A unified approach to Riesz type representation theorems

by

DAVID POLLARD* (Copenhagen, Denmark and Canberra, Australia)

and

FLEMMING TOPSØE** (Copenhagen, Denmark)

Abstract. We establish abstract versions of the Riesz representation theorem. Necessary and sufficient conditions for the existence of regular finitely additive, e-additive and t-additive representing measures are found. A methodological simplification is obtained by constructing the measures directly, rather than via a preliminary extension of the linear functional. Thus our approach is in agreement with the viewpoints of Alexandrov rather than with those of Bourbaki. We are able to easily deduce the Daniell extension theorem as well as numerous topological representation theorems such as those developed by Bade, Mackey, Alexandrov, Hewitt, LeCam, Munk and Varadarajan. Indeed, these results are sometimes strengthened. Our method is based on the theory developed by the second author; hopefully, our results demonstrate the usefulness of this theory.

1. A common problem in Functional Analysis is whether a given bounded linear functional defined on a vector lattice of real valued functions is representable as an integral with respect to some suitable regular measure. By well-known techniques this problem can be reduced to the following situation:

On a set X there is given a convex cone \mathcal{F} of non-negative real functions, closed under the finite lattice operations and containing the zero function. A non-negative, monotone, linear functional T is defined on \mathcal{F}. That is, our basic assumptions are:

A1. \mathcal{F} is a $(0, \mathbb{R}, \wedge)$ convex cone in $[0, \infty[; X$;

A2. $T: \mathcal{F} \to [0, \infty]$,

$$T(a_1 h_1 + a_2 h_2) = a_1 T h_1 + a_2 T h_2 \text{ for } a_1, a_2 \geq 0 \text{ and } h_1, h_2 \in \mathcal{F}, h_1 \leq h_2$$

and $h_1, h_2 \in \mathcal{F}$ implies that $T h_1 \leq T h_2$.

* Supported by an Australian National University Ph. D. scholarship and by the Danish Natural Science Research Council.

** Supported by the Danish Natural Science Research Council.
For the positive cone of a vector lattice of functions we also have closure under the operation \(\wedge \) defined by
\[
f \wedge g = (f - g)^+ = f - f \wedge g.
\]

Another frequently satisfied condition is Stone's condition that \(h \wedge 1 \in \mathcal{F} \) for all \(h \in \mathcal{F} \). Thus we consider:

A3. \(\mathcal{F} \) is closed under \(\wedge \) and satisfies Stone's condition.

A3 is not needed to prove one of the basic results, but if it is satisfied then the subsequent analysis is greatly simplified. Notice that if A3 is not satisfied then the monotonicity of \(T \) does not follow from its non-negativity alone.

The regularity properties we desire for our representing measures are expressible in terms of a paving \(\mathcal{X} \) of subsets of \(X \). We shall always assume that this \(\mathcal{X} \) is closed under finite unions and intersections and that it contains the empty set:

A4. \(\mathcal{X} \) is a \((\emptyset, \cup, \cap, 1) \) paving.

Following Topaee [11], we define the associated pavings
\[
\mathcal{F}(\mathcal{X}) = \{ F : K \in \mathcal{X} \} \text{ for all } K \in \mathcal{X},
\]
\[
\mathcal{B}(\mathcal{X}) = \{ G : K \in \mathcal{X} \} \text{ for all } K \in \mathcal{X},
\]
\[
\mathcal{A}(\mathcal{X}) = \{ A : K \in \mathcal{X} \} \text{ for all } K \in \mathcal{X},
\]
\[
\mathcal{F}(\mathcal{X}) = \text{the field spanned by } \mathcal{F}(\mathcal{X}),
\]
\[
\mathcal{B}(\mathcal{X}) = \text{the \(\sigma \)-field spanned by } \mathcal{F}(\mathcal{X}).
\]

A non-negative set function \(\mu \) on a domain containing \(\mathcal{X} \), is said to be \(\mathcal{X} \)-regular if \(\mu K < \infty \) for all \(K \in \mathcal{X} \) and

\[
(1) \quad \mu(A) = \sup \{ \mu K : K \subseteq A, K \in \mathcal{X} \} \quad \text{for every } A \text{ in the domain of } \mu.
\]

If \(\mu \) is defined on \(\mathcal{A}(\mathcal{X}) \), is finitely additive, and \(\mathcal{X} \)-regular, it is called a \(\mathcal{X} \)-regular finitely additive measure. If \(\mathcal{X} \) is also closed under countable intersections \(\mathcal{X} \cap \mathcal{X} \) and \(\mu \) is defined on \(\mathcal{B}(\mathcal{X}) \), is countably additive, and satisfies (1) then it is called a \(\mathcal{X} \)-regular \(\sigma \)-additive measure. Finally, if \(\mathcal{X} \) is also closed under arbitrary intersections \(\mathcal{X} \cap \mathcal{X} \), a \(\mathcal{X} \)-regular \(\sigma \)-additive measure is said to be a \(\mathcal{X} \)-regular \(\tau \)-additive measure if it satisfies the further smoothness condition: for every countable family \(\{ F_n \} \) of \(\mathcal{F}(\mathcal{X}) \)-sets, with \(\mu F_n < \infty \) for some \(n \), we have
\[
\mu(\cap_n F_n) = \inf_n \mu(F_n).
\]

The following theorem on the construction of such measures, starting from a \(\mu \) defined only on \(\mathcal{X} \), is basic to our whole method.

Theorem A (cf. Topaee [11]; Theorem 2.2, Lemma 2.3, Theorem 4.1.). Let \(\mathcal{X} \) be a \((\emptyset, \cup, \cap, 1) \) paving and \(\mu \) a map from \(\mathcal{X} \) into \([0, \infty[\) such that for every pair \(K_1, K_2 \) in \(\mathcal{X} \) with \(K_1 \subseteq K_2 \), we have
\[
(2) \quad \mu K_1 \leq \sup \{ \mu K : K \subseteq K_1 \setminus K_2, K \in \mathcal{X} \} = \mu K_1.
\]

Define \(\mu^* \) by
\[
\mu^* E = \sup \{ \mu K : K \subseteq E, K \in \mathcal{X} \}.
\]

Then
(i) The restriction \(\mu^* \) to \(\mathcal{A}(\mathcal{X}) \) is an extension of \(\mu \) to a \(\mathcal{X} \)-regular finitely additive measure.

(ii) If \(\mathcal{X} \) is closed under \(\cap \) and \(\mu \) is \(\sigma \)-smooth at \(\emptyset \) (i.e. for any sequence in \(\mathcal{X} \), \(K_1 \setminus K_2 \) implies \(\mu K_1 \subseteq \emptyset \)), then the restriction of \(\mu^* \) to \(\mathcal{B}(\mathcal{X}) \) is an extension of \(\mu \) to a \(\mathcal{X} \)-regular \(\sigma \)-additive measure.

(iii) If \(\mathcal{X} \) is closed under \(\cap \) and \(\mu \) is \(\tau \)-smooth at \(\emptyset \) (i.e. for any family in \(\mathcal{X} \), \(K_1 \setminus K_2 \) implies \(\mu K_1 \subseteq \emptyset \)) then the restriction of \(\mu^* \) to \(\mathcal{A}(\mathcal{X}) \) is an extension of \(\mu \) to a \(\mathcal{X} \)-regular \(\tau \)-additive measure.

In each case, the extension will also be denoted by \(\mu \).

The history of this result goes back at least to Alexandroff [(1), Theorem 3.2].

We shall apply Theorem A to the set function \(\mu \) defined on \(\mathcal{X} \) by
\[
(4) \quad \mu K = \inf \{ h K : h \geq 1, h \in \mathcal{F} \}.
\]

To ensure that this \(\mu \) satisfies the conditions of Theorem A we of course require some further assumptions about the relationship between \(\mathcal{F} \), \(\mathcal{X} \) and \(T \). Specifically, we shall work with a type of lower semi-continuity requirement

A5. For every \(h \in \mathcal{F} \) and \(a > 0 \), \((h < a) \in \mathcal{F}(\mathcal{X}) \),

and also a separation assumption

A6. If \(K_1 \) and \(K_2 \) are disjoint \(\mathcal{X} \)-sets and \(\varepsilon > 0 \), then there are \(\mathcal{X} \)-functions \(h_1 \geq 1 \) and \(h_2 \geq 1 \) for which \(T(h_1 \wedge h_2) < \varepsilon \).

Observe that A6 implies that the \(\mu \) defined by (4) is finite valued.

In applications though we often have another form of separation

A6'. If \(K_1 \) and \(K_2 \) are disjoint \(\mathcal{X} \)-sets, then there is an \(h \in \mathcal{F} \) taking the value 1 on \(K_1 \) and 0 on \(K_2 \).

When combined with A3, A6' leads to the stronger form of A6:

if \(K_1 \) and \(K_2 \) are disjoint \(\mathcal{X} \)-sets, then there are \(\mathcal{X} \)-functions \(h_1 \geq 1 \) and \(h_2 \geq 1 \) for which \(h_1 \wedge h_2 = 0 \). [Choose \(h \) taking the value 1 on \(K_1 \cup K_2 \) and take \(h \) as in A6'. Then \(h_1 = h \wedge (h \backslash K_2) \) and \(h_2 = (h \backslash K_1) \wedge h \) are the required functions.]
We prefer however to retain A6 since it is this weaker form of separation which allows us to obtain the Daniell extension theorem as a corollary to our results.

Whenever Theorem A is applicable we define, for a simple function

$$k = \sum_i a_i \cdot A_i$$

(with the A_i's in the domain of definition of μ),

$$\mu(k) = \sum_i a_i \cdot \mu(A_i).$$

Further, we define, for every $f \in [0, \infty]^3$, the inner integral

$$\mu_\pi(f) = \sup \{ \mu(k) : k \leq f, k \text{ a simple function} \}.$$

Notice that for simple functions $\mu_\pi(k) = \mu(k)$, and also that for any subset B of X, $\mu_\pi(1_B) = \mu_\pi(B)$ (as defined by (3)). Since μ is \mathcal{I}-regular we have, for every $f \in [0, \infty]^3$, the more useful expression

$$\mu_\pi(f) = \sup \left\{ \sum_i a_i \cdot \mu(K_i) : \sum_i a_i \cdot 1_{K_i} \leq f, \text{ the } K_i \text{ disjoint } \mathcal{I} \text{ sets} \right\}.$$

In general, μ_π is only superadditive and positively homogeneous on \mathcal{I}. In those cases where it is in fact linear on \mathcal{I} it is customary to write $\mu(h)$ or $\int h \, d\mu$ for $\mu_\pi(h)$. We shall say that μ is dominated by T if $\mu_\pi(h) \leq Th$ for all $h \in \mathcal{I}$, and that μ is a representation of T if $\mu_\pi(h) = Th$ for all $h \in \mathcal{I}$. Of course, when μ is a representation of T, it must be linear on \mathcal{I}.

In Section 2 we establish the existence of the largest \mathcal{I}-regular finitely additive measure dominated by T, and then deduce necessary and sufficient conditions for this to be a representation. From these the Mackoff and Alexandroff representation theorems follow immediately.

In Section 3 we extend these results to find necessary and sufficient conditions for representations in terms of \mathcal{I}-regular σ-additive and τ-additive measures. From these we derive the Daniell extension theorem, as well as a number of topological representation theorems associated with the names: Alexandroff, LeCam, Hewitt, Mafik, Radon and Vardarajan. In fact, we obtain stronger versions of some of these results.

For Section 3, further closure assumptions have to be made on \mathcal{I}.

In Section 4 we try to avoid this. The difficulties involved are illustrated by simple examples.

All of the results in this paper can be generalized to the case where T is allowed to take the value $+\infty$. Apart from obvious modifications we only need the extra assumptions that for every K there is an $h \geq h'K$ for which $Th < \infty$, and also that Th is the supremum of Th' with $h' < h$, $Th' < \infty$.

In particular, Examples 4 and 5 can be extended to the case of Radon measures on general topological spaces without the restriction of total finiteness.

For historical background to these results we refer the reader to Batt [2], Bourbaki [3] and Dunford and Schwartz [4].

2. Henceforth h, h_1, \ldots will denote functions in \mathcal{I}, and K, K_1, \ldots sets in \mathcal{I}.

Theorem 1. Assume that A1, A2, A4, A5 and A6 hold.

Then there exists a largest \mathcal{I}-regular finitely additive measure μ dominated by T, and this finitely additive measure is determined by the values of μ on \mathcal{I}, given by (4).

Proof. Let μ be the set function on \mathcal{I} defined by (4). Clearly, μ is non-negative finite valued, monotone and subadditive ($\mu(K_1 \cup K_2) \leq \mu(K_1) + \mu(K_2)$). To prove that μ is additive, let K_1, K_2 with $K_1 \cap K_2 = \emptyset$ and $e > 0$ be given. Choose $h \geq 1_{K_1 \cup K_2}$ such that $\mu(K_1 \cup K_2) \geq Th - e$.

Then choose, according to A6, $h_1 \geq 1_{K_1}$ and $h_2 \geq 1_{K_2}$ such that $T(h_1 \land h_2) < e$. We may also assume that $h_1 \leq h, h_2 \leq h$. Then

$$\mu(K_1 + h) = \mu(K_2 + h) = Th_1 + Th_2 - T(h_1 \land h_2) + e,$$

which proves additivity.

Define μ_π on $2^\mathcal{I}$ as in Theorem A. To enable us to apply Theorem A, we must verify (2). Note that by monotonicity and additivity of μ, \leq holds in (2), so it remains to prove that, for $K_1 \subseteq K_2$,

$$\mu(K_1 \cup \mu(K_1 \setminus K_2)) \geq \mu(K_2).$$

To do this, let $e > 0$ and choose $h_1 \geq 1_{K_1}$ such that $\mu(K_1) \geq Th_1 - e$. For $0 < a < 1$ put $K_a = K_a \setminus \{h \leq a\}$. Then $K_a \subseteq K_2$ by A5. Since $h \geq 1_{K_2}$ implies $h + 1_{K_2} \geq h$, we obtain $Th + a^{-1}Th_1 \geq \mu(K_2)$ for all such h and hence $\mu(K_1 \cup a^{-1}Th_1) \geq \mu(K_2)$. Since $K_a \subseteq K_1 \setminus K_2$ it follows that $\mu_\pi(K_a \setminus K_2) \geq a^{-1}Th_1$ hence $\mu_\pi(K_a \setminus K_2) \geq \mu(K_2)$ and (8) follows since $Th_1 \leq \mu_\pi(Th_1) + e$.

By Theorem A, μ_π has an extension to a \mathcal{I}-regular finitely additive measure which we also denote by μ.

In order to prove that T dominates μ, let $h \in \mathcal{I}$ be given. According to (7), it suffices to show that if $\sum_i a_i \cdot 1_{K_i} \leq h$ and if the K_i's are disjoint, then

$$\sum_i a_i \cdot \mu(K_i) \leq Th.$$

By A6, we can, for a given $e > 0$, find $h_0, i, j = 1, \ldots, n, i \neq j$, such that, for all these i, j,

$$h_0 \geq 1_{K_i}, \quad T(h_0 \land h_0) < e.$$
Now define

\[h_i = h \land \alpha_i \land \mu_\vartheta \land h_j; \quad i = 1, 2, \ldots, n. \]

Notice that \(h_i \geq \alpha_i \land \vartheta \) so that \(T h_i \geq \alpha_i \land \vartheta \). Also \(\vee_i h_i \leq h \) and \(h_i \land h_j \leq M h_i \land h_j \) for \(i \neq j \) where \(M = \max_\alpha \). By this, and the general inequality

\[\sum_i h_i \leq \sum_i h_i + \sum_{i < j} h_i \land h_j, \]

we have

\[\sum_i a_i \alpha K_i \leq \sum_i T h_i = T \left(\sum_i h_i \right) \leq \sum_i T \left(\sum_i \alpha_i \right) \land h_j \]

\[\leq T h + M \sum_i \alpha_i \land h_j \]

\[\leq Th + M n^2 \varepsilon. \]

It follows that (9) holds, and hence \(T \) dominates \(\mu \).

If \(\varepsilon \) is any other \(\vartheta \)-regular finitely additive measure dominated by \(T \), then, for any \(K \),

\[\varepsilon K \leq \inf \{ \nu, \mu_k, h, \nu = 1_k \} \leq \inf \{ T h; h \geq 1_k \} = \mu K. \]

By \(\vartheta \)-regularity, \(\varepsilon K \leq \mu A \) for any \(A \in \vartheta (\varnothing) \) follows.

\textbf{Remarks} 1. It follows from (4) and (5) that for \(K \in \varnothing \)

\[\mu K = \inf \{ \mu_\vartheta \mid G \in K \}, \quad G \in \vartheta (\varnothing) \].

2. If each function in \(\vartheta \) is bounded \(^{(1)} \), then \(\mu_\vartheta \) is additive on \(\vartheta \). Let us briefly indicate a proof of this. Given \(h_i, h_i + \varepsilon > 0 \), choose \(\sum_i \alpha_i A_i \leq h_i + h_i \) with the \(A_i \)'s disjoint in \(\vartheta (\varnothing) \) and \(\mu (\bigcup_i A_i) < \infty \) such that \(\mu_\vartheta (h_i + h_i) \leq \sum_i \alpha_i (A_i + \varepsilon) \). By (5), and the boundedness of \(h_i \), we may assume that, for each \(i \), \(M_i - m_i < \varepsilon \) where \(M_i [m_i] \) is the supremum [infimum] of \(h_i \) on \(A_i \). Since

\[\sum_i (M_i - m_i) \leq \sum (a_i - m_i) 1_{A_i} \leq h_i, \]

we find that

\[\mu_\vartheta (h_i + h_i) \leq \sum_i (a_i - m_i) 1_{A_i} \leq h_i, \]

and the result follows.

3. By (4), \(\mu_\vartheta \) is additive on \(\vartheta \) even without the boundedness assumption.

4. Note that, for any non-negative function \(f \) on \(X \),

\[\mu_\vartheta (f) = \sup \inf \{ T h; h \geq 1_k \} \]

where \(h \) denotes a \(\vartheta \)-simple function.

5. An important consequence of Theorem 1 is that if there is a \(\vartheta \)-regular finitely additive measure representing \(T \), then it is unique.

The conditions of Theorem 1 are not sufficient to ensure that \(\mu \) represents \(T \) (consider for instance the trivial case when \(\vartheta = \{ \emptyset \} \)). Thus, in order to obtain a representation, we need a condition to ensure that there are enough \(\vartheta \) sets relative to \(T \). The following property turns out to be appropriate: We say that \(\vartheta \) exhausts \(T \) if, to every \(h \in \varnothing \) and \(\varepsilon > 0 \), there exists \(K \in \varnothing \) such that \(T h < \varepsilon \) whenever \(h \in \varnothing \). It follows that \(\mu_\vartheta \) is finite on \(\varnothing \).

\textbf{THEOREM 2.} Assume that \(\Delta1 - \Delta6 \) hold. Then a necessary and sufficient condition that there exists a \(\vartheta \)-regular finitely additive measure representing \(T \), is that \(\vartheta \) exhausts \(T \), and that

\[\forall \varepsilon > 0 \exists \delta = \varepsilon/\delta \]

\[Th = \sup \{ T (h \land \alpha) \mid \alpha \in \varnothing \} \quad \forall h \in \varnothing. \]

\textbf{Proof.} In the proof, \(\mu \) refers to the finitely additive measure constructed in Theorem 1.

To prove sufficiency, assume that \(\vartheta \) exhausts \(T \). We know that \(\mu_\vartheta (h) \approx T h \) for all \(h \) and must prove the reverse inequality. To a given \(h \) and \(\varepsilon > 0 \), choose \(K \) as specified by the exhaustion property. By (10), we may assume that \(h < 1 \). Also choose some fixed \(h_k \geq 1_k \) and a natural number \(n \) such that \(n^{-1} T h_k < \varepsilon \). By Stone's condition, we may assume that \(h_k = 1 \) on \(K \). Put

\[K_i = K \cap \{ h \geq \nu \} \quad \nu = 1, 2, \ldots, n. \]

Since

\[K_i = K \cap \{ h \leq 1 - \nu \} \cup \varnothing \]

\(\forall \varepsilon > 0 \exists \delta = \varepsilon/\delta \)

\[(h - n^{-1}) 1_k \leq \sum n^{-1} \mu_\vartheta \leq h. \]

The right inequality gives

\[n^{-1} \mu_\vartheta \leq \sum n^{-1} \mu_\vartheta \leq h. \]
Consider any $h_i \geq \sum \lambda^{-1}\lambda_k$. We may assume that $h_i \leq h$. Then $h - h_i \leq \lambda^{-1}$ on the set K_i by the left inequality in (11), so it follows that the function
\[h' = (h - h_i)\lambda^{-1}\lambda K \]
attains $h' \leq h$ and $h' = 0$ on K_i. Thus $Th' < \varepsilon$. Since
\[h - h_i = h' + (h - h_i)\lambda^{-1}\lambda K \leq h' + \lambda^{-1}\lambda K, \]
we obtain $T(h - h_i) \leq Th' + \lambda^{-1}\lambda K \leq \varepsilon$. Thus, $Th_i \geq Th - 2\varepsilon$ follows. By (12), this argument shows that $\mu_i h \geq Th - 2\varepsilon$. ε being arbitrary, this gives the desired conclusion $\mu_i h \geq Th$.

To prove necessity, assume that $\mu h = Th$ for all h. To a given h and $\varepsilon > 0$, choose $\sum \lambda^{-1}\lambda K_i \leq h$ such that $Th = \mu h \leq \sum \lambda^{-1}\lambda K_i + \varepsilon$. Put $K = \bigcup \lambda K_i$. To verify the exhaustion property, assume that $h' \leq h$ and $h' = 0$ on K. Then $h - h' \geq \sum \lambda^{-1}\lambda K_i$. Thus we have
\[Th - \varepsilon \leq \sum \lambda^{-1}\lambda K_i \leq \mu h (h - h') = Th - Th', \]
so that $Th' \leq \varepsilon$, and hence the exhaustion property holds.

Clearly, (10) is also necessary.

Remark. For the proof of necessity $\mathcal{A'}$ is not needed. (Employ that $\mu h + \sum \lambda^{-1}\lambda K_i = \mu h + \mu h (\sum \lambda^{-1}\lambda K_i)$ (cf. the proof given in Remark 2 to Theorem 1).

Example 1 (Alexandroff [1]; see also Varadarajan [25], part 1) Let X be a completely regular topological space, \mathfrak{C} the cone of bounded continuous non-negative functions on X, and \mathcal{T} a positive linear functional on \mathfrak{C}. We take \mathcal{X} as the paving of zero sets, i.e., sets of the form $h^{-1}(0)$ with $h \in \mathfrak{C}$.

Assumptions $\mathcal{A} - \mathcal{A'}$ and the exhaustion property are then easily verified. As is well known, $\mathcal{A'}$ is satisfied ($\mathcal{T}_K = h^{-1}(0)$), consider $h = h_0(h - h_0)^{-1}\lambda K$.

Thus \mathcal{T} has a unique representation by a finitely additive measure, regular with respect to the zero sets. The field $\mathcal{B}(\mathcal{X})$ is usually called the Baire field, and the representing measure is a finitely additive regular Baire measure.

Example 2 (Markoff [9]; see also Dunford and Schwartz [4], IV, 6). Let X be a normal (not necessarily Hausdorff) topological space, \mathfrak{C} and \mathcal{T} as in Example 1. This time take \mathcal{X} to be the paving of closed subsets.

Proceeding as in Example 1 (noting that this time $\mathcal{A'}$ is just the Urysohn lemma), we obtain a unique representation of \mathcal{T} by a finitely additive measure regular with respect to the closed sets. $\mathcal{B}(\mathcal{X})$ is the Borel field. The measure is called a finitely additive regular Borel measure.

3. Consider the problem of representing T by σ-additive or τ-additive measures. The following smoothness conditions are needed. T is σ-smooth at 0 if h_0 implies $Th_0 = 0$. T is σ-smooth at \mathcal{T} with respect to \mathfrak{C} if $\mathcal{T}_K \mathfrak{C}$ implies
\[\inf \{Th: h \geq 1_K, \mathfrak{C} \} > 0 \]

T is τ-smooth at 0 if h_0 implies $Th_0 = 0$. Here (h_0) is any downward filtering collection of functions in \mathfrak{C} with $\inf h_0 = 0$. T is τ-smooth at \mathcal{T} with respect to \mathfrak{C} if $\mathcal{T}_K \mathfrak{C}$ implies
\[\inf \{Th: h \geq 1_K, \mathfrak{C} \} > 0 \]

Theorem 3. Assume that $\mathcal{A} - \mathcal{A'}$, and $\mathcal{A''}$ hold.

If \mathfrak{C} is closed under \cap, then a necessary and sufficient condition that there exists a \mathcal{X}-regular σ-additive measure representing T is that \mathfrak{C} exhausts \mathcal{T}, that T be σ-smooth at \mathcal{T} with respect to \mathfrak{C}, and that (10) holds.

If \mathfrak{C} is closed under \cap, then a necessary and sufficient condition that there exists a \mathcal{X}-regular τ-additive measure representing T is that \mathfrak{C} exhausts \mathcal{T}, that T be τ-smooth at \mathcal{T} with respect to \mathfrak{C}, and that (10) holds.

In both cases, the representing measure is unique and determined by its values on \mathcal{X}-sets which are those given by (4).

Proof. We shall only deal with the case in which \mathfrak{C} is closed under countable intersections (the other case is handled analogously). Throughout the proof, μ denotes the \mathcal{X}-regular finitely additive measure constructed in Theorem 1. Note that the infinitesimal condition that T be σ-smooth at \mathcal{T} with respect to \mathfrak{C} is equivalent to the condition that μ be σ-smooth at \mathcal{T} with respect to \mathfrak{C}.

To prove sufficiency, assume that \mathfrak{C} exhausts \mathcal{T}, that T is σ-smooth at \mathcal{T} with respect to \mathfrak{C}, and that (10) holds. Then, by Theorem 1, μ extends to a \mathcal{X}-regular σ-additive measure. This measure we shall here denote by μ_x. By $\mathcal{A''}$, each h is $\mathcal{B}(\mathcal{X})$-measurable. Indeed, there is an increasing sequence of $\mathcal{B}(\mathcal{X})$-simple functions converging pointwise to h. It follows from this that
\[\mu_x(h) = \sup \{\mu_x(k): k \text{ $\mathcal{B}(\mathcal{X})$-simple}, k \leq h\} = \sup \{\mu(k): k \text{ $\mathcal{B}(\mathcal{X})$-simple}, k \leq h\} = \mu_x(h). \]

Since the exhaustion property holds, it follows from Theorem 2 that $\mu_x(h) = Th$ for every bounded function in \mathfrak{C}. Employing (10), we thus get, for any $h \in \mathfrak{C}$:
\[\mu_x(h) = \sup \mu_x(h \wedge n) = \sup T(h \wedge n) = Th. \]
To prove necessity, assume that \(\mu_x \) is a \(\mathcal{A} \)-regular \(\sigma \)-additive representing measure. Denote by \(\mu' \) the restriction of \(\mu_x \) to \(\mathcal{A}(\mathcal{X}) \). Then \(\mu' \) is a \(\mathcal{A} \)-regular finitely additive measure. Employing \(A5 \) in the same way as in the proof of sufficiency, we obtain, for every \(h \in \mathcal{A} \), \(\mu_x(h) = \mu_x'(h) \).

Since \(\mu_x \) is a representation, so is \(\mu' \). By Theorem 2 it follows that \(\mathcal{X} \) exhausts \(T \) and that \(\mu' = \mu_x \). Since \(\mu_x \) is \(\sigma \)-additive, \(\mu \) must be \(\sigma \)-smooth at \(\emptyset \) w.r.t. \(\mathcal{X} \), i.e. \(T \) is \(\sigma \)-smooth at \(\emptyset \) w.r.t. \(\mathcal{X} \). Clearly, (10) must hold.

This proves necessity as well as uniqueness.

Remarks.

1. For the proof of necessity, \(\emptyset \) need not be closed under \(\cup \).
2. Assume that \(\mu \) is a \(\mathcal{A} \)-regular \(\sigma \)-additive representing measure. It is not difficult to show that for every upward filtering system of \(\mathcal{A} \) functions, with supremum \(g \), \(h \uparrow g \) is \(\mathcal{B}(\mathcal{X}) \)-measurable and

\[
\int g \, d\mu = \sup \int h \, d\mu < \infty.
\]

Similarly, if \(h \downarrow f \), then \(f \) is \(\mathcal{B}(\mathcal{X}) \)-measurable and

\[
\int f \, d\mu = \inf \int h \, d\mu.
\]

It was remarked earlier that to get a representation we need “enough” \(\mathcal{X} \) sets. The following results show that it only \(\mathcal{A} \) and \(T \) are specified then by a suitable choice of \(\mathcal{X} \), this can be achieved even in an abstract setting.

Theorem 4. Let \(\mathcal{A} \) and \(T \) satisfy \(A1 \), \(A2 \) and \(A3 \). Define \(\tau \) \(\mathcal{A} \) (the trace of \(\mathcal{A} \)) as the paving of sets of the form \(\{ h \geq a \} \) where \(h \in \mathcal{A} \) and \(a > 0 \). Let \(\mathcal{X}' \), be the paving of countable intersections of sets in \(\tau \), \(\mathcal{X} \), the paving of arbitrary intersections of sets in \(\tau \).

Then \(T \) has a representation by a \(\mathcal{A} \)-regular \(\sigma \)-additive measure (with domain \(\mathcal{B}(\mathcal{X}') \)) iff \(T \) is \(\sigma \)-smooth at \(\emptyset \); and \(T \) has a representation by a \(\mathcal{A} \)-regular \(\tau \)-additive measure (with domain \(\mathcal{B}(\mathcal{X}) \)) iff \(T \) is \(\tau \)-smooth at \(\emptyset \).

Proof. The proof of necessity is simple, cf. Remark 2 to Theorem 3. We now prove sufficiency by verifying the conditions for Theorem 3 to be applicable. \(A1 \), \(A2 \) and \(A3 \) are satisfied by assumption and \(\mathcal{X}' \), a \((\{ h \geq a \}, \cup, \cap) \) paving, \(\mathcal{X} \), a \((\{ h \geq a \}, \cup, \cap) \) paving, \(A5 \) follows in both cases from the identity

\[
\{ h \leq \beta \} \cap \bigcap_{i} \{ h_i \geq a_i \} = \bigcap_{i} \{ h_i \geq a_i \} \setminus \{ h \geq \beta \} = a_i.
\]

That (10) is true follows from the fact that \(h \cap \mathcal{N} \) is a \(\mathcal{N} \)-measurable set. To prove the exhaustion property, we first choose an \(n \) such that \(T(h \cap \mathcal{N} \cap \mathcal{K}) < \epsilon \), and then put \(K = \{ h \geq n^{-1} \} \). If \(h' \leq h \) and \(h' = 0 \), then \(h' \leq h \cap \mathcal{K} \), thus \(T\mathcal{K} < \epsilon \).

New, if \(K \in \mathcal{R} \), then by Stone's condition we can find an \(h \) for which \(h \leq 1 \) and \(K = h'(1 - n^{-1}) \) decreases to \(1 \mathcal{K} \).

Thus for every \(K \in \mathcal{K} \), we can find \(h \in \mathcal{L}(h' \cap \mathcal{K}) \), and so the \(\sigma \)-smoothness (r-smoothness) at \(\emptyset \) w.r.t. \(\mathcal{X} \) follows from the \(\sigma \)-smoothness (r-smoothness) of \(T \) at \(\emptyset \).

Lastly, to verify \(A6 \), suppose \(K' \cap \mathcal{K}' = \emptyset \). For the case \(K' \cap \mathcal{K}' \in \mathcal{X} \), choose \(h' \in \mathcal{L}(h' \cap \mathcal{K}) \). As \(h' \leq h' \cap \mathcal{K}' \), we can find an \(n \) such that \(T(h' \cap \mathcal{K}') < \epsilon \), the \(\mathcal{X} \) case is handled analogously.

Remark. It is easy to show that if \(K \in \mathcal{R} \) then every totally finite \(\sigma \)-additive measure on \(\mathcal{B}(\mathcal{X}) \) is automatically \(\mathcal{X} \)-regular. This is not true in general.

Corollary (Daniell's extension theorem). Let \(\mathcal{R} \) be a \((\{ f \cup \cap \}, \{ \lambda \}) \) convex cone of non-negative functions satisfying Stone's condition, on a set \(\mathcal{K} \). If \(T \) is a positive linear functional on \(\mathcal{R} \), which is \(\sigma \)-smooth at \(\emptyset \), then \(T \) has a representation as an integral w.r.t. a \(\sigma \)-additive measure.

Of course, this representation immediately leads to the usual extension of \(T \).

Recall that the paving \(\mathcal{X} \) is said to be semi-compact (compact) if every countable (arbitrary) family of \(\mathcal{X} \) sets with empty intersection contains a finite family with empty intersection. For such pavings the \(\sigma \)-smoothness \((r \)-smoothness \) of \(T \) at \(\emptyset \) w.r.t. \(\mathcal{X} \) appearing in Theorem 3 is trivially satisfied.

Example 3 (Radon measures). We consider the classical setting of a positive linear functional defined on the cone of non-negative continuous functions with compact support on a locally compact Hausdorff space \(\mathcal{K} \). \(\mathcal{X} \) is taken as the paving of compact sets.

\(A1 \) and \(A5 \) are easily verified. The exhaustion property as well as (10) are trivial. \(\mathcal{X} \) is of course the archetypical compact paving.

Theorem 3 then gives us a representation of \(T \) by a \(\sigma \)-additive (in fact \(\sigma \)-additive) borel measure \(\mu \), regular w.r.t. the compact sets. This representation is not the one always given.

Let \(\mathcal{M} \) denote the set of \(\sigma \)-additive measures defined on the borel \(\sigma \)-field \(\mathcal{B}(\mathcal{X}) \) for which \(\mu K < \infty \) for all \(K \in \mathcal{X} \), and for which

\[
\mu K = \inf \{ \mu G : K \subseteq G, K \text{ open} \}; \quad K \in \mathcal{X}.
\]

Let \(\mathcal{G} \) be the set of \(\mu \in \mathcal{M} \) for which

\[
\mu A = \sup \{ \mu K : K \subseteq A, K \in \mathcal{X} \}; \quad A \in \mathcal{B}(\mathcal{X}).
\]

and let \(\mathcal{M}_1 \) be the set of \(\mu \in \mathcal{M} \) for which

\[
\mu A = \inf \{ \mu G : G \supseteq A, G \text{ open} \}; \quad A \in \mathcal{B}(\mathcal{X}).
\]

Then our method gives the unique representing measure in \(\mathcal{M}_1 \), whereas an approach based on Bourbaki [3] will give the unique repre-
senting measure in M_1. This shows indirectly that there must be a 1-1 correspondence between M_1 and M_2. More directly, we can proceed as follows.

Associate with every $\mu \in M_1$, μ_1 and μ_2 defined by

$$
\mu_1 A = \inf \{\mu G; G \supset A, G \text{ open} \}, \quad \mu_2 A = \inf \{\mu G; G \supset A, G \text{ open} \}.
$$

Then $\mu_1 \in M_1$, $\mu_2 \in M_2$ and $\mu_1 \leq \mu \leq \mu_2$. Furthermore, μ_1 and μ_2 agree on open sets, on compact sets and, more generally, on all $A \in \mathcal{F}(\mathcal{X})$ with $\mu_2 A < \infty$. Hence

$$
\int h \circ \mu_1 d\mu_1 = \int h \circ \mu_2 d\mu_2 \quad \text{for all } h \in \mathcal{F}.
$$

Thus μ_1 is the smallest member of M representing T and μ_2 the largest.

The classical definition of Radon measures as linear functionals has been further developed by LoÈm [7] and Varadarajan [12]. We now show how their results can also be obtained by a simple application of our results.

Example 4 (cf. Example 1). Let T be a positive linear functional on the cone \mathcal{F} of bounded continuous non-negative functions on an arbitrary topological space X. We consider the following sets of totally finite measures defined on the Baire σ-field, i.e., the σ-field generated by the zero sets.

M_0 is the set of countably additive Baire measures (notice that these are automatically regular w.r.t. the zero sets),

M_1 is the set of $\mu \in M_0$ which are also τ-additive, i.e., if Z, Z_1, Z_2 are zero sets, then $\mu(Z_1 \cup Z_2) = \mu(Z_1) + \mu(Z_2)$;

M_2 is the set of $\mu \in M_1$ for which, given $\varepsilon > 0$, there is a compact set C such that $\mu(C) < \varepsilon$;

M_3 is the set of $\mu \in M_2$ for which there is a compact set C such that $\mu(C) = 0$.

Notice that

$$
M_3 \subseteq M_2 \subseteq M_1 \subseteq M_0.
$$

We prove that these measures correspond exactly with the linear functionals having certain smoothness properties.

(i) T is represented by an M_0 measure iff T is τ-smooth at 0,

(ii) T is represented by an M_1 measure iff T is τ-smooth at 0,

(iii) T is represented by an M_2 measure iff $T_{h_0} \to 0$ for every net (h_0) tending uniformly to 0 on compacta, with $h_0 \leq 1$;

(iv) T is represented by an M_3 measure iff $T_{h_0} \to 0$ for every net (h_0) tending uniformly to 0 on compacta.

Necessity is easy to establish in each case.

(i) follows immediately from Theorem 4 by noticing that the paving \mathcal{X}_e in that theorem is precisely the paving of zero sets.

Applying Theorem 4 to the τ-smooth functional in (ii) leads to a representation by a \mathcal{X}_e-regular τ-additive measure on $\mathcal{B}(\mathcal{X}_e)$. The restriction of this to the Baire σ-field is the required measure. Notice that when X is completely regular, \mathcal{X}_e is just the paving of all closed subsets. In this case then, Theorem 4 gives a representation by a σ-additive μ defined on the Borel σ-field, regular w.r.t. the closed sets and having the τ-smoothness property:

$$
\mu F = \mu F^e \quad \text{for every family } (F_e) \text{ of closed sets filtering down to } F.
$$

To prove sufficiency in (iii), let μ be the representing measure given by (i). Assume that there is some $\varepsilon > 0$ such that, for every compact set C, there is a zero set Z_0 contained in $C \subseteq \mathcal{C}$ for which $\mu(Z_0) \geq \varepsilon$. At any continuous function achieves its maximum on a compact set, it follows that we can find continuous functions h_0 with $h_0 \leq 1$ and taking the value 1 on Z_0, 0 on C. The net (h_0) tends uniformly to 0 on compacta, but

$$
T(h_0) = \mu(h_0) \geq \mu(Z_0) \geq \varepsilon,
$$

which contradicts the assumed smoothness.

A similar construction can be used to prove the sufficiency of (iv). For, if there are zero sets $Z_0 \subseteq \mathcal{C}$ for which $\mu(Z_0) > 0$ then by taking suitable multiples of the above h_0's we obtain a net (h_0) tending uniformly to 0 on compacta (but not necessarily uniformly bounded) for which $T(h_0) \to 0$.

The Baire representations in (iii) and (iv) above can be strengthened to Borel representations by merely adding the weak separation property that X be completely Hausdorff.

Example 5 (cf. Fromm [4], Garling and Haydon [5]). Let T be a positive linear functional on the cone \mathcal{F} of bounded continuous non-negative functions on a completely Hausdorff topological space X. Take \mathcal{F} to be the paving of compact sets.

Consider the set M_0 of all totally finite \mathcal{X}-regular measures defined on the Borel σ-field and the set M_{0e} of all $\mu \in M_0$ with $\mu(C) = 0$ for some $C \in \mathcal{X}$. We show that

(i) T is represented by an M_0 measure iff $T_{h_0} \to 0$ for every net (h_0) tending uniformly to 0 on compacta, with $h_0 \leq 1$;

(ii) T is represented by an M_0 measure iff $T_{h_0} \to 0$ for every net (h_0) tending uniformly to 0 on compacta.
Again, necessity is easy to prove. To prove sufficiency we use Theorem 3. All the conditions of this theorem are trivially true, except for the exhaustion property. So consider any \(h \), which we may without loss of generality take to be \(h_0 \). If, for every \(K \), we could find an \(h \) which took the value 0 on \(K \), was \(\leq h_0 \), and satisfied \(T(h_0) > \epsilon \), then the resulting net \((h_0) \) would tend uniformly to 0 on compacts with \(h_0 < 1 \), but have \(T(h_0) = 0 \).

The rest of the proof is analogous to that in Example 4.

It is sometimes easier to verify the exhaustion property directly rather than the equivalent smoothness conditions. In case (i) this amounts to verifying that to each \(\epsilon > 0 \) there exists \(K \) such that \(T(h) \leq \epsilon \) for all \(h \leq 1 \) vanishing on \(K \); whereas in case (ii) we need a \(K \) with \(T(h) = 0 \) for every \(h \) vanishing on \(K \).

The functions in \(\mathcal{F} \) have always been bounded in the examples considered so far. Theorem 3 is also able to handle unbounded functions, though \(h_0 \) as is shown by our next example. This also illustrates the importance of condition (10) in that theorem.

Example 6 (Hewitt [6]). Let \(T \) be a positive linear functional on the cone \(\mathcal{F} \) of all non-negative continuous real functions (not necessarily bounded) on an arbitrary topological space \(X \), and let \(\mathcal{F} \) denote the paving of zero sets. We show that \(T \) has a representation by a \(\mathcal{F} \)-regular \(\sigma \)-additive Baire measure \(\mu \) having the additional property: for every \(h \in \mathcal{F} \) there is a real number \(N \) such that \(\mu(h > N) = 0 \). This is achieved by an application of Theorem 3.

The only conditions of that theorem which are not immediately evident are (10) and the \(\sigma \)-smoothness of \(T \) at 0 w.r.t. \(\mathcal{F} \). To verify (10), consider any \(h \in \mathcal{F} \) and define the function \(g = \sum_{n} \alpha_n(h \wedge n) \), where \(\alpha_n \) is an sequence of non-negative real numbers. For now, consider \(x \in X \), we can find an \(N \) such that \(h(x) < N \). On the neighbourhood \((h < N) \) of \(x \), \(g = \sum_{n} \alpha_n(h \wedge n) \) which is continuous. Thus \(g \in \mathcal{F} \). It follows therefore that

\[
\alpha > Tg \geq \sum_{n} \alpha_n T(h \wedge n).
\]

Choosing \(\alpha_n = T(h \wedge n)^{-1} \) if \(T(h \wedge n) \neq 0 \), and 0 otherwise, we see that \(T(h \wedge n) \neq 0 \) only finitely many \(n \). Thus, for some \(\alpha_n \), \(Th = T(h \wedge n) \cdot T(h \wedge n) = T(h \wedge n) \), and so (10) is a fortiori true.

For the \(\sigma \)-smoothness w.r.t. \(\mathcal{F} \), consider any sequence \(K_n \in \mathcal{F} \). By definition of \(\mathcal{F} \), we can find \(h_b \) such that \(h_b \leq 1 \) and \(K_n = h_b^m \). Clearly, we may assume \(h_b = 1 \). Consider a function \(f = \sum_{n} \alpha_n(h \wedge n) \). Given \(\pi \in X \), there is an \(N \) such that \(\pi \in K_n \). Thus there is a \(\tau \) for which \(h_b(\tau) < \tau < 1 \). Now on the neighbourhood \((h_b < \tau) \) of \(\pi \), the series for \(f \) is uniformly convergent, by comparison with the series \(\sum \alpha_n \). It follows that

\[
f \in \mathcal{F} \quad \text{and hence } \alpha > Tf \geq \sum_{n} T(h \wedge n).
\]

Noticing that \(K_n = 1 \), we obtain the required \(\sigma \)-smoothness. Thus Theorem 3 gives the required \(\mathcal{F} \)-regular \(\sigma \)-additive representing measure \(\mu \). The essential boundedness of each \(\mathcal{F} \) function follows easily from

\[
\int \mathcal{F} (h \wedge N) \geq \int \mathcal{F} (h \wedge N) d\mu
\]

and the countable additivity of \(\mu \).

Even though we feel that Theorem 3 is in a satisfactory form, one may ask if, in general, condition c1 that \(T \) be \(\sigma \)-smooth at 0 w.r.t. \(\mathcal{F} \) may be replaced by condition c2 that \(T \) be \(\sigma \)-smooth at 0. As a consequence of Theorem 3, c1 together with the exhaustion property (and (10)) does imply c2. That c1 alone does not imply c2 is obvious (construct an example with \(\mathcal{F} = \emptyset \)). That c2 even in the presence of the exhaustion property does not imply c1 will be shown in Section 4. However, there is one important case in which this implication is true:

Lemma 1 (cf. Example 2). Let \(X \) be normal, \(\mathcal{F} \) the bounded non-negative continuous functions and \(T \) a positive linear functional on \(\mathcal{F} \). Take \(\mathcal{F} \) as the paving of closed subsets of \(X \). From Theorem 3 we know that \(\sigma \)-smoothness implies \(\sigma \)-additivity. Thus, \(\mathcal{F} \) is a necessary and sufficient condition for \(T \) to be \(\sigma \)-additive on \(\mathcal{F} \).

Thus, a necessary condition for this representation is that \(T \) be \(\sigma \)-additive at 0. As observed by Mafft [8], this condition is also sufficient if \(X \) is countably paracompact. This follows from the above since countable paracompactness is equivalent to (13). It is still an open question whether \(T \) is \(\sigma \)-smooth at 0 is sufficient in any normal space (notice that there are normal spaces which are not paracompact as shown by Rudin [10]).

The corresponding situation for \(\mathcal{F} \)-regular \(r \)-additive representations (even for completely regular spaces) is far simpler, see Example 4.

Example 4 (cf. Example 2). Let \(X \) be normal, \(\mathcal{F} \) the bounded non-negative continuous functions and \(T \) a positive linear functional on \(\mathcal{F} \). Take \(\mathcal{F} \) as the paving of closed subsets of \(X \). From Theorem 3 we know that \(\sigma \)-smoothness implies \(\sigma \)-additivity. Thus, \(\mathcal{F} \) is a necessary and sufficient condition for \(T \) to be \(\sigma \)-additive on \(\mathcal{F} \).

Thus, a necessary condition for this representation is that \(T \) be \(\sigma \)-additive at 0. As observed by Mafft [8], this condition is also sufficient if \(X \) is countably paracompact. This follows from the above since countable paracompactness is equivalent to (13). It is still an open question whether \(T \) is \(\sigma \)-smooth at 0 is sufficient in any normal space (notice that there are normal spaces which are not paracompact as shown by Rudin [10]).

The corresponding situation for \(\mathcal{F} \)-regular \(r \)-additive representations (even for completely regular spaces) is far simpler, see Example 4.
If μ is σ-smooth at \emptyset w.r.t. \mathcal{X}, then μ has an extension to a \mathcal{X}_σ-regular σ-additive measure.

If μ is τ-smooth at \emptyset w.r.t. \mathcal{X}, then μ has an extension to a \mathcal{X}_τ-regular τ-additive measure.

In both cases the extension is unique and determined by

$$\mu K = \inf \{ \mu K' : K' \supseteq K, K' \in \mathcal{X} \}$$

for every $K \in \mathcal{X}$.

Using Theorem B instead of Theorem A in the proof of Theorem 3, it is easy to see that the sufficiency part of Theorem 3 is true without the condition that \mathcal{X} be closed under $(\cap \emptyset)$, where \mathcal{X}-regularity is replaced by \mathcal{X}_σ-regularity.

The following analogue of Theorem 3 is proved by a easy adaptation of the relevant parts of the proof of Theorem 3, this time appealing to Theorem B rather than to Theorem A.

Theorem 5. Assume that A_1, A_2, A_4, A_5, and A_6 hold. If T is σ-smooth at \emptyset w.r.t. \mathcal{X}, then there exists a largest \mathcal{X}_σ-regular σ-additive measure dominated by T, and if T is τ-smooth at \emptyset w.r.t. \mathcal{X}, then there exists a largest \mathcal{X}_τ-regular τ-additive measure dominated by T.

On the surface this result looks satisfactory, but in fact, as examples below indicate, it is not. In particular, it is not possible to obtain necessary and sufficient conditions for existence of σ- or τ-additive representing measures from Theorem 5 in case \mathcal{X} is not closed under $(\emptyset \vee \emptyset)$. Moreover, if \mathcal{X} is not closed under $(\emptyset \vee \emptyset)$, then \mathcal{X} is not closed under $(\emptyset \vee \emptyset)$.

Example 8. Let $X = [0, 1]$, ω be the first infinite ordinal, \emptyset be the class of non-negative functions for which $h(\omega) = h(\omega)$ eventually, and T the function $T_1 = h(\omega)$. Take \mathcal{X} to consist of sets with finite complement and of finite sets not containing ω. Then \mathcal{X} is smooth (even τ-smooth) at 0, but T is not σ-smooth at \emptyset w.r.t. \mathcal{X} (consider $K_0 = [0, 0]$.)

$\mathcal{X}(\mathcal{X})$ consists of all finite sets and of all sets whose complements are finite. By Theorem 1, or directly, we find that the largest \mathcal{X}_σ-regular finitely additive measure dominated by T is given by

$$\mu A = \begin{cases} 0 & A \text{ finite}, \\ 1 & \mathcal{A} \text{ finite}. \end{cases}$$

Furthermore, we see, in agreement with Theorem 2, that μ is a representation of T. μ has no countably additive extension.

Since, for any $A, A \subseteq [0, 0]$, we find that $\mathcal{X}_\sigma = 2^\mathcal{X}$. Thus \mathcal{X}_σ-regular σ-additive measure is the same as a countably additive measure on $2^\mathcal{X}$. It is easy to see directly that ε_0 (a unit mass at 0) is the largest \mathcal{X}_σ-regular σ-additive measure dominated by T. In fact, ε_0 is a representation of T.

Note that ε_0 is \mathcal{X}_σ-regular, but its restriction to $\mathcal{X}(\mathcal{X})$ is not \mathcal{X}-regular. This shows why the $(\emptyset \vee \emptyset)$-closure of \mathcal{X} was needed in the proof of necessity in Theorem 3.

Example 9. Let $X = [0, 1]$, \emptyset be the non-negative constant functions, and $T\emptyset = h(\emptyset)$ for $h \in \emptyset$. Take \mathcal{X} to consist of \emptyset and all sets of the form $[a, b]$. Again, A_1-A_6 hold. Note that $\mathcal{X}_\sigma = \mathcal{X}$. It is easy to see that there exists a \mathcal{X}_σ-regular finitely additive measure representing T, and that the 0-measure is the largest \mathcal{X}_σ-regular σ-additive measure dominated by T. T is not σ-smooth at \emptyset w.r.t. \mathcal{X}.

Example 10. Let $X = [0, 1]$, where \emptyset is the first uncountable ordinal, and \emptyset be the non-negative constant functions. Take $T\emptyset = h(\emptyset)$ for $h \in \emptyset$ and \mathcal{X} to consist of \emptyset and all sets of the form $[a, 1]$. Note that $\mathcal{X} = \mathcal{X}_\sigma = \mathcal{X}$, T is σ-smooth at \emptyset w.r.t. \mathcal{X}, but T is not τ-smooth at \emptyset w.r.t. \mathcal{X}. The reader can easily verify that there exists a \mathcal{X}_τ-regular finitely additive measure as well as a \mathcal{X}_τ-regular τ-additive measure representing T, and that the 0-measure is the largest \mathcal{X}_τ-regular τ-additive measure dominated by T. It may also be noted that the paving \mathcal{X} is semiconstructive but not compact.

The examples show that existence of a largest σ-additive or τ-additive measure dominated by T does not imply the smoothness conditions of Theorem 5. Also, it does not help if we in fact have a representation (Example 8) or if $\mathcal{X} = \mathcal{X}_\sigma = \mathcal{X}_\tau$ (Examples 8, 10). If we have a representation and also $\mathcal{X} = \mathcal{X}_\sigma = \mathcal{X}_\tau$, the situation is far simpler as shown by Theorem 3.

Lastly, we state a result more general than Theorem 5. It explains the behaviour in Example 8 but is not general enough for Examples 8, 10.

Theorem 6. Assume that A_1, A_2, A_4, A_5, and A_6 hold. If the set function defined on \mathcal{X} by

$$\mu A = \begin{cases} 0 & A \text{ finite}, \\ 1 & \mathcal{A} \text{ finite}. \end{cases}$$

is σ-smooth at \emptyset w.r.t. \mathcal{X}, then there exists a largest \mathcal{X}_σ-regular σ-additive measure dominated by T. \mathcal{X}_σ-regular σ-additive measure dominated by T.

The proof consists in a generalisation of the proof of Theorem 1, which we shall not carry out.

References

Studia Mathematica LVII
METHODS OF HILBERT SPACES

MONOGRAFIE MATEMATYCZNE, Vol. 45

552 pp., cloth bound, reprint 1972

Although Hilbert spaces are the oldest known infinite-dimensional topological vector spaces, unexpected important new applications and methods arise steadily. The present monograph is the first comprehensive description and treatment of the theory of Hilbert spaces, a theory which gives a new outlook upon modern mathematics. The book requires hardly any previous study on the part of the reader (even the elementary facts of topology and the theory of the integral have been listed in the Appendix) and leads to the most beautiful and most profound results of modern analysis and geometry.

The monograph is sure to be of interest not only to mathematicians but also to physicists (the chapter on the decomposition into direct integrals, strict justification of F. A. Berezin's anticipation, representations of Lie groups, the method of Fourier, the ergodic theory) and engineers (the chapters on the theory of vibrations, on expansions in eigenfunctions, on boundary problems, on variational and approximation methods).

Władysław Narkiewicz

ELEMENTARY AND ANALITIC THEORY OF ALGEBRAIC NUMBERS

MONOGRAFIE MATEMATYCZNE, Vol. 57

650 pp., cloth bound

The book gives a modern survey of the theory of algebraic numbers, the class-field theory is not included. It consists of the algebraic part, in which the classical ideal-theoretical approach is used, and of the analytical part, using the local approach. The book includes the classical results on: the discriminant, different and class-number theory, the theory of Dedekind's zeta-function and Hecke's L-function.

Each chapter is followed by a historical note and by a survey of the relevant literature.

The value of the monograph may be expected to have considerable permanence both on account of its contents and on account of the bibliography, containing about 2000 items which the author tried to make as complete as possible. Thanks to that the book will be of use both to specialists in this theory and to algebraists in general.

Contents: I. Dedekind rings and valuations; II. Algebraic numbers and integrals; III. Units and ideal classes; IV. Relative extensions; V. p-adic fields; VI. Applications of the theory of p-adic fields to algebraic number fields; VII. Analytical methods; VIII. The class-number; IX. Further applications of analytical methods; Appendices: I. Locally compact Abelian groups; II. Dirichlet series. Unsolved problems. Bibliography. List of important symbols. Author index. Subject index.

All volumes of MONOGRAFIE MATEMATYCZNE may be ordered at your bookseller or at ARS POLONA, Krakowskie Przedmiescie 7, 00-066 Warszawa, Poland.