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On the spectrum of the Laplacian
on the affine group of the real line

by
A. HULANICKI (Wroctaw)

Abstract. If @ is the affine group of the real line and X2+ ¥2is the Laplacian
on it regarded as a densely defined operator on all Ly (@), then it has the same spectrum
for all p, 1< p < oo,

Let & be a Lie group and LG the Lie algebra of G. Let Xy X,
be a basis of LG and let

L=-X—.. X,

If m is a left-invariant Haar measure on @, then I is a densely defined
operator on each of I,(@, m) which is non-negative, essentially self-
adjoint on L,(G,m). ' )

Let

Spp L= {A<C: (AL —L)™" is bounded on L,(&, m)}°.

It is well known that —ZI is the, infinitesimal generator of a one-
parameter semigroup of convélution operators whose kernels p,, > 0,
are Ly (@, m) functions. In [2] a commutative Banach algebra A, defined
as the L, (G, m) closure of lin{p,: ¢> 0}, is studied. If & is of polynomial
growth (e.g. G is a compact extension of nilpotent Lie group), then A is
symmetric and hence

() 8p, L =8p, L for all 1<p< oo;

cf. [2] and [3].

In this note we consider a Lie group which is not of polynomial growth ;
namely, the group of affine transformations of the real line. As it has
been, recently proved by R. Aravamudhan [1], the whole L,(G, m) is
not symmetric.(*)However, as weshall showhere, the algebra 4 is symmetric
and equality (*) holds also for this group. The method of the proof used
here is quite different from the ones of [2] and [3]. First we establish

(*) Added in proof:Aravamudhan’s proof appears to be wrong, thus the question
about symmetry of L, (@, m) remains open. :
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the fact that Sp, L is real. This is done by using the spectral properties
of an ordinary differential operator studied in [6]. From this we shall
eagily infer that 4 is symmetric. Now Proposition 5.3 in [2] says thab
if @ is amenable and 4 is symmetric, then (*) holds,

1. Let G be the group of affine transformations of the real line, i.e.
G ={g =(s,1): s,teR}
and the multiplication rule is ‘
(8, 1) (0, v) = (s-+ue, t--0).
The left-invariant Haar measure m on & is given by
dm(s, t) = e~ dsdt.

The group @ has two infinitely many dimensional irreducible unitary
representations ¢t and ¢~ defined as follows (cf. e.g. [5]):
Both are realized on Ly(R) and for an f in L,(R)

Lo* (s, 1)f1(2) = exp(Lise”)f(w-+1).
Let X, ¥ be the basis for the Lie algebra of @ defined by
expsX = (5,0), exptY =(0,1).

Then, for an f in O(R) we have

a
[do* (X)f](2) = Te P (£ f(@)lseg = ie”f (),

a . d
[4r(Df1(@) = f@+Dlims = - (0).

Let
1) L= —X2_7Y2,
TEBOREM 1. The spectrum Sp, L of L on Ly (@, m) is real.
Proof. We have
az
2 do* ) = — 2
(2) lo= (L) Zi 7O A,

4 i3 a non-negative essentially self-adjoint operator on Ly (R) whose
spectral properties are described in [61, pp. 95-96. Let 4 be a complex
number such that )
Im2Zs£0
and let
A= (a+if)® with g>0.

-
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‘We put )
v =di(a+if) = —f+ia.
Let I_,(2) and K_,(2) be the modified Bessel functions corresponding to

the parameter —» and let

+oo
| én f I_(w)E_,(¢u)cos(us)du  for >0,
(3) Fpls, 8) = -

et j I (fu)E_,(w)cos(us)du  for t< 0.

Then, by [4], p. 413,
6 ka5, 1) = e 2, 1, [(1+ e +52)}e1],

where 2,(2) is the Legendre function of the second kind with the para-
meter u = 0.
‘We are going to show that

(4) byeLy (G, m),
or equivalently that

+o0 oo
[= ] | elo, nli+e+smedsai< +oo.
R»2 —00 00

By [4], pp. 196-197, the function 2_,_112(?); Re( —»)>0, has two singular
pointg: 2 =1 and ¢ = oo.
Clearly,

F(1+e¥+s2)e =1 implies ¢ = 0 and s = 0.
‘We then write

[=[+ [+ .

f S CHES X NUY SIS NP ¢

where I® denotes the square (+1,1) X (—1, 1) in R?, and wenote that only
first and the second summands could be infinite. For an & small enough
and constants a and b, by [4], p. 196, we have

L2, n 3@+ +s7) el dsdt
sI2
<1—a [log[}(1+e¥+s2)e™" —1]dsds
312

<1—b [log[(1—é)2+s2]dsdi< +oo.
a2 )
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Now, if s or ¢ tends to - oo, then }(1 -+ ¢ +s2) e~ + co and, accordingly,
by [4], p. 197, for a constant ¢ (depending on )
e [FA ) e S o[(L e st e
for all (s, ¢) ¢nl2
Thus
<e P (14 e )P P s dt

R™\n12 R2N\(n1?
+oo

< of du fuﬁ”1(1+u2+sﬂ)‘ﬁ’”zds
[1] R

7[2 +00
<d | cos‘lﬁdﬂf (141202 Gy < - oo,
—nf2 0
which completes the proof of (4).
Now for a function ¢ in IL,(@, m) we write

ot (@)= [ glg) o= (g)m(dg),
G

whence
+o0
(5) [ (@)f1(@) = [ Gu(z,9)f(y)dy,
where ”
oo
Go(e,9) = [ ¢ls,y—a)exp(tise®)e"ds,
ie. - ‘
VAN

€'+ (@, ) = (27’)1/2&?”97( —€7, Y =),

(6)

: oy oy
G_(z, 9) = (2m)P Yy (&, y —w),

where for a function ¢(s,?) which is Lebesgue integrable with respect
to s for almost all ¢ we write

“+00

p(E, 1) = @m) " [ g(s, Dexp(—iks)ds.

—03

Now for a complex 1 such that Im 4 4 0, let %, be defined as in (3). Letb

(7)
where, by (5),

o0

[o*(k)fl(@) = [ ®F(w,9)f(y)dy,

A
P (w, y) = (2m) PV (Fe®, y —w).
But, by (3),
. kﬂ(_37i) =kl(87t)7
whence
@f(mﬂ) = O (x,y) = Di(w, y).

icm°
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Now, comparing

— e
ki(s, 1) =]/%f ka(@z,t)cos(us)du
[]

and (3), we get

I_,(M)E_, (") for 4>,
@;'(60,-1/) = z
I_J(e"YK_, (¢ for y<a.
If for a function f in L,(R) we put

+00

(8) P, 1) = [ Bu,9)f(y)dy,

then, by [6], p. 96, and the identity K_,(») = K, (%), we get
(A—A)P(a, 1) = f(=).

Hence, by (7), (8) and (2), we get
(9) [A—do* (L)]o® (k)f =f for all finCP(R).

Now for a function k in T, (@, m) let T'(k) denote the left convolution
operator it defines on G. For a ¢ in OX(G), let

v = (A—L)(k*p)—p.
Sinee k,eL,(@, m), we have peL,(G, m)n C°(G). Consequently, on each
C®-vector & of the representation o* we have
o* () = [do* (A—Lyo* (k;) —I]o*(g),
which, by (9), shows that ¢*(y) = 0, and, consequently, by (5) and (6),
=0.
v This proves
(10) A—-D)T(k) = 1.
But since L is an essentially self-adjoint operator on Ly (G, m4) and Im A # 0,
then (1—I)~' is a bounded operator on L,(G, m), whence, by (10), .
T() = (A—L)7, .

which shows that (A—ZL)~! is a bounded operator on Z,(G, m) and so
2¢Sp,(L). This completes the proof of Theorem 1.

TuROREM 2. The algebra A is symmetric.

Proof. First we show that if 1< 0, then Sp,T(k;) is real. In fact,
suppose Im A = 0. Then, if » =1—y~", Tm» 5= 0 and so

[l — T (1)1 = u= = I — I)
whence, by Theorem 1,
[ad =T (k)]

is a bounded operator on I, (&, m).
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Since for 1< 0 we have
A%l =1
(cf. e.g. [2]) an easy application of Hille-Yoshida theorem. (cf. e.g. [2])
shows that

n *on
lim (7 rc,,,,t) #f—ppf
A—r—0Q

for all f in I,(G, m). Therefore, since {p;}.,, is a bounded approximate

identity in II1(G: m)’
n *"”}
— '
{( 4 n/i) =0, n—+—co

is an approximate identity in L;(@, m). Putting f = k;, A< 0, in (11),
we see that the real algebra generated by the ks, A< 0, is dense in the
real algebra generated by p,,t> 0. Thus we see that Sp, p, is real and
50, Since P; = Pya*Pyp, it is non-negative. From this we easily infer that
for each f in A Sp, f*=f is real non-negative, ‘which completes the proof
of Theorem 2.

Sinee G is -amenable, Proposition 5.3 of [2] thus yields our main
result.

CorROLLARY. If L ds the Laplacian on G defined by (1), then

(11)

=0
i

SppL =8p, L  for all 1< p< oo,
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On Kadec-Klee norms on Banach spaces

by
DICK VAN DULST (Amsterdam)
and IVAN SINGER (Bucharest)*

Abstract. If I is a non-reflexive Banach space with a Kadec—Klee norm, then
“many” (in particular, if B* is separable, then all) proper total subspaces V of H*
have characteristic »(V) < 1. Application: Every non-reflexive Banach space B admits
an equivalent norm for which there exists no projection of norm 1 of E** onto
# ().

0. Definition of Kadec—Klee norms. Termimology and mnotations.
In the present paper we shall study some properties and give some appli-
cations of Kadec—Klee norms, which are defined as follows:

DErINITION 0.1. Let % be a Banach space and W a separable subspace
(by subspace we shall always mean: norm-closed linear subspace) of the
conjugate space B*. We shall say that the norm of B is a Kadec—Klee
norm (or, briefly, a (BK)-norm) with respect to W if for every met
{92}acp = B* and every ge W such that g,%>¢g and llgi—lgll we have
llga— gl—0.

In the particular case when B* is separable, a (KK)-norm with respect
to W = E* will be simply called a (KK)-norm (in this case, clearly, the
above nets can be replaced by sequences). .

M.I. Kadec [5] and V. Klee [7] have proved that every Banach space
B with separable conjugate space admits an equivalent (KK)-norm (for
other proofs see also [6], [9]). More generally, W. J. Davis and W. B. John-
son have proved ([2], lemma 1) that if # is a Banach space and W a sep-
arable subspace of E*, then ¥ admits a (KK)-norm with respect to
W, equivalent to the initial norm (actually, their resnlt is slightly stronger,
but we shall use only this version of it).

We recall (see [3]) that the characteristic of a subspace ¥ of a conju-
gate Banach space B* is the greatest mumber 7 = r(V) such that the

* The second author was on leave from the Institute of Mathematics
of the Academy of the Socialist Republic of Romania, visiting the University
of Amsterdam.
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