

It may happen that 1(i) = m(j) for certain ¢ and j. Our third assertion,
to be proved later, says that if this happens then “in general” the signs
of #z; are different from that of 2;.

LevyA 4. There is ¢ 8 = 0,(e) (with 85(e)—>0 as e—0) such that

(Z’ 111111('31111, 12}(1 I:D)) 5 (8
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where 2 is ewtended over oll imfegers ¢ such that there is a § = 3(2) with
1(5) = m(j(2)) and 25 > 0.

The proof of Lemma 4 is based on Lemma 3 and the fact that @;
is defined as the integral of % on some interval while the #; are the inte-
grals of —au.

Consider now the partition of [0,1] obtained by taking as division
points all the points of the form ¢, s;, 1(4)/n and m(j) /n with the following
exception: if ¢ amd_j are such that 1(i) = m(j) and 22 > 0 (i.e. ¢ enters
into the sum Y™ of Lemma 4) we omit either #; or Sy; ts (Tesp. sjq) 18
omnitted if |3;] < 2y (resp. [z] > [zm)\) ‘We use this partition in order
to estimate from below | ]’v][” If ¢ is such that 1(4) is not equal to any m(j)
each of the intervals [I(i)/n, ] and [4;, (1(i)4-1}/n] will contribute to
the sum appearing in (3.1) an amount equa] to [2|” (by (3.6) and (3.7)),
a,nd thus the combined: contribution of the intervals contained in [1()/n,
(1(8)+1)/n] is 2]2,7. Similarly, if § is such that m(j) is not equal to any
1(7) the total contribution of the intervals of the partition contained
in [m(j)[n, (m(] 1)/n] to the same sum is 2 |3, If 1() = m( 4) for some
J = (i) and 22 < 0, then in our partition, [1(i)/n, (1(3)+1)/n] is divided
into three intervals whose combined contribution to the sum in (3 1)
(for ["])) is

2l + 2y 1P + |25 — 24P > 2 (1247 & 1250317) «
Flnaylly, if 1) =m(j(s)) and 2%, > 0 then in our partition [1(i)/n,
() +1)/n] is dlv,lded into only two subintervals whose combined contri-

butwn is 2max (|2;?, ]z,([)lp) Summing up we get that (using the notation
of Lemma 4)

(8.13) 13> |plP
—1 h—1 .
>2 (le I+ Y‘w) D) min(lad?, )
k-1 o

Zo( Jmr+ 3 ) | 1) = 0a(0)-

L

On the other hand, by (3.8), (3.9) and the triangle inequality we get
that ‘ '
(814) (Lol << |l b g —aalP o+ ... |y —

fe—1
<2 D el

tel

O o S

Similarly,
-1

(8.15) (L—g)? < 2? D' 5.

j=1
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Combining (3.13), (3.14) and (3.15), we get that

(3.18) 12 (1—8)?2"?—6,(e)
and this is a contradiction for & sufficiently small since p << 2.

Tt remains to prove the three assertions made during the preceding
argument.

Proof of Lemma 2. Let ¢ > 0 be given. By the uniform. convexity
of 1, there is & 6> 0 such that if @, yely, IRl <1, (yli<1 and (o4 y|
> 2— ¢ then |@ —yl| < £°/100. We can clearly assume that also § < 6?/100.
Choose now & ueJF with u simple and |u|| = 1 which satisfies («) taking
ag the “c” there the number é. Define now K and # as in (3.2) and choose
a v satistying (i), (ii), and (i) in (*). Let {z,};., be a partition of [0, 1]

so that

m—1 Y
(317) (X 16, +ml)" > 28

y=0

where

Tyl Tyl
(3.18) g = [ widt, u,= [ o@it

Ty Ty

By our choice of & and the fact that full, o]l < 1 we get that

(3.19) (Z £, —ny[‘”)”” < s”/100

7=0

‘We replace now the partition {z,}j-, by a partition {t.}e_, obtained by de-
leting some points in the given partition so as to ensure that #,.,—1;
>1 ll/;l/ for all 4. More precisely, ?, is taken as the first of the 7, which is
larger than 1/1/5. Next t, is taken as the first of the z, which is larger
than ¢, +1 [Vn and so on. If in this procedure we get a ¢; which is larger
than 1 — 1/1/7—1 we omit it and replace it by 1.

Define now x; and y; by (3.5). Clearly, each #; (resp. ¥;) is a sum of
those &, (resp. 7,) which correspond to indices y for which ¢; < 7, << t;.-
Denote by o(y),the length 7,,,—7, of the interval [z, 7,.,]. By the
construction of the {t;} there is for every ¢ at most one integer y = y (%)

such that <7, <t,, and o(y)> l/l/ﬁ. Hence we can write

(3.20) B = Gt biy bt oo Fhig,

where a; = £, if a y(7) as above exists (otherw1se a; = 0) and each b,
is equal to &, where y(i,1),...,7(4, k) is an enumeration of those

mdlces y for which ;< 7, <, and o(y) < 1/]/%. With a similar nota-
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tion we can write
(3.21) Yo = Gl Hdip+ oo +dyg,

Clearly, |b;,| < Ko(y,,) for all ¢ and » and hence by (3.2)
(3.22) D i SEP 3o (p,, )7 < K2nl D Mgy, )
T X ir ’
< E?pli-0)2 < (e7/100)?
From (3.19) and (3.22) it follows that .
Y C
(3.23) ( 2 1) < 2 O ()j I — b 7]

- < E"[100+ 7100 = £7[50.
(3.22), and (3.23),

(S}l s+ ?)” > 2

g==0

‘ Hence, by (3.17),

(3.24) 6~e"[50'— 7 [100 > 2 — ¢ /25.

Consider now the partition of [0,1] obtained by takmg a8 division
points all the points ¢; as well as the points Ty 804 7,4, for all those ¢
for which y (i) exists. In this partition each interval [t t;.1] is divided
into at most three parts (actually it is easily seen that with the possible
exception of the last interval each [t;, i) 18 divided into at most two
parts). On the subinterval [z,q), 7,411 of [t t;,;] the integral of w--v
is equal to a@;+¢;. Denote the integrals of w-+v on the other two subin-
tervals by B,, and B;, (our convention iy that whenever there is no
interval of a certain type the integral over it is considered as 0). Clearly,

(3.25) @;+Y; = @+ ¢+ By + By, i=0,1,...,k—i.
Since [ju+v] < 2, we get that

k-1 k—1 k—1
(3.26) 2> ; la;+ o + iZ |Betl? + }j |Beal”

Hence, by (3.24) and (3.26),
Je=-1

(D (1Bl + 1Byl < (27— (2 —

dwnl)

Finally, by (3.24), (3.25) and (3.27) we get that

(3.28) | memvw)”” (Zla+(l”)1m (’fIBz-,llp)”"—(kZ_I.IBi,ZIP)"p

A= i=0 i=0

(3.27) & [25)7)7 < 9¢/5.

>2—e"[26—2¢/B—2¢/5 22 —e¢
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"and this concludes the proof of Lemma 2 (since ¢, —1 > 1 /Vn for all ¢
by the construction of the {t;}).

Proof of Liemma 3. By the uniform convexity of the I, theve ix
a 0,(¢) (here and below whenever we congider a function of the form d;(e)
we assume that 6;(s)—~0 as s—0), such that

E-1
2 2 —yil* =
izo

In the sequel we shall need the following trivial inequality
(3.30) la+BP < afP +418] I al, Bl =

Since the proof of both inequalities in Lemma 3 is the same, we prove
here only one of them. Let I' = {i: #;2,,, < 0} and consider the parti-
tion of [0, 1] determined by {4}, and {I(¢+41)/n}; r. For i<l the inter-
val [t;,1%.,] of the original partition is replaced by the two intervals
[t;, Li+1)/n] and [1(i+1)[n,1;y,]. Corresponding to this division of
the interval we get a representation of a; and y; (i<I") as a sum of two

k—1

(3.29) 2 |5 — 2.1 2" << By ().

1 oand p <2,

terms y; = —2; 424, (by (3.8)) and @, = o+, fay, where
%Tl

(3.31) el =] [ w (t)dt| < K/n.
(E+1)/n

Sinece |ju+v] < 2, we get, using the partition described above, that
=

@ +y, + ) le—2 —w”w+21m 2l

¢ el iel

(3.32)  2¥

that

(333) 27> Yot ul + ) lm—al" + 3 leil?—8 D) 1o}
T iel' ' iel iel'
2 [wz'!'?h]ﬂ"l_ Z [ — 2, |p+ 2 |2«'1+1|I] SK/V”
il iel” iel’

By the definition of I' we get for ¢el”

g+l = 1+ 240 —2:] < AX (10— 24, [0 — 20+ 24)).
Hence by (3.3), (3.29), and (3.33)
k 1

27> 2|m¢+y1;1’+2|z1+1|ﬁ 8y(e) —8E [V

=0 iel’

(3.34)

>(@2—e) +Z[zi+1[1"——63(s)——8K/l/n.

tel”
The desired assertion follows now from. (3.2) and (3.34).

%
By (3.30), (3.31), (3.32), and the fact that & < l/ﬂ (by Lemma-2) we get ‘

icm
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Proof of Lemma 4. Let
Iy = {i; Hj such that I1(5) = m(j) and 22, > 0.
We have to show that for 2 suitable d,(e)

211’1111 (2?5 Bigl®) < 84(s).

iely

In view of Lemma 3 applied to the partitions {z, } and {s;} it is enough to
prove that for a suitable §,(e)

2 min(5l?, Bi?) < 8,(s)

{feTy
where

Ty = {45 iely, 20> 0, By, > 0}.
It is clear that
(3.35) iely = @y, > 0.
‘We divide I', into two sets I'y and I, as follows

Iy = {i5 1ely, 4 Z Sj)-1}5
Ly = {15 1ely, 41 < 8551}

By reasons of symmetry it is enough to prove that for some & (&)

D lalr < 85(e).

iely

(3.36)

Consider now the partition of [0, 1] obtained by taking as division points
Since [t;—s;;l < 1/n, it follows that

: %) i 0]
(8.37) [ umat = [ up dt+f Dt = @, +w,
o by i1
with [|w,] < K/n. Also
Co -1 853) 84(4)
(3.38) [ w(dt = — [ —uat— [ w@dt = —y,—2;—w;.
8(3) -1 $(5)—1 iy
Since [jull < 1, we geti by using the pa.ltltlon above that

(3.39)

1\2 gl + Dot wf? + D w10l

eIy i€l

where Z ranges over all integers 4, 0 < j < h—1 such that j # j(i)»l
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with iel,. By (3.2), (3.30), and (3.35) we deduce from (3.39) that
Z 12,17 + Z [, f? + 2 A 8K [Vn

iel’y iel'y
Z [”"'pi;a'“” AP %iwzvlvkl—?%i i l? — 8K [V/n
Z il +2 'l — 8K [V,
and hence ) o .
(3.40) Dl < de).

tely

From (3.29) and (3.40) we deduce that
D =2 a? < dyle).

telly

(3:41)

Let I'y = [UIy where
Iy = {55 iely, 22, > 0},

By (3.41)
(3.42) Ziz P < le — 24" < 8yfe).
‘&EI‘ 151"

Iy = {i; 4ely, 22, < 0},

For iel; we have z;_,5;_, >

(3.43)

> 0 and hence, by Lemma 3,
PHIBEACE

151"
From (3.41), (3.42), and (3.43) we deduce easily that (3 36) holds. This
concludes the proof of the lemma and thus of Theorem 2 (if 1 < p < 2).
The fact that p < 2 was used in the proof only at one place, namely

at the very end (in deducing a contradiction from (3.16)). Basically the

condition p < 2 was of importance there because we worked with only
two partitions. In order to prove the theorem .also for p = 2 ‘we have
t0 note that the same reasoning which shows that it is enough to prove
that () fails shows also that it is enough to prove that statement - (sx)
fails where

- (¥x) For every &> 0 there are simple functions u, weJF with |ju|
= |w|] =1 so that for every integer n there is a veJF with [o[ = 1,
|£%+w+w|| > 3 —sfor all choices of signs and the integral of » on evely
interval of the form [j/n, (j+1)/n] is 0.

Working with (#+), we naturally get four partitions of.[0, 1] (corre-
sponding to the various choices of signsin +u4w-4v) and an argument
very similar to that used -above proves the theorem as stated (i.e. for
P =2) '
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