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Numerical range preserving operators on a Bamach algebra
by
V.J. PELLEGRINI (Cincinnati, Ohio)

Abstract. Lot 4 be a unital Banach algebra and let T and T, be bounded linear
operators on 4. We find necessary and sufficient conditions for the numerical range
of Tya to be contained in the numerical range of Tya for each ac 4.

Let 4 be a complex Banach algebra with unit e. If M is a linear sub-
space of A containing ¢ and M* iz its dual Space, we let D(M, ¢)
={pe M": 1 =g(e) = lip|}. The set D(4,e) is called the state space
of A. The numerical range of an element ae 4 is defined by :

V(4,a) = {p(a): pe D(4, e)}.

The basic facts about the numerical range may be found in [1] and [8].
In this paper we determine necessary and sufficient conditions for
a pair of operators T'; and T, on 4 to. satisty

(1) V4, Tia) = V(4,T,a)

for each ae A (see Theorem 2.2).

In the case where A = ((X) for some compact space X we have
V(4,f) = co f(X) for each fe((X) [8]. Here co means closed convex
hull. Theorem 2.2 then states (T,f)(X) < co (T,f)(X) for each fe C(X) -
if and only if Ty = 8T, where 8 is a positive operator on (/(X) (by positive
we mean S(1) =1 and 8f >0 whenever f> 0). In the case where T,
is the identity operator the theorem was originally proven by R. R.
Phelps [6].

We begin in Section 1 with some remarks on positive operators.
Section 2 contains the main result. Finally, in Section 3, we present an
application of our results.

Before proceeding with the main body of the paper the author would
like to thank Professor J. Bustos for suggesting the problem and the referee
for his helpful suggestions which simplified the proofs of several of the
results in this paper. '

L. In this section we will consider a class of operators whose adjoints
Ppreserve gtates. More precisely,
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DernrrioN 1.1. Let M and N be subspaces of Banach algebras 4
and A with units e and é. A bounded linear operator 8: M—N will be
called state preserving if S8*D(N,e) = D(M, e).

We note two properties of state preserving operators.

THEOREM 1.2. Let S: M—N be a state preserving operator where M
and N are as im 1.1. Then

(i) Re = e.

(i) If ae M and V(4,a) c B*, then V(4, Sa) = R". )

Proof. If we D(N, é), then (Se) = S*y(e) = 1. Hence V (A, S¢—é)
= {0} and thus Se =¢é by [1], page 34. ‘

I V(4,a) c BT and g@eD(N,é), then p(Sa)= 8p(a)e B*. Thus
V(d, 8a) = R*.

‘We remark that (i) and (ii) do not imply that 8 preserves states
To see this we expand on & construction of Phelps [6] Let H(A)
={aed: V(4,a) = R} and J(4A) = H(A)+iH(4). J(4) is a closed

- subspace of A. The Vidav—Palmer Theorem [1] implies 4 = J(4) if
and only if 4 is isometrically™ isomorphic to a C*-algebra. Now let 4,
be any Banach algebra for which J (4,) # 4,. Pick an clement e A,\J (4,)
of norm 1 and a closed subspace N of 4, such that J(4,) =« N, NN[X]
= {0} and 4, = N+ [X,] where 2,15 the one-dimensional subspace spanned.
by #,. Now select p,e D(4,, ¢) such that gq(x,) # 0 and 6 > 1 such that
0lpo(@o)| > 1. Define an operator T: Ay—A, by T(n--Azy) = n-- Ldw,.
Then T'is abounded linear operator satistying (i) and (i) but T#p, ¢ D (4, e,).

‘We close this section by remarking that if 4 is a O*-algebra the usual
notion of positivity for an element aec 4 is equivalent to V(4, ) = R*
[1]. An operator satistying (i) and (ii) of 1.2 is called a normalized positive
operator. It is easy to show that for a C*-algebra an operator 7' on A is
state preserving if and only if it is a normalized positive operator.

2. We begin by quoting a result of R. T. Moore [4] and A. M. Sinclair
[7] which we will need in the sequel. (See also [2], § 31.)

LemMA 2.1. Let A be a unital Banach algebra. If Le A*, there ewist
Oy, ..., que BT and Ly, ..., Lie D(4, ¢) such that '

L = (a;1n — ay Ly) ~ i (ayLg — 0y L)
and _
g+ a4 a5+ oy < V2sup {|L(a): ae A, v(a) = 1}
where v(a) = sup{|Al: e V(4, a)}.

TunoREM 2.2. Let A be a unital Banach algebra and let T, and T, be
bounded linear operators on A. Then the following are equivalent:

(1) V(4,Tya) = V(A, Tya) for each ac A.
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(i) T¥D(A, ¢) = TED(A, o).

If ee R(T,) then (i) and (i) are equivalent o

(iil) Ty = VT, where T: R(Ty)—~A is state preserving.

Prootf. (_i) = (ii). Suppose that (ii) does not hold. Then there exists
a state g, such that Tip,¢ T D(A, 6). Since I is continuous when A4*
has the weak* topology ([3], p. 478), Ty D(A, e) iy weak* compact and

convex. By [8], p. 417, and [3], p. 421, there exists ae 4 and constants
¢ and ¢, & > 0, such that

Red (I py) < o—s< o < ReaTyD(A, e).
Thig .imp]ies ®o(T1a)e V(4, Tya) and thus contradicts (i).
(if) = (i). The p~roof is immediate from the definitions involved.
(iij) = (ii). Let T, be T, considered as a map from A—+R(T,) = 4,.
Thus T3: A3 —4" By the Hahn-Banach theorem the restriction mapping

>[4, maps D(4,e) onto D(4,,e). We also have Ty, =Ty p.
Thus we have :

(2) T3D(4y 6) = TID(4, o).
Since by assumption, V*D(4,e) c D(4,,e¢), we have
TID(4,6) = TY V' D(4, 6) = T D(4y, 6) = TrD(4, o).
* (i) = (iii). By (2) and (i) we conclude that T} D(4,e) = i’;D(AZ, €).
Hence by Lemma 2.1, Tf4* ¢ Ty Ay. Thus, for each Le A there exists
a unique F(L)e A5 such that T} L = T} F(L) (the uniqueness of F(L)

follows from the fact that 1~’.,, has a dense range and thus f’;’ is 1-1). From
the uniqueness of (L) one can easily show that F: A*—A? is a linear

map. Since TD (4, e) = TFD(4,, €), we see that FD(4,e) = D(4,,e).
. We now show that 7 is bounded. By 2.1, we may write

L= (ayLy — 05 L) + 14 (a5 Ly — a5 Ly)

where ay,..., a,e Rt and L., ..
19 e 12

-y Lye D(A, ¢). Thus, again by 2.1 and
[1], page 34, wo have

P (L)) < oyt 0y ag |- ag < V2sup {|T(@)]: aed, v(a)< 1}
< V2elLll.
I ped®, then |p(Tia)| < [[F(p)l-|Tsall. FHence
(3) IT20l, = sup{lp(T1a)|: pe A", |pl| = 1}

< sup{|IF(p)|l" |1 Tal: pe A, (gl =1}
< |- 1 Tzal.
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Detfirie V: RB(T,)-A by VTla = Tya. By (3), V is well defined and b.o'unq-
ed. Hence it may be extended to all of 4,. If~we also call the extension V,
then we have VT, — VT, =T,. Hence T} V* =17 =T;F and we
conclude, since 7% is 1-1, that V* = F. Therefore, V*D(4, ¢) = D(Ay, ¢).

THEEOREM 2.3. Let A be a unital Banach a_l_geﬂa and T, and Ty bounded
linear operators on A. Let e A; where 4; = R(Ty), ¢ =1, 2. Then the fol-
lowing are equivalent:

(i) V(4,T,a) =V(4, Ta), ac 4.

(i) T, = VT, where V: A,—~A, is an invertible operator such thot
V and V™' are siate preserving.

Proof. (i) = (i)’ By Theorem 2.2 wehave V(4,, Tya) = V(dy, To0)
for each ae A. But, by [1], p. 16, we have that V(d;,d) = V{4, b)
for all be 4 (i = 1,2) Hence (ii)’ follows. . .

(iy = (ii)’. Theorem 2.2 implies that T, = VT, and T, x'NW.’[.’1
where V: A;—~A and W A,—+A are state preferving. Let ¥ Dbe V as
a map from 4,4, and let W be W as a'map from 4,4, V and W
are state preserving and V = W™

3. In this section we present an application of Theorem 2.2. 'We
recall that an invertible linear transformation J on a C*-algebra 4 is a O*
isomorphism (also called a Jordan isomorphism) it J(X*) =J(X)" and
J(a") = J(a)* for each self-adjoint element a and each positive integer u.
These maps were first defined and studied by Kadison. An elegant
statement of Kadison's results that will be used in this section can. be
found in [9], Theorem 1.1.

TaBOREM 3.1. Let A be o C*-algebra with identity ¢ and Ty and T,
bounded linear operators on A. Suppose that Ty and T, have dense ranges.
Then, V(4, Tia) = V(A4, Tya) for each ac A if and only if T, =JT,
where J is a O*-isomorphism. )

Proof. Suppose T; = JT,. Then, by [9], Theorem 1.1, we have
that J is bipositive (i.e. V (4, Ja) = BT if and only if V(4,a) = BY)
and Je = e. For a (*-algebra this implies J and J~ preserve states, Tence
V{4, T,a) = V{4, IT,a) = V(4,Tya) for each acA by Theorem 2.3.

Conversely, suppose V (4, T,a) = V(4, T,a) for all ae.d. Then,
by Theorem 2.3, Ty = JT, where J¢ = e and J and J™* preserve states.
Thus, by Theorem 1.1, J is bipositive. Thus, by [9], Theorem 1.1, J i
a (O*-isomorphism.
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