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A criterion for compositions of (p, g)-abselutely
summing operators to be compact

by
B. MAUREY (Ptiris) and A, PELCZYNSKI (Warszawa)

Abswact. I (9))jw1,2,...,2¢ 8re (py, 2)-absolutely summing operators, and

M
M pjl=1/2, then the composition SyrSar—1 ... 8y is compact.
Jet

Results. Let co> p>¢q>1 and let X, ¥ be normed linear spaces.
Recall that a bounded linear operator 8: X->Y is said to be (p, q)-abso-
lutely summing if there exists a positive constant ¢ such that for all finite
Sequences @y, Ba, ..., o, in X (n=1,2,...)

(Do <o sw | }] 1@ (o)1) .
Jeml

AL N [ gIE <
The greatest lower bound of the constants ¢ satisfying the above in-
cquality is denoted by s, 4(8).
The main result of the present paper is:
TasorEM 1. Let M be a positive integer, let X, be Bamach spaces
(k =0,1,..., M), and let Sy X;_,~X, be (Pys 2)-absolutely summing
operators (2 < P < © fcw k=1,2,..., M). Then the condition

Zp > 91

k=1
implies the compactness of the composition Sy Sy 1. ... 8.

Clombining Theorem 1 with the well-known fact (cf. Kwapien [4])
that it T: X~Y¥ is a (p, ¢)-absolutely summing operator, then T IS also
(P, @) d.bqo]utely summing for every pair (P, 7) such that p~' — g™ =~ —g~ ~1
and P > p, we geb

ConorrArY L. Let M be a positive integer, let X, be Banach spaces
(k = 0,1, . M) Zet 8y Xpy =Xy, be (Pry dr) absolmelJ summing operators,
and Tot 0 < q,, Lopile 27l 1< g, <2 for b=1,..., M. Then the con-

dition
M
Dot - gt > 27

Jow L
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implies the compactness of the composition Sy 8yri... 8. In particular,
the composition of (P, 1)-absolutely summing operators with 1 < p, < 2
for & =1,2,..., M is compact whenever

M

S M1
Nppts 2L

Ie=1

An immediate consequence of Corollary 1 is the following generaliza~
tion of the Dvoretzky-Rogers theorem:

COROLLARY 2. Lot X be a Fréchet space such that for some pair (p, q)
with 0 qt—p-t< 271 for every continuous pseudonorm |-| on X there
ewists o continuous pseudonorm ||-|| on X such that the injection (%, -1y
(X, |-1) 48 (D, q)-absolutely summing. Then X is a Schwartz space.

Here by (X, |]) (resp. (X, [|]})) we denote the normed linear space
which is a quotient of X by the {weX: || = 0} (resp. {weX: |2|| = 0})
with the norm induced by |-| (resp. by ||-|)). For the definition of & Schwartz
space cf. [3].

Let us observe that Theorem 1 as well as Corollary 1 is the best
possible in the following sense:

(%) Given a positive integer M and (py, ;) such that 0 < ¢t —pp' << 27
M

1<g<2 for k=1,2,..., M and 327'4p;*—q;'< 27" there
. Joss L

exist Banach spaces X,, X, ..., X, and (py, ¢,)-absolutely summing

operators 8y: X=X, (b =1,2,..., M) such that the composition

8837y ... 8y is not compact.

To see (*) observe first that, by the result of Kwapien [4] quoted
above, it is enough to consider the case g, =1,

M
QP o
D it < H(M41).
=1
The operators S can be constructed as follows: For 1 < a < b << oo, lot
I, denote the natural injection from * into I°. G. Bennett [1] has shown
that for 1<a<b<2,1,, is (p, L)-absolutely summing, where 1/p
= 1/a+1/2 —1/b. o
Letpy, ..., pare[1,2]such that 5 p;t < §(M 1) and define a sequence
Qg Bgy ooy Gy DY induction: o=
o =1; Ljay, =1fa 12 ~1[p,, k=1,2,..., M.
It is easily seen that a, < ay,,, and a, < 2.
Let us set 8 =1, page Then 8 i8 (py, 1)-absolutely summing, and

SpBpq. .. 8y = I“O'”M is not compact.

* ©
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Tinally observe that the eondition 0< g;'—p;" < 27 in Corollary
1 is also necessary because the identity operator on 1% is (p, 1)-absolutely
summing for every p == 2. .

Proof of Theorem 1. We shall employ the following notation. If (¥y)
is a basis for a Banach space Y then
. k3
ue(y,) = sup sup  sup H ajt,ij.
j=1

) \a.jlfgl n L=
) by || =1
||]é1 g |

Tf X and Y ave Banach spaces with bases (a,) and (¥,), respectively, then
the linear operator T: X-»¥ such that Tw, =¥, for all n is called the
natural injection from X imito ¥ with respect to the bases (x,) and (Y,) or
briefly a natural injestion. To indicate that T: XY is a natural injection
with respect to the bases (»,) and (y,) we shall write

T: (X, (@)X (¥a)-
T¢ N is a fixed positive integer then I% demotes the space of all scalar

N
Sequences (%, ta; ..., ty) With the norm H(tl,ta,...,iN)szz(jzl [t

(1 € p < o). The unit vector basis of 1% will be denoted by (e,). By L, we

shall denote the natural injection (1%, (¢,))—>{tk (en))- .
PROPOSITION 1. Let m be o non-negative integer. Let Xy Xyyovey Xinya

be Banach spaces, let 82 Xjpoy—>X;, be bounded linear operators (k =1, 2, ...

vooy ML) such that the composition Sy Sm .- Sy 18 not compact. Then

there ewists 60 such that for every positive integer N there exists for k=10,1,...

<., m~+1 an N-dimensional subspace T of X;, with a basis (y%)) such that
(@) sup [0 < 4 ity 6, ne(yl) <8 (b = 0,1, ..., m+l).

(3 n

(i) the natural injection Tj: (¥s (%) —( Y, (y®)) coincides with
the restriction of Sy to Yy (B =1,2,..., m+1).

Proof. Since SypaSm .. Sy is not compact, ther.e e]xist an >0
and a soquence (%) in the unit ball of X, yuch that if o = S,E»IS,‘.MJ =
8y (AY) for ko1, 2, ..., mokl then (8 — 42 2= whenever r' 1"

Now wo fix a (large) integer M and we apply m--2 times 1:;he Brunel—
Yuehoston result which is based on the Ramsey combinatorial tiheorem
(ef. [2], [B]) to extiact an increasing infivite sequence (m,) of integers
guch that if uf® =< for all r and for k=01, m-+1, then the
goequences w ave “alinost M-subsymmetric” precisely:

M M o )
\ p T 11 &

3 el < | Sl <l 2|
= j=1 i=
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for all sealars ¢y, 1y, ..., 83 for all sequences of the indices 7y << 7y << ... < 7y, Since |[a,,,| = 7Y for all v, u =1,2,...,4, we have for » =1,2,...j
and for k =0, 1,..., M. Now if N is given and if we choose M = M (N)
sufficiently large then, by a result of Brunel and Sucheston [2], the H Zynu < ue(y,)i®1 T (&)
differences
v =) (0 =1,2,., ) ~ Thus
form for & = 1,2, ..., m-+1 a basic sequence in X of length N with ”Z'I/n ” < ue(y,) i 1’“’(2 T, l|”) p/uc(y")yv],, (I)§ir-ie
ue{(y®)) < 3. We define ¥, to be the N-dimensional space generated .
by the ys. Clearly, the spaces ¥, with the bases ¥ have the desired 2. The oase of real spaces. Lot us seb
properties for & = n/2. P i
. Proposition 1 allows us to reduce the problem of compactness of u, = N'Re(s, w0 = ZIm (@,)6, for 1<v<j,
a composition of (p, 2)-swmming operators to the case of natural injections st B s 4
between gpaces with unconditional bages. Our next aim is a further he o
, i . re @, , are defined by (1). Then for reals sy, 83, ..., 8; We have
reduction to the case of natural injections between I"-spaces. We begin w " v (1 v g’j ’J ’
with two lemmag which are similar to an argument of Tzafriri [5].
oo insgo, 11 T | Sl -] z o Yoo, <| 3 3 0ese, .
LemmA 1. Let 1 <r< 2 < p. Let N be o positive integer, let ¥ be an e e

N-dimensional Banach space with o basis (y,,), and let T (U, (6,)) (X, (y,))
be the natural injection. Then ‘

d 1/2
(S
. / pe=1l
su et e < Agr—ie
m<n2<p 9+ Yy ROyl < 49 Hence, for all real scalars 8y, 8g, ..., 8

for § =1,2,..., _N, wh@r@ ”28 Uy ||, < 71/7—1/2 “Zs Uy ||y

1/r—1/2 ( Z]w 85)1/2
pe=l

@y o (L) e (y,) for complews Banach spaoces,
and similarly,

N 270y (T)uc(y,) for real Bamach spaces. ‘ j J
” Zs v, < '”’"1’2( —182)1/2.
Proof. 1. The case of complex spaces. Fix j < N and n, < My < oo < My &7 =7

Let (a,,,)1<y,u<; De the unitary matrix defined by Thus, by definition of a4 (1)
? ‘52 H

(1) =Ml for 1y, p< .
Let us set . Z‘”T U)IP < (e TV and Z 1T (o) < (7,0 (L)1)
yamal vl
2 sty 08 1SS Since [e(o, ) (e, )1 0 — 7 for all p =1,2,...,,
Tlllle%ulllrltamiyrf)i Z];eyxlﬁm (4,,,) and the inequality [, << 5~ |z|, for H , Un l\ < J" e (y,) (1 () - 1 (0)1)
all ze
; g < 2" we (g) (1T ()17 + 1T (w72
1y e o\ 12
“Zt"z” , < g 1”“2%%‘[2 = l’”(ZIhI“)” Hence: . ,
p==1 veal ] 1p
‘ < QWP Ry (g, )18 12 ()P -+ T (w,) I
for all scalars ?,, s, ..., #;. Thus, by definition of 7,0(T), ” ‘—’ Yy “ Fruotald (u-‘zl( ' ’ ))

o _ < 9 Aoy, ) 210, (1)
(2 1T (2, “p) s ()71, = 2 =Yg (T ue(y,).
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Levys 2. Let Y be an N-dimensional Banach space (N =1,2,...)
with & basis (y,). If for some Qs(l o) there ewists A > 0 such that

sup 2 Y, |

My <Ry <o <N G

< At for j=1,2,...,N,

then for every s with 1< s < o the natural injection T': By (e)) T, ()
admits the factorization '

(B, (o) 22

> (s (00) —2—(T, (3)),

i.e.

T=VIl, ad |VI< Aue(y,).

2
él-—a/ﬂ —1

N
Proof. Fix scalars ty, by, ..., ty with 3 [f,* = 1. It is enough to
show that =1

grsr"‘A Ue(Yn)-

| 2t <
n=1
Let us sebt
N, ={n: 27> t,| >2"™; &k, = the cardinality of N

Olearly, k,, 2™ < Y |t,I° < 1, hence k,, < 2™ for all m. Thus, for all m,

neNy,

| Xt <27 X | meya) < 27"+ ey, )T < 27" Huoly,) 427
neNg, N&N

Hence

HZznyn \“’H 2 ¥ H < 24ue(y,) 22("/0"1)"” < g 9/@ Aue(yn)

PROPOSITION 2. Let N omcl m+1 be positive integers. Let 2 < pj, <<
for k=1,2,...,m and letZ;p,{l <2\ Fork =0,1,...,m, let X, be

k=1
an N-dimensional Banach space with a basis (yP) and let Tz (X, (357)

(X, (y5) denote the mtwml ingection. Them, for every s such that s =1

form=0and 1zs"'>1 ~2p ljor m3=1, the natural injection 7 : (I, (6,)
Ty (W) admits the factomzamon

(B (6] =22 1, (0] > (Fony (05,
Q6. I = VI, , with

ne

(2) IVI< O [ [ g1 [we (yi)sup Iy,
k=1

where O = C(8; D1y Doy -y Pm) 18 @ universal constant depending on
8y D1y Doy - vy P ONLY.
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We proceed by induction with respect to m. The case m = 0 is trivial.
Assume that for some m —1 > 0 the asgertion of Proposition 2 is true.
For % = 0,1,...,m let ¥; be N-dimensional Banach spaces with bases
(4, mspontively, and for &k =1, 2, ..., m let p, be real with 2 < p, < oo

m
and 2 Pl 27N Fix ¢ Wlth 12 s> 1~2 p, " and consider separately
k=1

Jgem]
two cases:

m—

1) either m—L ==0 or m>1and 128 >1— 22] . Then, by the

inductive hypothesis, for the natural m]ecuon

Vs (LNy (6,7,))—~>(Ym‘__1, (m_l)))
we have |V|| == ﬂup Q) for m—1 =0, and for m—1> 0

m~1
IVl < 06, Bay -y Boncs) [ [ 7y () Do (9) 17500 [
Te=1,
ItV (s (60) Ty (45”)) is the natural injection, then V = T,V
Hence [V < |Vl Taking into account that |Tpl < @, 0 (Ty) and
ue(yyY) =1, we get (2). m ;
2) m—1>0 and 1— Y p;' =5 ‘1>1—)]p;1. Let us put

Jowm), Jem=1

= max {1, [27 (s 41— fjp; )+ p;‘];l}-
Te=1

M1

Oleaxly, 1> #~*>1— 3 pi*. Thus, by the inductive hypothesis for the

k=1
natural injection Vst (I, (64))(Tm—1, (y{"M)), we have

m—1

(3) IVl < 08, Bay -5 D) Hnﬂ,c (T3) [ue (v IPsup il

Tiot T = T,,Vs: (T, () (¥ous (9§) be the patural injection and let
o == (r~t—p1)~h Clearly,
m—1
rts 1 Mot > 27

el

Tlonee L5 # < 2 < Py Thus, by Lemma 1, for j=1,2,..., N we bave
(4) sup H%’J} Y -y < 20 (T uE ()

Ny <Ny ee <Y
Next observe that s< . For, if > 1 then

m

ot =it = 27 s = Y ) <7 |

=1
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and if r =1 then 27'{s7? 41— Z‘p,, Y4 pit =1 hence
k=1
a3
s> 27 (s - Y ) 21—t =0Tt =07
Te=1
Denote by V: (I%, (6,)}>(¥m, (957)) the matural injection. Since

s<pand m, (1)< o ( Vil Lemoma 2 and (4) yield

(8)

— (00 (0) I, ()

= 'éml“a“:—l"' [uc(yn)]ﬁn,,nt,z(an) “Vl” .

Combining (3) with (B) we get (2) with

4

0’:0(8,1}17.“ W;SW:IO(S,ZJ“...

) Pm) = ? D) -
TFor the proof of Theorem 1 we shall also need the following simple:
LevmA 3. Let 1< s<2<p and let p~'+27 ' —s'>0. Let N be
@ positive integer, let X be an N-dimensional Banach space with a basis

(Yn)y and let Vi (1%, (6,))—{T, (4,)) be the natural injection. Then

iy (V) > int | 207,
(g

Proof. Using the Holder inequality for the exponents

and

we get
N

swp () ot (eale)™

le*l=1,a%e (R)* 71

N .
(2 )™

Pem L

= sup
N
2 l“n\'g/‘g RIS

M=l

N
( Z |aﬂ|s/(s——l))(s—.1)/HN(2wa)/2a e U2

M=l

< . sup
2 laty, IB/(S D

==l
Hence

. |
Wint g < (D) WD (en) )" < o () 2R,

M=l

icm°®

integer N with
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Thus

1,0 (L) 2 ink |ly,,|| N0 R,
n

Proof of Theorem 1. Let M be a positive integer and let X; be
Banach spaces (& = 0,1, ..., M). Let §;: X, ;X be (py, 2)-absolutely
M

summing  operators, let 2 < p,<<oo amnd > pit> 27 (k =1,2,..., M)

Choose the index m << M so that fe=1
1?31 M1

Dt < Y it
Tges], Jomm1

and pick & so that
‘ ' m
- N
1267 >1— Dot
Jo=ml

‘We shall show that the composition Sy 18y ... 81 is eompaet. Suppose
not. Then, by Proposition 1, there exists 6> 0 snch that for a positive

and  ppii 27t —s" > 0.

m--1 -1 L1 =1

N> (45708 [T npk,z(l’,c))wm““ -,

f=1 -

where C = (8, Py, ..., ) is the constant appearing in Proposition 2,
there exigt, for & = 0,1, ..., m-1, N-dimensional subspaces X of X,
with bases (%) satistying ‘the conditions (i) and (i) of Proposition 1.
Let V' (B, (60)) (T (487)) and T: (B, (60)=>(Toms1s (%)) denote the
natural injections. By Proposition 2 and by (i),
m

O [ ] oy alT) [me (93 o sup 1922

Te=1

i<

m

< 40 8" [ [ pa(Th);

o1
‘while, by Lommfn 8 with p = pp., and by (i),

. " ~1 49—l g1 ~lyg—logml
n2/7r1-1.1y2(1') 2 inf Hfl/%n : I)H-Nn + ¢ = ON® .
"

Sinee T = Ty,aVy we geb

m41
vl gog=1.. —1 e -1 2m T
Fr T (T [V < 407208 ,].l Tor (T
which contradicts the choice of N.
Thus the composition 8.8 -
composition SyrS8p.y ... Sy is compact.

8, is compact and therefore the
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