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On functors from compact pairs to Banach algebras
by
DONALD HARTIG* (Athens, Ohio)

Abstract. Three natural properties of the funetor ¥ which carries a compact
pair (X, 4) to the Banach algebra #(X, 4) of continuons scalar-valued functions
on X vanighing on A4 are shown to characterize it.

A compact pair is an ordered pair (X, 4) where X is a compact
(Hausdorff) space and 4 is a closed subset of X. The category of compact
pairs, denoted by Comp Pr, consists of such pairs and morphisms f: (X, 4)
—(Y, B) where f: X—Y is a continuous function: taking A into B (i.e.
f(4) = B). Given a compact pair (X, A), we let #(X, A) denote the set
of all continuous scalar-valued funcmom on X that vanish on A. If f
is the above morphism in Comp Pr wé let f*: #(Y, B)->%(X, A) be the
function given by f*(a) = aof. One easily verifies that the maps (X, 4)
—>% (X, A) and fi>f* constitute a contravariant functor (which we denote
by %) from Comp Pr to any of & number of important categories of func-
tional analysis (e.g. Banach spaces, Banach lattices, Banach algebras).
‘We refer to Semadeni [5] for more details and an extensive bibliography.
It is' our purpose to display certain natural properties of this functor
that serve to characterize it; i.e. any contravariant functor having these
properties will be naturally equivalent to ¥. Similar programs are carried
out in [2] and [4]. It is remarkable that the properties singled out by
Eilenberg and Steenrod [1] to obtain a cohomology theory are also- the
properties that essentially serve to characterize %.

Our use of categories is only to provide a convenient language, anyone
familiar with the basic definitions as given, for example, in Semadeni [5]
will have no difficulty reading this paper. The category of compact spaces
is denoted by Comp, it is a full subcategory of Comp Pr where we identify
the compact space X with the pair (X, d). We also do not distinguish
between % (X, ) and #(X). Ban Alg is the category of commutative,

* Results in this paper form a portion of my doctoral dissertation written
under the guidance of Professor Ky Fan. I wish to thank him for his helpful advice.
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192 D. Hartig
semi-simple, complex Banach algebras. The morphisms in Ban Alg are
the algebraic homomorphisms (automatically continuous) with the added
condition that if % and B have identities, they are preserved by any
ne Hom(2A, B). The sets of morphisms in Comp Pr and Ban Alg will
be denoted by Hom(-—, —), since X, Y, 4, B, ete. will always denote
compact spaces while Banach algebras will be denoted by A, B, ete.,
no confusion will arise. Given a functor #: Comp Pr—Ban Alg, the functor
obtained by restricting # to Comp will be denoted by & |Comp.

It is easily verified that %: Comp Pr—Ban Alg has the following
properties :

I. % |Comp is full, that is, the map f—f* taking Hom(X, Y) to
Hom (¢(Y), (X)) is onlo. :

IL. (Bxactness) Given a compact pair (X, A), if

(%) (4, 0)>(X, 9)(X, 4)
are the natural maps, then the induced sequence

q H
0 B(A)<Te(X)<Ee (X, 4) <0
is evact. ’
III. (Execision) Given a compact pair (X, 4) and U = A open in X, if

(X\T, ANU)>(X, A)
is the natural map, then
@EI\T, ANT) <29 (X, A)

8 an isomorphism.

Any functor naturally equivalent to ¢ will also have these properties.
Conversely, any functor # having these properties (together with a nor-
malization property, #(4) =%(4) where 4 = {£eC: |¢| <1}) will be
naturally equivalent to %. This is proven helow. We remark that some
normalization property is unavoidable since the functor taking each
compact pair to the trivial Banach algebra 0 has properties I, IT and III.

TueorEM. Let #: Comp Pr—Ban Alg be o contravariant functor that
is full on Comp and satisfies the ewaciness and excision properties above.
If, in addition, F(4) = €(A) then F is naburally equivalent to F.

The proof will be carried out in a sequence of lemmas, the natural
equivalence first being éstablished between & |Comp and %|Comp then
extended via exactness. Given a morphism f in Comp Pr, # (f) will be
denoted by f*.

The first lemma extends exactness to-triples and is proven in the
standard fashion ([1], p. 25).
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Lemma 1. Let X be compact and let A = B be closed in X. If
(4, B)>(X, BE-(x, 4) )
are. the natural maps, then the induced sequence
0<F (4, B)<~% (X, B)<" 7 (X, 4)<0
s evact. -

) For what follows, {p} will be a fixed singleton gpace. Observe that
since the unique morphism {w}—{p} is an isomorphism in Comp Pr, 7 ({z})
and & ({p}) are isomorphic.

Levva 2. #({p}) =~ C.
Proof. Fix 'a point z¢ 4, let
({2}, @)>(4, 9)(4, {2}
denote the natural maps. The induced sequence
0<F({)) e ()<L F (4, )0

is exact embedding & (4, {z}) as a closéd ideal of the form % (4, K) in
#(4), K closed in A. Hence F({#}) = 4(4)/¥(4, K) =~ ¥(K). Since
Hom (# ({e}), # ({2})) is » singleton (& |Comp is full), 5o also is Hom (#(K),

% (K)) implying that K is a singleton too. End of proof.m
There is one isomorphism from # ({p}) to C; denote it by ».

Lemma 3. Given a compact pair (X, A), X = A if and only fF (X, A)
= 0.

Proof. Necessity follows from exa.ctness.' On the other hand, suppose
4 # X and choose we X\A. The diagram
(AUfa}, 4)5(X, 4)5(X, 4U{a))
I3
({=}, 9)

consisting of natural maps induces

0<F (AU{s}, 4)<ZF (X, 4)<F (X, AU{m}) <0

I
7 ({a})-
The row is exact by Lemmua 1 and k* is an isomorphism by excision. Since
F({w}) == C, it follows that #(X, ) #0.m
The following notation will be employed. Given a compact pair (X, 4)
and natural maps 4,§ as in (x), the closed ideal j*[# (X, A)] in #(X)
will be denoted by I(X, 4). When A reduces to a singleton {#} we let

L ({p}, 9)2>(X, 0)%25(X, {a})
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denote the obvious maps (fixing the initial space). The induced maps are
still exact, in fact in the diagram

7 ({p}) £
o/ ’ T F (X (X, ()0

\C vci;

both “rows” are exact and the map ir-svoi, is a bijection between
Hom|# (X),# ({p})) and Hom(# (X),C). (It is onto because & |Comp
is full.) )

LevmA 4. Let X be compact and let A, B be closed in X. Then 4 = B
if and only if I1(X,d)> I(X, B)

Proof. Let Y = AUB and ¢ = ANB, the proof is based on the
diagram in Ban Alg induced from

(B, C) Ty )= (X, )y,
NS0 IS
(4, 0) / \ Y, B)—i»(X, B) /

which consists of natural maps in Comp Pr. Note that
I(X,A) = ok (#(X,4) and I(X,B) =210k (#(X,B))

If A = Bthen ¢ = A, J; is the identity map and JX, A) > I(X, B)
follows easily. Assume now that I(X, 4) > I(X, B). Smce s 1n3ect1ve,
we have A; (# (X, A)) > ij(# (X, B)). Using the fact that both % and #;
are surjective we have

Ji(# (X, B)) =jjoki(#(X, B)} = K*oi}(#(X, B)) = Ko i {# (X, 4))
=50k (F(X, 4)) =5(# (Y, 4).

(X, C) (Xy7)

Therefore,
i;0ff (# (X, B)) = iy04; (F(¥,4)) =0
(by Lemma 1). But i;05] is an isomorphism by execision so that # (¥, B)
= 0, implying that ¥ = B by Lemma 3.m
COROLLARY. The map w1y is a bijection between X and Hom (#(X),

Z ({p))- .
In v1ew of the remarks preceding Lemma 4 we obtain a bijéction
w+>v0i; between X and Hom(#(X),C), we identity these two sets.
Liet 7, denote the Gelfand topology on X, ie. the weakest topology
making all maps @: X—C given by a(z) = 201y (@) continuous, where &
ranges over # (JX). This is a locally compact topology on X and each 4
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vanishes at infinity. We wish to show that 7, coincides with the original
topology 7 on X. For Lemmas 5 and 6, X[7] is a fixed compact space.
LemvA B. 7, is a compact topology on X.

A

Proof. This will follow if we can show that % (X) contains the constant
functions. Let j: X—{p} be the unique morphism in Comp Pr and e
= j*o»~1(1); we claim that ¢ is the function identically equal to 1 on X.
In fact, given weX, joi, = Idy 80 005" = Idgy, and é(z) = »oil(e)
= vo%og*ov*l(l) = vcw—l(l) =1.

LeMMA 6. T uy hence given aeF(X), ae ?(X).

Proof. Smce both are compact topologies, we need only to show that
T <J,. Let 8 be a J-closed set in X and let § denote its 7 ,-closure H
we prove that § = 8. Let weS.

If ae#F(X) and &|S = 0, then 4(z) = 0 by continuity. Thls shows
thait

(X, {o}) S@I(X,{S})-

But Lemma 4 implies that I(X, {s}) > I(X, S). for each se¢ S and so
(X, {o}) = 1(X, 8).
Once more Lemma 4 applies to allow us to assert that xe S.m
- Given X compact, let @x: #(X)—>%(X) be the map Dx(a) =a
(essentially the Gelfand transform). The family @ = {®5: X compact}
will be shown to be a matural equivalence from # |Comp to % |Comp.
We begin by showing that it constitutes a natural transformation.

Let f: XY be a mmphlsm in Comp; we wish to show that the dia-

gram
7

F(X)«—F(X)
“xl oy
(x4 (7)
commutes. In other words, given be#(Y) and ze X,
[f¥o @y (b)](w) = [Pxof*(b)1(
This follows because _
({#}, 92> (X, 9)

. f@\ /f/

(¥, 9)
commutes, 50 i,0f* = if,. Thus
[f*00x(0)](2) = @x(b)(f(2)) = b (f(2)) = roiju(®)
= roilof*(b) = f(b)

= [Dxof*(0)](@).
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TuworREM. The family of maps @ = {Ox: X compact} is ¢ natural
equivalence from & |Comp to %|Comp.

Proof. We need only show that each morphism 9y i3 onto (it is
one-to-one by semi-simplicity). Normality (i.e. #(4) =% (4)) shows
that @, is onto. If K is a closed subset of 4 and .i: K->4 is the natural
map then

F(E) <27 (4)
ol @y
¢(K) <2 (4)

commutes and both ¢¥* and @, are onto implying that P is also. Because
any compact subset of C is homeomorphie to a subset of 4, Px will be
onto for every K < C.

Now.let X be an arbitrary compact space and ae %(X). Define
fi X»a(X) as f(x) = a(z) for all we X. The induced diagram

F(X) <7 (a(X))
S
#(X)<E % (a(X))

commutes. Since Py is onto,‘ thereis some beF (a(X)) such that @, (b)(2)
= ¢ for all ze a(X). We claim that @x(f*(h)) = a. In fact, given ze X,

[Dxof*(D)](#) = [ffo Dx)(b)](w)
() (f(@)) =f(@) = a(a).m

We conclude with the theorem that extends @ to a natural equiv-
alence from # to . Since this result is of independent interest, we state
it in a more general context. .

TurorEM. Let & and & be contravariant functors from Comp Pr to
Ban Alg. Let @ = {®x: X compact} be a natural transformation from
& |Comp to %|Comp. If both &F and ¥ satisfy the exaciness condition then @
has o wnigue ewtension to & natural transformation ¥ = {Px 4: (X, 4)
& compact pair} from F to %, i.e. Pix,0) = Px. If D is a natural equivalence,
s0 also is .

Proof. Given a compact pair (X, A) and natural maps 4,/ a§ in
(%), the induced diagram

= Byx)

0«F (4, 0)<~ 7 (X, 0)<I 7 (x, A)<0
JI"A ox

094, )< 4(X, 0)<Lg(x, 4)<0

7
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commutes and the rows are exact. (We let ¥ and j* denote #(i) and
%(j).) It follows easily that there exists a unique morphism Oz, 4 F (X, 4)
—%(X, A) making the resulting diagram commute. Moreover, if both
D, and Py are isomorphizms so also is D(x,4y- (The five lemma, [3], p.
201, may be applied.) This proves uniqueness and it remains to show
that ¥ = {®x 4} has the commutativity property of a natural transforma-
tion.

Thus, let f: (X, 4)—(Y, B) be a morphism in €omp Pr. The diagram

(X, 4)-1+(¥, B)
i TJ

(X,0)-2 (7, 0)

‘where ¢ and j are the natural maps and f,(z) = f(#) for all ze X commutes.
Therefore in the diagram below all “rectangles” will commute except
possibly the oufer one. It is this rectangle that we wish to show is com-
mutative.

F(X, A)=e L F(Y, B)
i* . J*
F (X))l 7 (Y)
B(X, 1) 1, By

K4
kA #
Y

2(X, 4) e

wv
%

(Y, B)

Faid

Using each rectangle in turn onme easily shows that i*o @y A)d =
i*of*o Py, 5. Because i* is injective we conclude that

B, 4y0f* = fFo Diy,p)- |
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On the spectrum of the Laplacian
on the affine group of the real line

by
A. HULANICKI (Wroctaw)

Abstract. If @ is the affine group of the real line and X2+ ¥2is the Laplacian
on it regarded as a densely defined operator on all Ly (@), then it has the same spectrum
for all p, 1< p < oo,

Let & be a Lie group and LG the Lie algebra of G. Let Xy X,
be a basis of LG and let

L=-X—.. X,

If m is a left-invariant Haar measure on @, then I is a densely defined
operator on each of I,(@, m) which is non-negative, essentially self-
adjoint on L,(G,m). ' )

Let

Spp L= {A<C: (AL —L)™" is bounded on L,(&, m)}°.

It is well known that —ZI is the, infinitesimal generator of a one-
parameter semigroup of convélution operators whose kernels p,, > 0,
are Ly (@, m) functions. In [2] a commutative Banach algebra A, defined
as the L, (G, m) closure of lin{p,: ¢> 0}, is studied. If & is of polynomial
growth (e.g. G is a compact extension of nilpotent Lie group), then A is
symmetric and hence

() 8p, L =8p, L for all 1<p< oo;

cf. [2] and [3].

In this note we consider a Lie group which is not of polynomial growth ;
namely, the group of affine transformations of the real line. As it has
been, recently proved by R. Aravamudhan [1], the whole L,(G, m) is
not symmetric.(*)However, as weshall showhere, the algebra 4 is symmetric
and equality (*) holds also for this group. The method of the proof used
here is quite different from the ones of [2] and [3]. First we establish

(*) Added in proof:Aravamudhan’s proof appears to be wrong, thus the question
about symmetry of L, (@, m) remains open. :
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