Numerical range preserving operators on a Banach algebra

by

V. J. PLELLERINI (Cincinnati, Ohio)

Abstract. Let A be a unital Banach algebra and let T_1 and T_2 be bounded linear operators on A. We find necessary and sufficient conditions for the numerical range of T_1a to be contained in the numerical range of T_2a for each $a \in A$.

Let A be a complex Banach algebra with unit e. If M is a linear subspace of A containing e and M^* is its dual space, we let $D(M, e) = \{\varphi \in M^*: 1 = \varphi(e) = ||\varphi||\}$. The set $D(A, e)$ is called the state space of A. The numerical range of an element $a \in A$ is defined by

$$V(A, e) = \{\varphi(a): \varphi \in D(A, e)\}.$$

The basic facts about the numerical range may be found in [1] and [8].

In this paper we determine necessary and sufficient conditions for a pair of operators T_1 and T_2 on A to satisfy

$$V(A, T_1a) \subseteq V(A, T_2a)$$

for each $a \in A$ (see Theorem 2.2).

In the case where $A = C(X)$ for some compact space X we have

$$V(A, f) = \text{co } f(X)$$

for each $f \in C(X)$ [8]. Here co means closed convex hull. Theorem 2.3 then states that $T_1f(X) \subseteq \text{co } T_2f(X)$ for each $f \in C(X)$ if and only if $T_1 = ST_2$ where S is a positive operator on $C(X)$ (by positive we mean $S(1) = 1$ and $Sf \geq 0$ whenever $f \geq 0$). In the case where T_1 is the identity operator the theorem was originally proven by R. R. Phelps [7].

We begin in Section 1 with some remarks on positive operators. Section 2 contains the main result. Finally, in Section 3, we present an application of our results.

Before proceeding with the main body of the paper the author would like to thank Professor J. Bostock for suggesting the problem and the referee for his helpful suggestions which simplified the proofs of several of the results in this paper.

1. In this section we will consider a class of operators whose adjoints preserve states. More precisely,
Definition 1.1. Let M and N be subspaces of Banach algebras A and A with units e and \hat{e}. A bounded linear operator $S : M \to N$ will be called state preserving if $S^* D(N, e) \subset D(M, e)$.

We note two properties of state preserving operators.

Theorem 1.2. Let $S : M \to N$ be a state preserving operator where M and N are as in 1.1. Then

(i) $S e = \hat{e}$.

(ii) If $a \in M$ and $V(a, e) \subset R^+$, then $V(Sa, e) \subset R^+$.

Proof. If $\phi \in D(N, \hat{e})$, then $\phi(Sa) = S^* \phi e = \phi e = 1$. Hence $V(a, e) \subset \hat{e}$ by [1], page 34. Thus $S e = \hat{e}$ by Lemma 1.1.1.1.

Since $V(a, Sa) \subset R^+$ and $\phi \in D(N, e)$, then $\phi(Sa) = S^* \phi e \subset R^+$. Thus $V(\hat{e}, Sa) \subset R^+$.

We remark that (i) and (ii) do not imply that S preserves states.

To see this we expand on the construction of Pheaps [6]. Let $H(A) = \{a \in A : V(a, e) \subset R\}$ and $J(A) = H(A) + iH(A)$. $J(A)$ is a closed subspace of A. The Vidar-Palmer Theorem [1] implies $J = J(A)$ if and only if A is isometrically isomorphic to a C* algebra. Now let A_0 be any Banach algebra for which $J(A_0) \neq A_0$. Pick an element $a_0 \in A_0 \setminus J(A_0)$ of norm 1 and a closed subspace N of A_0 such that $J(A_0) \subset N \subset \overline{N} = N \subset \overline{N}$. Let a_0 be the one-dimensional subspace spanned by a_0. Now select $\phi \in D(A_0, e)$ such that $\phi(a_0) \neq 0$ and $\delta > 1$ such that $\delta |\phi(a_0)| > 1$. Define an operator $T : A_0 \to A_0$ by $(a + i \lambda a_0) \mapsto a + i \lambda a_0$. Then T is a bounded linear operator satisfying (i) and (ii) but $T \phi \neq \phi(D, e)$.

We close this section by remarking that if A is a C* algebra the usual notion of positivity for an element $a \in A$ is equivalent to $V(a, e) \subset R^+$ [1]. An operator satisfying (i) and (ii) of 1.2 is called a normalized positive operator. It is easy to show that for a C* algebra an operator T on A is state preserving if and only if it is a normalized positive operator.

2. We begin by quoting a result of R. T. Moore [4] and A. M. Sinclair [7] which we will need in the sequel. (See also [2], §3.1).

Lemma 2.1. Let A be a unital Banach algebra. If $L \in A^*$, there exist $a_1, \ldots, a_n \in R^+$ and $L_1, \ldots, L_n \in D(A, e)$ such that

\[
L = (a_1 L_1 - a_2 L_2) + i (a_3 L_3 - a_4 L_4)
\]

and

\[
a_1 + a_2 + a_3 + a_4 \leq \|L\| \leq \|L\| + \|L_4\|.
\]

where $\|L\| = \sup(|\lambda| : \lambda \in \sigma(A))$.

Theorem 2.2. Let A be a unital Banach algebra and let T_1 and T_2 be bounded linear operators on A. Then the following are equivalent:

(i) $V(\hat{e}, T_1 a) \subset V(\hat{e}, T_2 a)$ for each $a \in A$.

(ii) $T_1^* D(A, e) \subset T_2^* D(A, e)$.

If $\phi \in E(T_2)$ then (i) and (ii) are equivalent to

(iii) $T_1 = \lambda T_2$, where $\lambda
\geq \mathcal{E}(T_2) \to A$ is state preserving.

Proof. (i) \Rightarrow (ii). Suppose that (ii) does not hold. Then there exists a state $\phi \in D(T_2^*, \hat{e})$ such that $T_1^* \phi \neq T_2^* \phi$. Since T_2^* is continuous when A^* has the weak* topology ([3], p. 478), $T_2^* D(A, e)$ is weak* compact and convex. By [3], p. 417, and [3], p. 421, there exists $a \in A$ and constants e and $\epsilon > 0$, such that

\[
\mathcal{E}(T_1^* \phi) \leq e - \epsilon < e \leq \mathcal{E}(T_2^* \phi).
\]

This implies $\mathcal{E}(T_1 \phi) < e \leq \mathcal{E}(T_2 \phi)$ and thus contradicts (i).

(ii) \Rightarrow (i). The proof is immediate from the definitions involved.

(iii) \Rightarrow (ii). Let T_1 be T_2 considered as a map from $\mathcal{E}(T_2) \to A$. Thus $T_2^* : A^* \to A^*$. By the Hahn–Banach theorem the restriction mapping $\phi \mapsto \phi|A$ maps $D(A, e)$ onto $D(A_1, e)$. We also have $T_2^* \phi|A = T_2^* \phi$. Thus we have

\[
\]

Since by assumption, $V^* D(A, e) \subset D(A_1, e)$, we have

\[
\]

(iii) \Rightarrow (i). By (2) and (ii) we conclude that $T_1^* D(A, e) \subset T_2^* D(A, e)$.

Hence by Lemma 2.3, $T_1^* A^* \subset T_2^* A^*$. Thus, for each $a \in A^*$, there exists a unique $\phi^L \in A^*$ such that $T_1^* \phi^L = T_2^* \phi^L$ (the uniqueness of ϕ^L follows from the uniqueness of $F(L)$ one can easily show that $F^L : A^* \to A^*$ is a linear map. Since $T_1^* D(A, e) \subset T_2^* D(A, e)$, we see that $F D(A, e) \subset D(A_1, e)$.

Thus we have

\[
L = (a_1 L_1 - a_2 L_2) + i (a_3 L_3 - a_4 L_4)
\]

where $a_1, a_2, a_3, a_4 \in R^+$ and $L_1, L_2, L_3, L_4 \in D(A, e)$. Thus, again by 2.1 and [3], page 34, we have

\[
\|F(L)\| \leq a_1 \leq a_2 + a_3 + a_4 \leq V^2 \sup \{\|L(a)\| : a \in A, \|a\| \leq 1\}
\]

\[
\leq \|L_4\|.
\]

If $\phi \in A^*$, then $|\phi(T_2 a)| \leq \|F(\phi)\| \|T_2 a\|$. Hence

\[
\|T_2 a\| = \sup \{\|\phi(T_2 a)\| : \phi \in A^*, \|\phi\| = 1\}
\]

\[
\leq \sup \{\|F(\phi)\| : \|T_2 a\| : \|\phi\| = 1\}
\]

\[
\leq \|F\| \|T_2 a\|.
\]
Define $V: R(T_2) \to A$ by $VT_2a = T_2a$. By (3), V is well defined and bounded. Hence it may be extended to all of A_4. If we also call the extension V, then we have $V^* T_5 = T_5 V = T_1$. Hence $T_1^* V^* = T_1^* T_2^* F$ and we conclude, since $T_2^* F = F$, that $V^* = F$. Therefore, $VS(D(A_2) = D(A_2) e$.

THEOREM 2.3. Let A be an unital Banach algebra and T_1 and T_2 bounded linear operators on A. Let $a \in A$, where $A_4 = R(T_2)$, $i = 1, 2$. Then the following are equivalent:

(i) $V(A, T_i a) = V(A, T_2 a)$, $a \in A$.

(ii) $T_i = VT_i$ where $V: A_4 \to A_4$ is an invertible operator such that V and V^{-1} are state preserving.

Proof. (ii) ⇒ (i). By Theorem 2.2 we have $V(A_i, T_i a) = V(A_2, T_2 a)$ for each $a \in A$. But, by (1), p. 16, we have that $V(A_i, b) = V(A, b)$ for all a, b, $i = 1, 2$. Hence (ii) follows.

(iii) ⇒ (ii). Theorem 2.2 implies that $T_1 = VT_2$ and $T_2 = VT_1$ where $V: A_4 \to A$ and $V: A_4 \to A$ are state preserving. Let V be V as a map from $A_4 \to A$ and let W be V as a map from $A_4 \to A$. Then V and W are state preserving and $V = W^{-1}$.

3. In this section we present an application of Theorem 2.2. We recall that an invertible linear transformation J on a C^*-algebra A is a C^*-isomorphism (also called a Jordan isomorphism) if $J(A^*) = J(A^*)$ and $J(a^*) = J(a)^*$ for each self-adjoint element a and each positive integer n. These maps were first defined and studied by Kadison. An elegant statement of Kadison's results that will be used in this section can be found in [9], Theorem 1.1.

THEOREM 3.1. Let A be a C^*-algebra with identity e and T_1 and T_2 bounded linear operators on A. Suppose that T_1 and T_2 have dense ranges. Then, $V(A, T_1 a) = V(A, T_2 a)$ for each $a \in A$ if and only if $T_1 = J T_2$ where J is a C^*-isomorphism.

Proof. Suppose $T_1 = J T_2$ Then, by [9], Theorem 1.1, we have that J is bipositive (i.e., $V(A, J e) \subseteq R^+$ if and only if $V(A, e) \subseteq R^+$) and $J e = e$. For a C^*-algebra A this implies J and J^{-1} preserve states. Hence $V(A, T_1 a) = V(A, J T_2 a) = V(A, T_2 a)$ for each $a \in A$ by Theorem 2.3. Conversely, suppose $V(A, T_1 a) = V(A, T_2 a)$ for all $a \in A$. Then, by Theorem 2.3, $T_1 = J T_2$ where $J e = e$ and J and J^{-1} preserve states. Thus, by Theorem 2.3, $T_1 = J T_2$ where $J e = e$ and J and J^{-1} preserve states. Thus, by Theorem 1.1, J is bipositive. Thus, by [9], Theorem 1.1, J is a C^*-isomorphism.

References

