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Normal extensions of commutative subnormal operators
by
MAREK SLOCINSKI (Krakéw)

Abswract. The present paper is concerned with the problem of the existence
of commutative normal extengions of a commutative pair of subnormal operators.
It is proved that this problem has a positive solution if one of these subnormal operators
has the following properties: Its spectrun X has connected complement and it has
a normal extension whose spectrum is contained in 8.X.

In what follows, H is a complex Hilbert space with inner product
(%, 4); @ yeH, and norm |wl| = V(», #); weH. L(H) denotes the algebra
of all linear bounded operators (shortly, operators) on H. For TeL(H),
T* is the adjoint of T. Iy, or shortly, I, denotes the identity operator.
T [ x 18 the restriction of the operator 7' to the subspace K. We denote
by o(T) the spectrum of TeL(H).

The operator AeL(H) is called subnormal [2] if there is a space
K > H and a normal operator B on K such that 4 = Bly. B is called
a normal extension of 4. Normal extension is called minimal if K = K'
for every space K’ which reduces B and H < K' < K. B is a minimal
normal extension of 4 if and only if K = \/B*H. It follows that two

minimal normal extensions are unitarily equivalent.

The present paper is concerned with the following problem. We are
given two commuting subnormal operators. Do there ewist commutative
normal extensions of these operators? A positive answer is known for isome-
tries, as shown by Ito [3]. To begin with we give several propositions.

ProvosoeroN L. Suppose that the subnormal operator A in L(H) is
ayclic, i.e. for some weH we have H = \/ A*w (» is called a cyclic vector

4
for 4), and assume that the operator 8 commaites with A. Then 8 is subnormal
and if B in L(K) is the minimal normal extension of A, then there is
normal operator N which commautes with B such that N |” = 8.

The above proposition follows from Theorem 1 of [4]. In this theorem
it is shown that operators .4 and B are unitarily equivalent to multipli-
cation operators A and B for some @ on H2(u) and L2 (u), respectively, for
suitable plane measure, H?(u) being the L2*(u) closure of polynomials.
It is also proved that S is unitarily equivalent to multiplication operator
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8 for some weH""(,u) The multiplication opera.tm for  on L%(u) is a nor-
mal extension of S and commutes with B.

Noteé that the following proposition follows from the corollury of
Theorem 7 of [1], Temma 3 of [3], and the Putnam—Fuglede theorem,

ProOPOSITION 2. Let AeL(H) be a subnormal operator and assume
that 4 commutes with the mormal operator BeL(H). If Nel(K) s the
minimal normal extension of A, then there is the unique normal extension
LeL(K) of B, which commutes with N.

We now see that our problem of the existence of commutative nor-
mal extensions of commutative subnormal operators may be reduced
to the following: let the operators A and 8 be subnormal and let 8 com-
mute with 4. Does there ewist a submormal ewbension § of 8 which
commutes with the minimal normal ewtension of A% If the above question

has a positive solution we get a positive solution of our initial problem. -

The theorem below gives a solution in the case of isometries com-
muting with subnormal operators.

THEOREM 1. Let {4,},py A,<L(H), be a commutative subnormal semi-
group and {B,},.r, B,eL(K), be its minimal normal extension. If {Vy}tsea,
VseL(H), is a semigroup of isometries and V(, commautes with A, for every
0 and vy, then there is a unique Semigroup {V stsea Of TSOMetries ’Lll/l/l:(’h com-
mautes with all B,, and is such that Vy = Vd Sor every 8. If {V} is a com-
mutative semigroup, then {V;} s also commutative.

Proof. By Theorem 1 of [3], the semigroup {4,} is positive definite.
‘We consider V, for arbitrary 4. For every finite number of w,e H and
_ y; we have

Z(Ayivﬁmj,vaﬁw,.) = D (MiVod, ay, A, ) = 5’ Ay, A, ;).

vyt
W

Now by Lemma 3 of [3], it follows that there is an opera.tor V,, such that
V is an extension of V, and Vﬁ commutes with all B,. We shall show

that Vd is an isometry. It follows from the nnmnmhfy of {B,} that
K =\/ ByH. For every element Y By (% where w; ave in H, we have

pel”
V, () Bla) = ZJ;‘ Vowg = 3 BV,
. i 4
Consequently, V, is unique and Lhe following equation holds

” T;g(;jB:ixi) L Z(AB;V@MN._B;’:{Vﬂm‘,‘) = Z (B, Vﬁw“ B, Vl,»')(},)
[/

= Z(A Vg, A, Vo) = Z(Aha,,fl,wwf)
)

= Z(Byiwﬂ y_/%i

7’1
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hence Vy is a norm preserving on the dense subspace of K and is, conse-
quently, an 1150111@1,1')7 Since this extension is unique, for §, and J, we
have that Vﬁ1 8y = leVﬁ , hence {V‘,} is & semigroup of isometries.

Now by Lemma 3 of [ﬂ, it follows that if V,; commutes with Vs, then
V,, commutbes with V,, , which completes the proof.

TurROREM 2. Let {A},ep, A,eL(H) be o subnormal commutative semi-
group and let V' be an isometry commutative with oll A,. Then there is a wni-
tary cwtension U of V and a normal ewiension {N,} of {4,} such that U
commutes with all N,.

Proof. We know by Theorem 1 that if {B,} is the minimal noxma,l
extension of {4,}, then there exists the isometry V = ¥ such that 7
commutes with all B,. For every B, there is a mormal extension N,
commutative with the minimal unitary extension U of V. Since this
extension &, is unique for every y, it is a normal commutative semi-
group.

We require some information on function algeln as. If X is a compact
subset of the complex plane having connected complement, then, by
o well-known theorem of Walsh, the algebra #(X), the closure of the
algebra of polynomials in O (X), is a Dirichlet algebra on the boundary 0X.
Sarason [6] proved that if X has connected complement, then every
connected component of intX is a Gleason part of the algebra #(X),
and every non-trivial Gleason part has this form. If X has conneected
complement, we shall denote by {G;} the connected components of int X
and by u; the representing measure on dX of any evaluation functional
¢ at the point 2 e@;. Note that u; is carried by 9@, (see [6]) and all measures
for points in &; are mutually absolutely continuous.

Now we will prove

TumoreMm 3. Let the operator TeL(H) be. subnormal. Suppose that
X = o(T) has connected complement and that there is a normal extension
N of T such that o(N) < 0X. Then there ewist subspaces H; of H such that

H o= I FD Hy, where every H; reduces T and T = T,® @ T}.
=1

In addition, the following conditions hold:

Lo Ty is mormaly o (1) < 0X, and the spectral measure of Ty and p; are
mtuelly singular for every § > 0,

2. for every § >0 there is a normal emtension N; of T such that
o(N;)eOG; and the spectral measure of Ny is absolutely continuous with
respect 10y,

3. for every §j >0, o(dy) = G;.

Proof. Let NeL(K) be the minimal normal extension of 7' such

that o(N) < 0X, and let # be its spectral meagure. Define the following
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subspaces of K:
K, = {#we<K: (Bz,z) is singular with regard to u, for every j > 0},
E; = {wcK: (Bx,n) is absolutely continuous with respect to u}

for j > 0. It is known (see [6]) that the spaces Iy, Ky, ..., ete. are mutnally
orthogonal subspaces reducing N. Let Ny = N[y, . N, is normal for every j.
Let P; be the projection of K on K; and I the pr()]e( sion of K on H.

Let H; = P,H. By Lemma 1 of [6], we have that I = IIOO Q H,;, where

H, reduces N, and H, for j > 0 is an invariant subspace 101 JV We shall
show that H; reduces T} for every j > 0. Since spaces Hj are orthogonal
and their orthogonal sum is equal to H, we have to show that I is in-
variant for 7. Let s<H;. Then, by definition of H;, #<I;. Jonsequently,
No = N;u. Since z<H, we have Tz = Nu. It follows that Tv = Nze XK.
By the definition of projection P;, we have that P;T2 = Tw. Since TweH,
Tz = P;TseH;. We have shown that if @eHj, thcn Twel;, and conse-
quently H; reduces T for every j= 0.

o
Now we have that operator T’ has the form T = T,® @ T}, where
jeml :

Ty = T|p, and T; = T'|y, for j > 0. Since Ty iy a restriction of 7, and
particularly of N, and H, reduces N, 7, is normal. Now we consider the
spectral measure of Ty. Spectral measure of N, is the restriction of the
measure & fo the space K,. Since H, iy a subspace of K, and reduces
N, T, is o restriction of V to the space H,. We have

(ToP2,y) = (NoPo,y) = [ Jd(B(2)P,Pa,y)

Since the measure (ZPux,y) is smgula-‘r with respect to w; for every
7> 0 and @, yeK,, it follows that the speetral measure of T, is singular
with respect to u; for every j > 0 and ity carrier is contained in 0.X. Since
the earrier of the spectral measure is equal to the speotrum of this operator,

b)) € 0X. We have proved that T = T,@® ¢ Q T;, and hence

for every w, yek,.

'we have o (T
condition 1.

Now we shall prove conditions 2 and 3. Since the gpectral moeasure
of NV, is absolutely continuous with respect to uy, its closed carrier, which
ig equal to the spectrum of N, is contained in 46;. Since N; is novmal
extension of Ty, condition 2 is proved.

By Theorem 1 of [6], we may conclude that for j> 0 the set &, is
& speetral set for T It follows that the spectrum of 1) is contained in
@,. Suppose now that o(Ly,) # G for some fj, > 0. Let Y= G \o(L}).
It follows then that there 0X1htb MYy . Since o(Zy) < 0X, Ayd0(Ly)
Since the sets @; are disjoint and open, 2, ¢ G for § s j,, and couscquently,
Aot (Ty) for j = j,.

icm°®
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Finally, 1y¢o(T;) for j = 0. Let we H. Then 4 has the form & = Z @,
where #;¢H;. We consider the following vector j=0

o0

= D) (I —Tya;,

7=0

y = (Aly—Tw J@o (%Inj =T1y)
and write
(ﬂoIn, =Ty)a;=19;.

Since Ay ¢o (1Y), the hounded operators (41 ,,j~1',)'"‘ exist and

(Aquj =Tty = ;.
‘We ghall ghow that the norms of operators (A1 1 —T,)~" are equi-bounded.
The funetion f(2) == (J—=2)~" has its only pole at 4,. & is a spectral set

for T, and i,¢@; for j = j,. Consequently,
H(%In]*TJ N = sup (A —2)7" for  j #Jo.
szJ
Evidently,
sup (A —2) 7Y < (dist (4, @)™
ﬁt&:j

Now for every j # j, we have the inequality
||()“oIH, —T,)"Y) < (dist (4, Gt
Since X is compact, we derive that there exists a constant M, < oo such

that, for every § Gy, (dist(dy, )7 < My, Then for M —-maJx(Ml,
I](ZOI;, T;) M), we have Il(loIH —T)=" < M for every j= 0, which

implies that the operator @(/10111,-1’,) exists @d is bounded. Hence

-5} 00

E—:‘) (Ts; —I)ly = Z(IHJ—Tj)ml.%' = Zmi =,

J=0 j=0 j=0

(o)
ie. i®0 (hoIp, —T)™ = (A lg—T)7*
Tt follows that A,¢o(T), which is in contradiction with the assumption
o(T) = X. We have proved that for j > 0, o(T)) = G;, which completes

the proof.

The above theorem. implies

TrrroREM 4. Let T be an operator on H. Suppose that X = o(T') has
connected complement and assume that there is a normal extension. N on
K of T such that ¢(N) = 0X. Then

= TO@,'GBI ¢ (SJ)J
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where

1. T, is normal and o(Ty) < 0X,

2. 8; are unilateral shifts and ¢; are suitable conformal maps of the
open unit dise onto G4 (§ > 0).

Before proving the theorem few remarks are in ovder. The operator
T on H is called X-pure (see [6]) if X is a spectral set Lor 7', and there
is no invariant subspace H' of H such that H’ # {0} and T, is normal
with its spectrum contained in 0. If X is the spectral set for 1" and hay
connected complement, then T' is the orthogonal sum. of a normal operator
with spectrum carried by 60X and an X-pure operator. It follows that
without any loss of generality we may suppose that operators T/ in
Theorem 3 are X-pure. Let G be one of the non-trivial Gleason parts
G, for a fixed arbitrary j, and u the related measure u; . Liet £I™ () denote
the weal star closure in L¥(u) of the algebra P’(0.X). Since H™(u)
= H?(u)NL*(u), for every heH™(u), there is a sequence of polynomialg
P, convergent to h in L*(u)-norm. This sequence (Prop. 6 of [67]) is almost
uniformly convergent on G to an amnalytic function of . Let h, be the
corresponding limit function.

J?roof;c of Theorem 4. By Theorem 3, we have the decomposition
T = To@j@l T; with X-pure T} for j > 0. Let N be a normal extension
of T; such that o(¥;) < 06G; (see Th. 3). Sinee the spectral measuve of
operator N; is absolutely continuous with respect tio u;, we may define
for heH™(u;) an operator h(N;) = [ hdH;, where H; denotes the spectral
measure of N;. The related mapping @: H™(u;)-~L(K;) is an :ﬁ]gel)ra
isomorphism of H™ (u;) and H*™(N;) = {h(N,): /teIi'm(M/)}.'Sinee for X-pure
operators the spectral measure B, iy mutually absolutely continuous
with g (Th. 3 of [6]), the map @ is a homeomorphism relative to the
weak star topology on H®™(u;) and weak operator topology on H>®(N,).
The operators N; and h(N;) have the same invariant subspaces wince
each is a weak limit of polynomials in the other (Prop. 12 of [67). In
particular, H; is an invariant subspace for A(N,). Define (LYY o= /LEN )

I
Thus we have the map K

. . it
13 H® () T)) = {h(L5): he l™(u)} < L(H).

This map is evidently an algebra isomorphism and a homeomorphisym in
the weak star topology for H*(u,) and weak operator topology for lll””(’ ")
If p = hg » We may equivalently denote (L) = h(1}). Lot ‘Il',- be an inner
function in H*(u,) such that y; = hyey, is a conformal map of Gy onto
the open unit dise. By Proposition 7 of [6], hy exists for every . Since
bl =1 a.e. p; on 06, the operator h(Ny) i unitary. It :l’,c)l]n"w‘s' that
8; = y;(Ty) is an isometry hecause it is @ restriction of H(N;) to an in-
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variant subspace. IFor every polynomial,” we have p(8)) = (pow)(T)).
Congequently, by weak continuity, in limit we have ¢;(8;) = T;. It is
gufficient to prove that the operators §; are D-pure (D = unit disc)

" because a D-pure isometry is a shift. Suppose that there is a subspace
Hj of Hj such that H, is invariant for §; and 8|y i unitary. Since the
operators §; and T; have the same invariant subspaces, Hj is invariant
for 7. Consequently, 7| 1 iy normal and ity spectrum is contained in
86, which contradicts the property of T being X-pure. This completes
the proof.

Now 'we may prove the following.

TimoruM 5. Let A el (H) be a subnormal operator, and let' N <L (K)
be its minimal normal ewtension. Suppose that TeL(H) is subnormal and
commates with A. Assume that T has o normal extension B such that
o(B) < do(T). If X = o(T) has connected complement then there is the
subnormal extension B of T such that R commutes with N.

Proof. By Theorems 3 and 4, we know that

H = H® é%lfrj and T =T,00 7T,
Je= j=1
where: Ty L (H,) and
1. T, is normal and o(T,) < 0%,
2. T; has the form T; = ¢;(8;) for j> 0,
3. 8;is a unilateral shift and ¢, is a conformal map of the unit dise
onto G.

By Theorem, 2.1 of [5], the operator 4 = 4,® @ Ay, where A;eL(H))
j=1

and for every j= 0 T,4, = A;T;. Bvidently, every 4; as a restriction
of a subnormal operator it submormal.
Let K, = \/N*H;. Dvidently, the subspaces X; reduce N and
iz0 X

(=]
K = K@ ® K;. Write N; = N g, N, is the minimal normal extension
g2l

of A;. It is sufficient to prove that every operator 7; has a subnormal
extension R, which commutes with N;. We consider operators A, and T,.
Sinco T, 18 normal, by Proposition 2, we have that 2 has o normal extension
which commutes with N,.

Now we consider operators 4; and Tj, for j> 0. Note that the
equation Iy = ¢;(8;) is equivalent to 8; = w;(T}).

Let py = hyq, and let pl, be the sequence of polynomials which con-
verges to h; in the weak star topology in H® (). For every ), we have
Ph(T)) Ay = A;ph(T)), which in the limit shows that §;4; = 4,8;. Since
8, is an isowmelry, it follows from Theorem 1 that there exists an isometry
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V,eL(X,) such that V; is the extension of §; and V,N; = N,V,. The
same argum?,nt for ¢; and V; in place of y, and T shows that Ly = ¢,(V))
commutes with ;. Since V; and ¢;( V;) have the same invariant subspaces,

R; is an extension of T;. Evidently, R, is subnormal. Hence for every

4> 0 we get a subnormal extension of Z; which commutes with N;, and
our proof is complete. o

Proposition 2 and Theorem § yield the following

THEOREM 6.. Let AcL(H) be o subnormal operator amnd suppose that
the_operator T e L(H) commutes with A. Asswme that: '

1. X = o(T) has connested complement.

2. There is o normal extension B of T such that o(B) < 0X.

Then there is o normal emtension ReL(K) and o normal )

! { o normal extension

NeL(K) of T such that N commutes with R,
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Multipliers on Banach algebras

by
B, J. TOMIUK (Ottawa)

Abstract. This paper is concerned with the study and application of (left, right,
double) multipliers on Banach algebras. We consider mainly Banach algebras with
Dounded (loft, right) approximate identities and Banach algebras which are dense
x-fubalgobras of dual B*-algebras. More specifically, in this second group of Banach
algebras wo aze primarily interested in multipliers on modular annihilator A*-algebras.

Tet 4 bo a Banach algebra with a bounded right approximate identity. Let
My (4) be the algebra of all bounded linear right multipliers on A. It follows that
M, (4) can bo embedded into the socond conjugate space A** of 4, when A¥k g
congidored as a Banach algebra with an Arens product. By using this embedding
of My(4) into A¥*, we obtain various properties of 4, A**, and M, (A). Similarly,
it 4 has a bounded left approximate identity we can embed the algebra M(4) of
continuons linear left multipliers on 4 into A%, We also congider M(4) and My(4)
with rospect to their weak operator topologies and study the groups of isometric
and onto (left, right, double) multipliers under these topologies.

The last section of the paper is devoted to the study of multipliers on a modular
annihilator 4*-algebra A. Here we ghow how (left, xight, double) multipliers on 4
are related to (left, right, double) multipliers on the completion A of A.

Introduction. Let A be a Banach algebra and let M (A) (vesp. M, (A))
be the algebra of continuous linear left (resp. right) multipliers on A. Let
M (A) be the algebra of double multipliers (8, T') on A such that Se Mi(A4)
and Te M,(4). Tt was shown by L. Maté [14] that if 4 has a bounded
right approximate identity then M,(4) canbeembedded anti-isomorphi-
cally in the second conjugate space A™ of A, when A* ig considered as
a Banach algebra with Arens product Fx@, F, GeA™. This embedding
i given by the map I-~1""(H), where T is the right identity of (4™, #).
Tn §5 we gather together various results on the algebras of multipliers
as well as A and 4™ coming out of Maté’s representation. For example,
we show that the canonical image m(4) is 2 right ideal of (A*, %) if
and only if every Fed™ is of the form I = T () + @, where Te M, (4)
and Ged™ with the property that m(4)+G = (0).

In §6 we consider the algebras M, (4) and M (4) with respect to
their weak operator topologies. Let & (My(A)) (vesp. & (M,(A))) be the
closed unit ball of Mj(A4) (vesp. M, (4)). We show that if 4 has a right
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