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On the moduli of comvexity and smoothness in Orlicz spaces

by
R.P. MALEEV and 8, L. TROYANSKI (Sofia)

Abstract. Estimates are given for the moduli of convexity and smoothness of
gome Orlicz spaces Lys(8, X, u).

1. Introduction. Let (8, X, 4) be a measure space. Necessary and
sufficient conditions for reflexivity of the Orlicz space L (S, Z, u) were
obtained by Luxemburg ([5], p. 60) under some restrictions for the measure
4. More precisely, he proved that if M(t) and M*(t) are complemeniary
Orlice functions then: : . :

W) If 0<u@)<oo (if 8={o, plow,) < ulo), then
llmm;f(,u(at+1 Ju(a)) > 0 is assumed), then Ly (S, =, u) is reflemive iff
M (t) amd M*(t) have the property A, at infinity.

(ii) If p(8) = co, and § comtains a set of infinite measure free of
atoms, then Ly (8, X, ) is reflevive iff M (1) and M™(8) have the property
4y, ot zero and at infinitﬁ/

(i) If u(8) = oo, 8 ={0.}acu; and 0<mi'u(ou) supﬂ( 0,) < 00,

then Ly (8, 2, p) is reflevive iff M (%) aml M*(t) hafue the p’r’opeﬁy 4, at
2ero.

Recently Akimovich [1] proved that if the measure u is the sawse
as in (i), (i), (iii), then the reflewive Orlice space Ly (S, Z, u) is isomorphic
o a uniformly convew amd wniformly smooth Orlice space Ly (S, 2, u).

For many results formulated in terms of moduli of convexity and
smoothness, it is essential that the Banach space is isomorphic, to a
uniformly convex (unitormly smooth) space whose modulus of convexity
(modulus of smoothness) can be estimated.

In Section 2 estimates are obtained for the moduli of convexity and
smoothness of an Orlicz space Ly(8, 2, u) (8,2, u) iz an arbitrary
measure space) isomorphic to the initial space L (S, Z‘, 4#) under the
assumption that the complementary Orlicz functions M (f) and M™(t)
have the property 4, at zero and infinity.

Let the measure x be the same as in (i), (ii), (iii) and let Ly (8, &, x)
ho reflexive. An Orlicz function N(f) equivalent to M(f) ab infinity, at
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zero and at infinity, at zero, respectively, is constructed and estimates for
the moduli of convexity and smoothness of the space Ly (8, X, u) iso-
morphic to Ly (8, X, u) are found in Section 3. Moreover, if (8, X, u)
= (R, ¥, 4) (Ais the Lebesgue measure) it can be proved using our methods
that these estimates are the Dest possible in the class of all Orliez spaces
Ly(8, Z, u) isomorphic to Lz (S, X, x) with N(i) equivalent to I (z)
at infinity, at zero and at infinity, at zero, re._spectively (*). We omiti here
the proof of this fact as the Editorial Board of Studia Mathematica has
kindly informed us that from a result of Figiel and Pisier [2] and some
more recently discovered properties of moduli of convexity and smoothuness
it follows that these estimates are the best possible in the class of all
Banach spaces isomorphic to Ly (S, X, p).

Notations. Let X be a Banach space. The modulus of convewity
of X is defined by .

oxle) =inf(1—3@+9)l; @,y X, ol = lyll =1, |w—yll > s,
e [0, 2].

X is called uniformly conwvem if dx(e) > 0 for every &> 0.
The - modulus of smoothness of X is defined by

ex(v) = $sup (llo+ oyl + o —wyll—2; @, ye X, o] = llyll =1), =>0.

X is called wniformly smooth if lim gy (v)/v == 0.

The function M (t) is called Orlice function if it is continuous, strictly
inecreasing, and convex in [0, co) and if M (0) = 0.

If M(#) is an Orlicz function, then the Orlicz function

M (1) = sup (wt—M(u); u 3> 0)

is called complementary to M (t).

The Orlicz function M (%) is said to have the property 4, at zero (at
infinity) if there exist two positive constants b and #, such that M(21)
< BM (1), te [0, t,] (e [t5, 00)). ‘ o

Two Orlicz functions M () and N (t) are said to be equivalent at zero
(at infingty) if there exist constants ¢, K, ¢ and & such that OM (ot) = N (t)
< KM (kt) in a neighbourhood of zero (of infinity).

To the Orliez function M and a measure space (S, X, u) can be associat-

ed the Orlicz space Ly (8, Z, u) of all real functions f(#), u-measurable
on § such that

[ M (F@)1 /) (@) < oo
8
(1) This result (for the Orlicz sequence space ly) was communieated by the

second . author at the Conference “Geometry of Banach spaces” in Oberwolfach,
Fed. Rep. Germany, in October 1973.
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for some 7> 0. The norm in I, (8, 27, u#) is introduced by
W= ind{z > 0; [ 20 (1(t) ) ety < 1},
8

We notice that if the measure u is the same as in (i), (i), (iii) and the

© Orlicz functions M (f) and N (t) are equivalent at infinity, at zero and in-

finity, at zero, vespectively, then the' Orlicz spaces Ly(S, 2, p) and
Ly (8, Z, u) are isomorphic (see [5], p. 52). A converse is in general not
true (see [3]).

2. To the Orlicz function M (%) and the interval I = (0, o) we shall
associate the functions ‘

By r(e) = e*Int{M (uv) v M (v); we[e, 1], ve I}, 0<ex,

Garp(7) = 125up { M (wo) [ur M (v); ue[v, 1], vel}, O<7< 1,
. w? M (v) 1

.@'ij(a) = ezj,nf{m; ’uel:l,*;], ’UEI}, 0<egl,
WM (v 1

Gy r(e) = r“sup{m(%)-; ue[l,T], veI}, O<rg.

If I = (0, co) we shall write
. By p(e) = Fyle),  Gar(v) = Gylr).

THROREM 1. Let M(¢) be an Orlicz function which satisfies
(1) M(2t) <DM(t),  M(l) < FLM(B)
for all te (0, o), where b, 1 are positive constants, 1< 1.

Then there ewists an Orlice fumction N (1) equivalent to M (t) at zero
and at infinity such that for the moduli of convewity and smoothness of the
space X = Ly (8, Z, u) ((8,Z,u) i8 an arbitrary measure space) the follow-
ing estimates hold :

2) Ox (e} = OFpe(e),  0x(v) < KGy(v), & 7e[0,1].

Remark. The second condition in (1) is equivalent. to M*(21)
<L 2M* ()L, te (0, 00), i.e. to the requirement that M*(¢) has the property
dy at zero and at infinity.

In oxder to prove this theorem we need some lemumas. In all the lemmasg,
M (%) is assumed to be an Orliez function,

¢

M(u) ‘ fﬂf_{@_)

My (t) m‘f—»'ﬁ»—j@u, Nt) :j 22 .
0 0

LuMMA 1. Let we [0, oo), ve [0, 1] and te (0, 1] Then
2 M(w) A
G () Fa (1)

M) < M(ﬂ) <

(3) .

+M(u).
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Proof. Obviously, Fy(f) <12 Gy(f), te[0,1] If 0/t 1, then

v M (u) v\? ‘ (ﬂ) " M ()
Guld) —M(“)é(—t-) Mlu)—Muw) < M ; <~————-—FMU) +M (u).
Suppose now that v/t > 1. Then t<w =t/v<1 and
: B ((wfw)-w)
(4) Fa(t) < S M ujw) < Oy (8).

Since 1/w = vft, (4) implies

" M () [Gag (1)
Thus Lemma 1 is proved
LemMA 2. Let M(t) satisfy (1). Then
bIM(Y) < 1(t)<a”1M(t)7
a <ty () My () <D
for 1> 0, where ¢ = (1—1/2)"*
Proof. Since M (f) = M(t)/t, it is enough to observe that

gM( - )<vM )/ B (8).

bIM(t) < M(3)2) < f M () fudu < My (%) f M () Ju o+ f M () judu
) < M)+ (1M @) < (L—-12)H ().
Levva 3. Let M(3) satisfy (1). Then )

(5) @< MOIN ()<, a<tN'()/N(@H)<b,

(6) N (f) < N(8b) < 0°N(8), 0e(0,1),

o N (1) < N(08) < 0"N(t) o>,

(8) ala—1) < BN ()[N (8) < b(b—1)

for all t> 0.

Proof. The first two inequalities follow immediately from the
representation

FM(w)  My(w)

N(t) =uf u W) du.

It is easy to get (6) and (7) by integration of (B) with respect to .
To obtain (8) it is enough to mention that

BN ()N (8) = (M () ~M ()N (z)

~ and apply Lemma 2.
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LiemMA. 4. Let M (1) satisfy (1). Then

~1) N(¢
(9) ' a(;’b-i-z ) . C(z)

§—n\* ‘
(£52) < waen+- ) 23 (& 4.

N ()
=5
where { = max(1&], [n))-
Proof. Without loss of generality we may suppose tha.t 1&] = Inl.
We ghall consider four cases: ‘
0 =5 $&€ =9 < & Since N(f) has a continuous second derivative,
one hag

(10) N(&)+N(n)—

for some Oe(~1,1).
Let us write ¢ =

<18b(b—1)

N (4(E+m) = ((E—n2N" (F(E+n) +30(E~n)

(&-+n)+30(&—n). From (8) it follows that

'N(U) i N(O')
(1 ala—1) = <N'(0)<b(d—1) 3
Obviously, $&< 9 < o< & Hence from (11) a.nd (6) we obtain
(12) “(“BB ol .N;f) N"(0) < 9b(b— 1)_15_).
From. (10) and (12) follows (9).
(b) 0 << b Let us defipe the function
p(t) = N(§)+N(t)—2N (3(&+1).
Since
gt =N O—N(FE+) < 0<t< ¢,
@(t) is decreasing for te (0, £). Then
(13) N (&) -+ N (n) — 2N ($(£+n)) > N (&) + N (36) —2N (36).

Ag in the previous case,

a(a—1)

(14) N(E)+N (&) — N(%£)>-—5—m— (&)

On the other hand
(15) N(&)+N(n) -2V (§(£+m) <
Trom (13), (14), (15) and the inequalities
(B(E—m)2 /e < L—9(}(§—m)2/e
immediately follows (9). '

2N (§).
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(e) 0< —n< & Then
(16) N(E)+N(-n)—2l_v(1}(§+n))Q‘ZN(E)
and from (6) we obtain '
(17) N +N(—n) =2 N ((E+7) > N(£) —2N(16) = (1 -2 N (¢).
| ‘1‘0' obtain (9) from (16) and (17) it is enough to consider
(Be—m)r/er <1< 4 (F(E—m)2/e

(d) 0 << << — & This case can be treated exactly as ().
Thus Lemma 4 is proved.

LevMA 5. Let f, ge Ly(S, X, u) (8, &, p) is an arbitrary measuer

space) be such that {f| = lgll = 1. Then the following inequalities hold

e

(18) GFN( (v )—I—g<

f—Z—gH)q [+ (o) -5

f —g‘ )
8 ’
where ¢, & are positive constants.

Proof. Let us write k(s) = max(|f(z)], lg(x)])]. Obviously, he Ly
and 1< |Rl<2. It follows from (9) that

~ —1) ~N (@) — g (@) \?
) o»(;»lﬂr2 ) ;,(z(g)) (f(ﬂ0)2 g(w)) (i)
S

< kGN('

< f[N(if(w)i)+N(ig(m)|)_2N('Zgw_);;l(ﬁ

S

o

sy [ (o) (f(w)

—g{m)\!
h* (@)

P widw).
Applying (3) %o the function N(¢) for w = h{x)/2|hl, v = |f(x)—
—g@)[Ihl/Ak(@),¢ =|f—gl|/8, we easily obtain

P (@) — g @) N {h(a)/2 1)
R Gy (gl 2 ORI < NS0 —g(@)l/if )

Iy (f(w (@) N (h(z) /2]
16h2FN (If—gl/8)

+ N (h(w) /2 |n]).
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Hence by using Lemma 3 we get

b1 (F(@) — g (@) >N (h ()
16 znhn)”h GN If—g1/8)

—27%N (h(a)/|Ih])
142 (f (@) — g () N (b ()
16 (2[1Bl1)*1* () Fy (U f —g1l/8)

After integration on 8, using the estimates for |kf, we obtain

: Lot N (h(@) (f(@)—g(a)\* i
@0 g GN(”f”"ﬂ”/S)'J 12 (o) ( p) )”(d‘”)“z

P o L,. . 1 "N (h,(m)) (f(m) _‘g(w) )2 d. -9~
VS (7= g Sj ) P KA

From (19) and (2(})' follows (18).
Livmma 6. If f, g Ly(S, 2, u), an = Jlgll =1, then

1§ (F + )l 2= (20)” fIN(If a)l) + N (g (@)]) =2 (31 £ (@) + g (@)1)] u (dr) .

< N(If () —g (@) /If - gl) <

+27° (R()/IB]).

Proof. From (7) 1(‘ follows that
fN(w @)l) () = 1 (F+9)1°
Then
[V (17@)) + 5 (19 (@)) ~ 2N (§1(@) + g @) )] w(do)
’ <2(1—5(f+91Y) < 201 -1 (4 ).

LovmA 7. There exist two positive constants vy, » such that for every
Foge Ly(S, 25w, Il = gl =1, e [0,y], the inequality

@1 W el -l 2

%[l f »N(o

N

J@) -+ zgla)  f(@)—zg(@)
1f =gl If —gll

) 1(d) th““]

holds.
Proof. Il i easy to verify that

(22) (Ld) "t l—a+2d2, |4l <3
Let ye (0, 4) be such thab
(23) (La)f "t <14bd,  del0, 7],

(24) (1 —d)<1—fad, del0,y].
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Suppose now that 7e [0, y]. Then

1 1 1
2 ) S P
(25) Dy T R |
From (22) it follows that
1 1 1
fulf I <9 A |[f 24t
@0 |+ ) <2l I =) 2

Since N (?) is monotone and convex, from (25), (2
‘we have )

N(i f@)+19(@) | f(@)—g(a)
2
2 [ (L o9) (2 =3 0F + 2l + 1 =gl 1 (@) +

6) (by (6) and (7))

1f + gl If =gl
1
T 1d
+ 40 (N (4(L+ ) [f(@)) + F (4 (1 -+ ) g (0)])]
< (L+ o7 (2 = B + gl + 1 — v ) (1f(w)]) +

+ 472 3 (I (1) )+ Mg @)))]-

Integrating on § we obtain

27) 1*fN( (@) +wg@) | fl@)—7g(@)
g \2 Hf-!-WH If — =gl

)M(dw)

— (Lo (2 = 3 (I + gl + 1 — g )} + 422).

To get (21) it is enough to make use of (23), (24) in (27).
Proof of Theorem 1. Let X = Ly (8, X, u). From Lemmag 6 and
7 it follows that for every f, ge X, [f] = lgll =1, |f—gl > e,

1—13(f-+ 9= (2b) Ty (}e).
Since M(t) is equivalent to N (), we have
‘ Ox () = OF y (e).

On the other hand, from Lemmas 6 and 8 it follows that for every
Fr9¢X, Ifl =lgll =1, [0, y] the inequality

o fif

(28) f +zgll+ 11 f — =gl —

f—l—T!] ; —«z’g
Wf+gl Hf—-rgli
holds.
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" Since
ftw - ’
<87 2L Gyl
Wl =gl s A,

from (28) we obtain
0x(7) S #(k+1)6y(z), e [0, 7]
Finally, from the equivalence of M(f) and N(¢) it follows thab
0x(v) < EGy(r), 7e[0,1].

Theorem 1 is pmved

3. CororLARY 1. Let 0 < pu(8) < oo (if 8 = {6} with y(ahq) CAR
then we assume liminf u(o;.,)/u(e;) > 0) and let Ly (S, Z, u) be reflemive.

100

Then there exists am Orlioz fumction N (t) equivalent to M (%) at infinity such
that for the space X = Ly (8, X2, u) the estimates

(29) Ox(e) = AFy 001 (e},  £e[0,1],  0x(7) < Bsi,00(7)
hold.

Proof. Since Ly (8, X, u) is reflexive, M () and M*() have the
property 4, at infinity. Wlhout loss of genera,hty we may assume that
M) =1, M'(1) exists, and M'(¢) > 1.
Let us congider the function

12 for © te [0, o],
Ny ={at+b for tela,1],
M) for te[l, M),

where a = §(M'(1)—|M'(1)—2]) >0, & = M'(1), b =1—M'(1).
Obviously, N(#) and its complement N*(#) have the property 4,
at zero and at infinity, i.e. N (i) satisfies (1). Then from Theorem 1 for
X == Iy(8, 2, u) it follows that
(30) Ox(e) 2 A; Fyy(e), s<[0,1],

On the other hand,

ex(7) < ByGx(7), 7€ [0, 1]

1

(81) PV By (0/F .00 (1) < te(0,11.

) a" L Gy (8) /G g, 11,000 (B) <
To obtain (31) it is enough to observe that for every we[s,1] and

ve (0, o)

us M (v,)

L uiM(vy) N (uv) 1 wM(vy)
M (450,)

abt - e S
M (uy vy) wN(w) ~«a

for some wy, uge [t, 1], vy,05¢ [1, o).
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By combination of (30) and (31) we obtain (29).
COROLLARY 2. Lel u(8) = co, let 8 contain a subset of infimite measure

Jree of atoms, and let Ly (S, X, u) be reflewive. Then for the moduls of con-.

vewity amd smoothness of X = Ly (8, Z, u) the following estimates hold:
(32)  Ox(e) > AFy(e), e€[0,1],  ox(v) < Bly(r), ve [0, 1].

Proof. M(t) and M*(s) have the property A, at zero and at infinity.
Hence (32) follows from Theorem 1. -

CoROLLARY 8. Let u(8) = 0, 8 = {0}uey, 0 < inf pu(o,) < sup p(o,)
< oo, and let Ly (S, X, u) bo reflemive. Then there ewists am Orlice Sunction

N(v) equivalent to D (t) at zero such that for the space X = Ly (8, X, u) the
Sollowing estimates hold

(33) Ox(e) = AFprpoy(e), ee[0,1], ox(v) < By, 10,15(7), 7e [0, 1]

Proof. M(i) and N () have the property 4, at zero. Without loss
of generality we may assume that M (1) =1 and M'(1) exists. ‘
Let us consider the function

M (1) for 01,
N(t) = at+b for 1<i<a,
[ for axt,

where a = %(]![’(1)+}JV[’(1)—2J), @ =M1), b =1~M(1).

It is readily seen that N (1) and its complement, N*(t), have the prop-
erty 4, at zero and at infinity. From Theorem 1 for X = Ly(8, Z, u)
it follows that
(34) 5X(3)>A2FN(B)’ £e[0,1],

On the other hand,

ex(7) < ByGy (1), 7e [0, 11.

(38) < FN(t)/-FM,[o,l] H<1, 1< G (8) (G, 1o, (8) <5 0, te (0, 1].

From (34) and (35) follows (33).

Remarks. The function ¥ (1) we have construeted in Corollaries 1,
3 is equivalent to M(#) at infinity, at zero, respectively, and therefore,
the space Ly (S, X, u) is isomorphic to Ly (S, X, ) IE M) =, L<p
< o0, and (8, &, u) = (R, %, 1) (1 iy the Lebesgue measuve) from Corol-
laries 1, 2, 3 follows the well-known estimates for the spaces L, (see
e.g. [4], p. 28).

o, (€)= Gye",

‘D QLI, (T) ES kw 7 )

where .
ro=max(2,p), s = min(2, p).
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