- [4] D. W. Roeder, Duality of locally compact groups, Doctoral Dissertation, University of California Santa Barbara, 1968.
- [5] Z. Semadeni, Banach Spaces of Continuous Functions, I, Polish Scientific Publishers, Warszawa 1971.

OHIO UNIVERSITY ATHENS, OHIO

Received August 8, 1973

(719)

On the spectrum of the Laplacian on the affine group of the real line

by

A. HULANICKI (Wrocław)

Abstract. If G is the affine group of the real line and X^2+Y^2 is the Laplacian on it regarded as a densely defined operator on all $L_p(G)$, then it has the same spectrum for all p, $1 \le p < \infty$.

Let G be a Lie group and LG the Lie algebra of G. Let X_1, \ldots, X_n be a basis of LG and let

$$L = -X_1^2 - \dots - X_n^2$$

If m is a left-invariant Haar measure on G, then L is a densely defined operator on each of $L_p(G,m)$ which is non-negative, essentially self-adjoint on $L_2(G,m)$.

Let

$$\operatorname{Sp}_p L = \{\lambda \epsilon C \colon (\lambda I - L)^{-1} \text{ is bounded on } L_n(G, m)\}^c.$$

It is well known that -L is the infinitesimal generator of a one-parameter semigroup of convolution operators whose kernels p_t , t>0, are $L_1(G,m)$ functions. In [2] a commutative Banach algebra A, defined as the $L_1(G,m)$ closure of $\lim\{p_t\colon t>0\}$, is studied. If G is of polynomial growth (e.g. G is a compact extension of nilpotent Lie group), then A is symmetric and hence

(*)
$$\operatorname{Sp}_{p} L = \operatorname{Sp}_{2} L$$
 for all $1 \leqslant p < \infty$;

cf. [2] and [3].

In this note we consider a Lie group which is not of polynomial growth; namely, the group of affine transformations of the real line. As it has been recently proved by R. Aravamudhan [1], the whole $L_1(G,m)$ is not symmetric. (1) However, as we shall show here, the algebra A is symmetric and equality (*) holds also for this group. The method of the proof used here is quite different from the ones of [2] and [3]. First we establish

⁽¹⁾ Added in proof:Aravamudhan's proof appears to be wrong, thus the question about symmetry of $L_1(G,m)$ remains open.

the fact that Sp_1L is real. This is done by using the spectral properties of an ordinary differential operator studied in [6]. From this we shall easily infer that A is symmetric. Now Proposition 5.3 in [2] says that if G is amenable and A is symmetric, then (*) holds.

1. Let G be the group of affine transformations of the real line, i.e.

$$G = \{g = (s, t) \colon s, t \in \mathbf{R}\}\$$

and the multiplication rule is

$$(s, t)(u, v) = (s + ue^t, t + v).$$

The left-invariant Haar measure m on G is given by

$$dm(s,t) = e^{-t}dsdt.$$

The group G has two infinitely many dimensional irreducible unitary representations σ^+ and σ^- defined as follows (cf. e.g. [5]):

Both are realized on $L_2(\mathbf{R})$ and for an f in $L_2(\mathbf{R})$

$$[\sigma^{\pm}(s,t)f](x) = \exp(\pm ise^x)f(x+t).$$

Let X, Y be the basis for the Lie algebra of G defined by

$$\exp sX = (s, 0), \quad \exp tY = (0, t).$$

Then, for an f in $C_c^{\infty}(\mathbf{R})$ we have

$$[d\sigma^{\pm}(X)f](x) = rac{d}{ds} \exp\left(\pm ise^x\right) f(x)|_{s=0} = \pm ie^x f(x),$$

$$[d\sigma^{\pm}(Y)f](x) = rac{d}{dt} f(x+t)|_{t=0} = rac{d}{dx} f(x).$$

Let

$$(1) L = -X^2 - Y^2$$

THEOREM 1. The spectrum Sp_1L of L on $L_1(G,m)$ is real. Proof. We have

(2)
$$d\sigma^{\pm}(L) = -\frac{d^2}{dx^2} + e^{2x} = A$$
.

A is a non-negative essentially self-adjoint operator on $L_2(\mathbf{R})$ whose spectral properties are described in [6], pp. 95–96. Let λ be a complex number such that

$$\operatorname{Im} \lambda \neq 0$$

and let

$$\lambda = (\alpha + i\beta)^2$$
 with $\beta > 0$.

We put

$$\nu = i(\alpha + i\beta) = -\beta + i\alpha.$$

Let $I_{-\nu}(z)$ and $K_{-\nu}(z)$ be the modified Bessel functions corresponding to the parameter $-\nu$ and let

(3)
$$k_{\lambda}(s, t) = \begin{cases} e^{t} \pi^{-1} \int_{-\infty}^{+\infty} I_{-r}(u) K_{-r}(e^{t}u) \cos(us) du & \text{for } t > 0, \\ & \\ e^{t} \pi^{-1} \int_{-\infty}^{+\infty} I_{-r}(e^{t}u) K_{-r}(u) \cos(us) du & \text{for } t < 0. \end{cases}$$

Then, by [4], p. 413,

$$e^{-t}k_{\lambda}(s,t) = e^{-t/2} \mathcal{Q}_{-\nu-1/2} \left[(1 + e^{2t} + s^2) \frac{1}{2} e^{-t} \right],$$

where $\mathcal{Q}_r(z)$ is the Legendre function of the second kind with the parameter $\mu = 0$.

We are going to show that

$$(4) k_1 \in L_1(G, m).$$

or equivalently that

$$\int_{\mathbf{R}^2} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-t/2} |\mathcal{Q}_{-\nu-1/2}[\frac{1}{2}(1+e^{2t}+s^2)e^{-t}]| \, ds \, dt < +\infty.$$

By [4], pp. 196–197, the function $\mathcal{Q}_{-\nu-1/2}(z)$, Re($-\nu$) > 0, has two singular points: z=1 and $z=\infty$.

Clearly.

$$\frac{1}{2}(1+e^{2t}+s^2)e^{-t}=1$$
 implies $t=0$ and $s=0$.

We then write

$$\int\limits_{\boldsymbol{R}^2} = \int\limits_{sI^2} + \int\limits_{\boldsymbol{R}^2 \setminus nI^2} + \int\limits_{nI^2 \setminus sI^2},$$

where I^2 denotes the square (-1, 1) × (-1, 1) in \mathbb{R}^2 , and we note that only first and the second summands could be infinite. For an ε small enough and constants a and b, by [4], p. 196, we have

$$\begin{split} \int\limits_{sI^2} e^{-t/2} |\mathcal{Q}_{-\nu-1/2} \big[\tfrac{1}{2} (1 + e^{2t} + s^2) \, e^{-t} \big] | \, ds \, dt \\ &\leqslant 1 - a \int\limits_{sI^2} \log \big[\tfrac{1}{2} (1 + e^{2t} + s^2) \, e^{-t} - 1 \big] \, ds \, dt \\ &\leqslant 1 - b \int\limits_{sI^2} \log \big[(1 - e^t)^2 + s^2 \big] \, ds \, dt < + \infty \,. \end{split}$$

Now, if s or t tends to $\pm \infty$, then $\frac{1}{2}(1+e^{2t}+s^2)e^{-t} \to +\infty$ and, accordingly, by [4], p. 197, for a constant c (depending on n)

$$|\mathcal{Q}_{-v-1/2}\lceil \frac{1}{2}(1+e^{2t}+s^2)e^{-t}\rceil| \leqslant c \left[(1+e^{2t}+s^2)e^{-t} \right]^{-1/2}$$

for all $(s, t) \notin nI^2$.

Thus

$$\begin{split} \int\limits_{\mathbf{R}^2 \searrow nI^2} &\leqslant c \int\limits_{\mathbf{R}^2 \searrow nI^2} e^{\beta t} (1 + e^{2t} + s^2)^{-\beta - 1/2} \, ds \, dt \\ &\leqslant c \int\limits_0^{+\infty} du \int\limits_{\mathbf{R}} u^{\beta - 1} (1 + u^2 + s^2)^{-\beta - 1/2} \, ds \\ &\leqslant c' \int\limits_{-\pi/2}^{\pi/2} \cos^{-1} \theta \, d\theta \int\limits_0^{+\infty} (1 + r^2)^{-(1 + \beta)/2} \, dr < + \infty, \end{split}$$

which completes the proof of (4).

Now for a function φ in $L_1(G, m)$ we write

$$\sigma^{\pm}(arphi) = \int\limits_{arphi} arphi(g) \, \sigma^{\pm}(g) \, m(dg),$$

whence

$$[\sigma^{\pm}(\varphi)f](x) = \int_{-\infty}^{+\infty} G_{\pm}(x, y)f(y) \, dy,$$

where

$$G_{\pm}(x, y) = \int_{-\infty}^{+\infty} \varphi(s, y - x) \exp\left(\pm ise^{x}\right) e^{x-y} ds,$$

i.e.

(6)
$$G_{+}(x, y) = (2\pi)^{1/2} e^{x-y} \varphi(-\widehat{e^{x}}, y-x),$$

$$G_{-}(x, y) = (2\pi)^{1/2} e^{x-y} \varphi(\widehat{e^{x}}, y-x),$$

where for a function $\varphi(s,t)$ which is Lebesgue integrable with respect to s for almost all t we write

$$\varphi(\hat{\xi},t) = (2\pi)^{-1/2} \int_{0}^{+\infty} \varphi(s,t) \exp(-i\xi s) ds.$$

Now for a complex λ such that Im $\lambda \neq 0$, let k_{λ} be defined as in (3). Let

(7)
$$[\sigma^{\pm}(k_{\lambda})f](x) = \int_{-\infty}^{+\infty} \Phi_{\lambda}^{\pm}(x,y)f(y) dy,$$

where, by (5),

$$\Phi_{\lambda}^{\pm}(x, y) = (2\pi)^{1/2} e^{x-y} k_{\lambda} (\mp e^{x}, y-x).$$

But, by (3),

$$k_{\lambda}(-s,t) = k_{\lambda}(s,t),$$

whence

$$\Phi_{\lambda}^{+}(x,y) = \Phi_{\lambda}^{-}(x,y) = \Phi_{\lambda}(x,y).$$

Now, comparing

$$k_{\lambda}(s,t) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} k_{\lambda}(\hat{u},t) \cos(us) du$$

and (3), we get

$$arPhi_{\lambda}(x,y) = egin{cases} I_{-
u}(e^{\hat{x}}) K_{-
u}(e^{y}) & ext{for} & y > x, \ I_{-
u}(e^{y}) K_{-
u}(e^{x}) & ext{for} & y < x. \end{cases}$$

If for a function f in $L_2(\mathbf{R})$ we put

(8)
$$\Phi(x,\lambda) = \int_{-\infty}^{+\infty} \Phi_{\lambda}(x,y) f(y) \, dy,$$

then, by [6], p. 96, and the identity $K_{-r}(x) = K_r(x)$, we get

$$(\lambda - A) \Phi(x, \lambda) = f(x).$$

Hence, by (7), (8) and (2), we get

(9)
$$[\lambda - d\sigma^{\pm}(L)] \sigma^{\pm}(k_{\lambda}) f = f \quad \text{for all } f \text{ in } C_{c}^{\infty}(\mathbf{R}).$$

Now for a function k in $L_1(G, m)$ let T(k) denote the left convolution operator it defines on G. For a φ in $C_c^{\infty}(G)$, let

$$\psi = (\lambda - L)(k_{\lambda} * \varphi) - \varphi.$$

Since $k_{\lambda} \in L_1(G, m)$, we have $\psi \in L_1(G, m) \cap C^{\infty}(G)$. Consequently, on each C^{∞} -vector ξ of the representation σ^{\pm} we have

$$\sigma^{\pm}(\psi) = \lceil d\sigma^{\pm}(\lambda - L)\sigma^{\pm}(k_1) - I \rceil \sigma^{\pm}(\varphi),$$

which, by (9), shows that $\sigma^{\pm}(\psi) = 0$, and, consequently, by (5) and (6), $\psi = 0$.

This proves

$$(10) (\lambda - L) T(k_{\lambda}) = I.$$

But since \mathring{L} is an essentially self-adjoint operator on $L_2(G, m)$ and Im $\lambda \neq 0$, then $(\lambda - L)^{-1}$ is a bounded operator on $L_2(G, m)$, whence, by (10),

$$T(k_{\lambda})=(\lambda-L)^{-1},$$

which shows that $(\lambda - L)^{-1}$ is a bounded operator on $L_1(G, m)$ and so $\lambda \notin \operatorname{Sp}_1(L)$. This completes the proof of Theorem 1.

THEOREM 2. The algebra A is symmetric.

Proof. First we show that if $\lambda < 0$, then $\operatorname{Sp}_1 T(k_{\lambda})$ is real. In fact, suppose Im $\lambda \neq 0$. Then, if $\nu = \lambda - \mu^{-1}$, Im $\nu \neq 0$ and so

$$[\mu I - T(k_{\lambda})]^{-1} = \mu^{-1} - \mu^{-2}(\nu I - L)^{-1}$$

whence, by Theorem 1,

$$[\mu I - T(k_{\lambda})]^{-1}$$

is a bounded operator on $L_1(G, m)$.

Since for $\lambda < 0$ we have

$$\|\lambda k_{\lambda}\|_{1} = 1$$

(cf. e.g. [2]) an easy application of Hille-Yoshida theorem (cf. e.g. [2]) shows that

$$\lim_{n\to-\infty} \left\| \left(\frac{n}{t} \, k_{n/t} \right)^{*-n} * f - p_t * f \right\|_1 = 0$$

for all f in $L_1(G, m)$. Therefore, since $\{p_t\}_{t\to 0}$ is a bounded approximate identity in $L_1(G, m)$,

$$\left\{ \left(\frac{n}{t} \, k_{n/t} \right)^{*-n} \right\}_{t \to 0, n \to -\infty}$$

is an approximate identity in $L_1(G, m)$. Putting $f = k_1, \lambda < 0$, in (11). we see that the real algebra generated by the k_i 's, $\lambda < 0$, is dense in the real algebra generated by p_t , t > 0. Thus we see that Sp, p_t is real and so, since $p_t = p_{t/2} * p_{t/2}$, it is non-negative. From this we easily infer that for each f in A $Sp_1 f^* * f$ is real non-negative, which completes the proof of Theorem 2.

Since G is amenable, Proposition 5.3 of [2] thus yields our main result.

COROLLARY. If L is the Laplacian on G defined by (1), then

$$\operatorname{Sp}_p L = \operatorname{Sp}_2 L$$
 for all $1 \leqslant p < \infty$.

References

- [1] R. Aravamudhan, Non-symmetric L₁-algebras of solvable Lie groups, preprint, State University of New York at Albany, Albany N. Y. 12222.
- [2] A. Hulanicki, Subalgebra of L₁(G) associated with laplacian on a Lie group, Colloquium Math. 31 (1974), pp. 259-287.
- [3] On L_p-spectra of the Laplacian on a Lie group with polynomial growth, Proc. Amer. Math. Soc., 44 (1974), pp. 482-484.
- [4] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Berlin 1966.
- [5] M. A. Naimark, Normed rings, P. Noordhoff N. V., 1964.
- [6] E. C. Titchmarsh, Eigenfunction expansion associated with second-order differential equations, Part One, Second ed., Oxford 1962.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES WROCLAW, POLAND

STATE UNIVERSITY OF NEW YORK AT ALBANY ALBANY, NEW YORK

> Received February 2, 1974 (799)

On Kadec-Klee norms on Banach spaces

DICK VAN DULST (Amsterdam) and IVAN SINGER (Bucharest)*

Abstract. If E is a non-reflexive Banach space with a Kadec-Klee norm, then "many" (in particular, if E* is separable, then all) proper total subspaces V of E* have characteristic r(V) < 1. Application: Every non-reflexive Banach space E admits an equivalent norm for which there exists no projection of norm 1 of E** onto $\varkappa(E)$.

0. Definition of Kadec-Klee norms. Terminology and notations. In the present paper we shall study some properties and give some applications of Kadec-Klee norms, which are defined as follows:

DEFINITION 0.1. Let E be a Banach space and W a separable subspace (by subspace we shall always mean: norm-closed linear subspace) of the conjugate space E^* . We shall say that the norm of E is a Kadec-Klee norm (or, briefly, a (KK)-norm) with respect to W if for every net $\{g_d\}_{d\in D}\subset E^*$ and every $g\in W$ such that $g_d\stackrel{w^*}{\longrightarrow} g$ and $\|g_d\|\to \|g\|$ we have $||q_d - q|| \rightarrow 0$.

In the particular case when E^* is separable, a (KK)-norm with respect to $W = E^*$ will be simply called a (KK)-norm (in this case, clearly, the above nets can be replaced by sequences).

M. I. Kadec [5] and V. Klee [7] have proved that every Banach space E with separable conjugate space admits an equivalent (KK)-norm (for other proofs see also [6], [9]). More generally, W. J. Davis and W. B. Johnson have proved ([2], lemma 1) that if E is a Banach space and W a separable subspace of E^* , then E admits a (KK)-norm with respect to W, equivalent to the initial norm (actually, their result is slightly stronger, but we shall use only this version of it).

We recall (see [3]) that the characteristic of a subspace V of a conjugate Banach space E^* is the greatest number r = r(V) such that the

^{*} The second author was on leave from the Institute of Mathematics of the Academy of the Socialist Republic of Romania, visiting the University of Amsterdam.