Isomorphism of spaces of bounded continuous functions

by

ALAIN ETCHEBERRY (Berkeley, Calif.)*

Abstract. Milutin proved in 1962 that all Banach spaces $C(X)$, X compact metrizable and uncountable, are isomorphic to $C(\mathbb{D})$ (d the Cantor set). Later, Pelczyński and Ditor extended and simplified the methods. In this paper Milutin’s theorem is extended to the setting of bounded continuous functions on certain metrizable topological spaces. In particular, when X is separable, the following is proved:
a) If X is polish, uncountable and not locally compact at any point, then the Banach spaces $BC(X)$ and $BC(X^\omega)$ are isomorphic; b) If X is polish, locally compact and non-compact, and such that every non-empty open subset of X is uncountable, then the Banach spaces $BC(X)$ and $BO(d \times X)$ are isomorphic. Here N is the discrete space of natural numbers and $X^\omega = N \times X \times \ldots$ is the polish space of irrational numbers. The strict topology plays an important role in the proof. There are extensions to the non-separable case, as well as to other topologies. The case of the spaces $BC(X)/\mathbb{D}(X)$, as well as several applications and open problems, are also considered.

The subject of this work is an extension of the isomorphism theorem of Milutin to the setting of bounded continuous functions on metrizable spaces. The methods, except for the use of the strict topology, are extensions or variants of those used by Milutin ([13] and [14]), Pelczyński [18] and Ditor [5] (see also Bade [2] and Semadeni [20]).

If X is a Hausdorff topological space and E is a Banach space, we denote by $C(X; E)$ the vector space of all continuous E-valued functions on X, and by $BC(X; E)$ the subspace of all bounded functions in $C(X; E)$.

We denote by $||f||$ the uniform (supremum) norm of a function f in $BC(X; E)$.

If S is a subset of X, we denote by $||f||_S$ the norm of the restriction of f to S. When E is either the reals R or the complexes C, we write generically $C(X)$ and $BC(X)$. All our results will be valid in both the real and complex case.

Remember that a polish space is a topological space homeomorphic to a separable complete metric space. The symbol \mathbb{D} will denote the Cantor set $\{0, 1\}^\mathbb{N}$ with the product topology; the symbol \mathbb{N} denotes the discrete space of all natural numbers, and \mathbb{N}^ω the cartesian product of countably many copies of \mathbb{N}, with the product topology. The space \mathbb{N}^ω is known

* Author partially supported by NSF Grant GP–20012.
to be homeomorphic to the subspace of irrational numbers in \(\mathbb{R} \) (see Section 2 for a discussion of this point). The spaces \(\Delta \times \mathbb{N} \) are polish spaces; the first one is compact and the second one locally compact.

We state and prove first the separable version of the main result of this paper, and leave the non-separable case for Section 5. We state the theorem in a form slightly more general than the given in the abstract. To save space we leave out the (known) compact case, although all cases could be treated in parallel.

Theorem A. Let \(X \) be a polish space.

(a) Let \(X \) contain an uncountable closed subset which is not locally compact at any point. Then the Banach spaces \(BC(X) \) and \(BC(\mathbb{N}^\omega) \) are isomorphic.

(b) Let \(X \) be locally compact and contain a closed non-compact subset, every non-empty (relatively) open subset of which has at least two points (i.e., is uncountable). Then the Banach spaces \(BC(\Delta \times \mathbb{N}) \) and \(BC(\Delta \times \mathbb{N}) \) are isomorphic.

Statement (b) implies that the Banach spaces \(BC(\Delta \times \mathbb{N}) \) and \(BC(\mathbb{R}^\mathbb{N}) \) are isomorphic. Statement (a) implies that the Banach spaces \(BC(\mathbb{N}^\omega), BC(\mathbb{R}^\mathbb{N}), (\mathbb{R}^\mathbb{N} \times \mathbb{N}, \mathbb{R}^\mathbb{N}) \) are isomorphic.

It will be shown in Section 5 that in the locally compact case the isomorphisms can be chosen so that they respect functions vanishing at infinity. This implies an isomorphism result for the corresponding quotient spaces \(BC(X)/\mathcal{C}_0(X) \), i.e., for the spaces \(C(\mathcal{F}X, X) \) (\(\mathcal{F}X \) being the Stone-\(\mathcal{Y} \)-compactification of \(X \)).

The proof of the theorem uses the ideas in Ditor’s approach to the Milutin theorem. However, in the case at hand it is slightly more efficient to use, for the extended “Milutin lemma”, a construction like that in Krasowski [10], vol. 1, p. 437, rather than the more elegant (but equivalent) inverse limits used by Ditor.

The proof is based on Theorems 2 and 4 below and on a version of the decomposition technique of Borel and Pelczynski.

Theorem B. With \(X \) as in Theorem A. The Banach space \(BC(X) \) contains a closed subspace isomorphic (i.e., isometrically isomorphic) to the space \(BC(Y) \), \(Y \) being \(\mathbb{N}^\omega \) in case (a) and \(\Delta \times \mathbb{N} \) case (b). This subspace is the range of a contraction projection of norm one from \(BC(X) \).

This will be proved in Section 2, and is an immediate application of the Borel-Dugundji linear extension theorem, in the form proved by Michael [11]; as soon as we prove that under the stated conditions \(X \) contains a closed subset homeomorphic to \(\mathbb{N}^\omega \) (case (a)) or \(\Delta \times \mathbb{N} \) (case (b)).

For the statement of Theorem C we need some terminology. Let \(X \) and \(Y \) be Hausdorff topological spaces and \(\pi: X \to Y \) a continuous surjection. We define the linear injection of norm one \(x^*: BC(Y) \to BC(X) \) by \(x^*(g) = g \pi \), for every \(g \) in \(BC(Y) \). A linear map \(L: BC(Y) \to BC(X) \) is called an averaging operator for \(\pi \) (or \(\pi^n \)), if \(Lx^n = ID_{BC(Y)} \). It follows immediately that \(L \) is surjective and that \(L(1_Y) = 1_X \). In general, for a subset \(S \) of a set \(T \), we denote by \(1_S \) the characteristic function of the set \(S \). The map \(L \) is called regular if, in addition, \(\|L\| \leq 1 \) (so \(\|L\| = 1 \), and \(L \) is a positive operator).

Theorem C (Extended Milutin lemma). Let \(X \) be a polish space. Then there is a zero-dimensional polish space \(X_\omega \) in fact a closed subspace of \(X^\omega \), with the following properties: There is a continuous surjection \(\pi: X_\omega \to X \) admitting a norm continuous averaging operator. Moreover, in case (a), \(X_\omega \) can be taken to be \(X^\omega \) and, in case (b), to be \(\Delta \times X^\omega \).

The importance of this theorem lies in the fact that it implies that \(BC(X^\omega) \) (case (a)) or \(BC(\Delta \times X^\omega) \) (case (b)) is isometric to a complemented subspace of \(BC(X) \). Indeed, \(LIP^0 \) is a projection onto the subspace \(IPBC(Y) \) (with \(Y = X^\omega \) or \(\Delta \times X^\omega \)) of \(BC(X) \), as

\[
LIP^0 (LIP^0) = L(\Pi Y)IP = LIP^0.
\]

Theorem C is the heart of the whole argument and is based on an extension of the Pelczyński “localization lemma” [17]. This theorem will be proved in Section 5. In the proof we will need, in case (a), a Stone-\(\mathcal{Y} \)-Weierstrass-type theorem for the strict topology. This topology will be discussed in Section 2.

In Section 5 we treat several extensions of the main theorem: (i) The non-separable analogue; (ii) Isomorphism theorems for the strict, compact-open and uniform topologies (the last two on \(C(X) \)); (iii) The case of quotient spaces.

In Section 6 we give some applications of the main theorem: (i) To the contractibility of the corresponding linear groups; (ii) To the existence of fixed bounds on the norms of the isomorphisms; (iii) To an extension of a theorem of Pelczyński on complemented subspaces of \(C(X) \).

In Section 7 we state some open problems. In particular, it is left open whether the Banach spaces \(BC(\mathbb{N}) \) and \(BC(\Pi) \) (say) are isomorphic (\(\Pi \) being a separable Hilbert space).

The present work is essentially the author’s Ph.D. thesis, written at the University of California (Berkeley) under the supervision of Professor William G. Bade. The author wishes to state his deepest appreciation to Professor Bade for his advice.
1. The proof of Theorem A from Theorems B and C. If E and F are Banach spaces, we put on the product $E \times F$ the product topology and the norm defined by $||x|| = \max\{|||x||, ||y||\}$. The symbol \sim will stand for isomorphism and \cong for isometry (i.e., isometric isomorphism).

The following relations are easy to verify.

1. If $E \sim F$, then $BC(X; E) \sim BC(X; F)$.
2. $BC(X; E \times F) \cong BC(X; E) \times BC(X; F)$.

For the sake of definiteness let us deal with case (a) in the theorem. In case (b) one simply replaces \mathbb{N}^m by $\mathbb{N} \times \Delta$.

The compact case, which will not be repeated here, is very similar, with \mathbb{N}^* (the one point compactification of \mathbb{N}) replacing \mathbb{N} in the arguments (see references).

We have

$$BC(N; E) \cong E \times BC(X; E).$$

Observing that $N \times \mathbb{N}^m$ is homeomorphic to \mathbb{N}^m, we also have

$$BO(N^m) \cong BO(N \times \mathbb{N}^m) \cong BO(N) \times BO(\mathbb{N}^m),$$

and thus

$$BO(N^m) \cong BO(\mathbb{N}^m) \times BO(N; \mathbb{N}^m).$$

By Theorem C, the space $BO(X)$ is isomorphic to a complemented subspace of $BO(\mathbb{N}^m)$. Thus we have

$$BO(N^m) \sim BO(X) \times U,$$

for some closed subspace U of $BO(\mathbb{N}^m)$.

On the other hand, by Theorem D, the space $BO(\mathbb{N}^m)$ is isometric to a complemented subspace of $BO(X)$, that is

$$BO(X) \sim V \times BO(\mathbb{N}^m).$$

The following decomposition argument then shows that $BO(X) \sim BO(\mathbb{N}^m)$, and achieves the proof of the theorem.

2. Linear extensions and the proof of Theorem B. We quote the statement of the linear extension theorem of Borwein and Dugundji, in the form proved by Michael [11].

2.1. THEOREM. Let X be a metrisable space and Y a closed subset of X. Then there is a linear map $T : C(Y) \to C(X)$ such that:

(a) $T(f)$, restricted to Y, is f.
(b) $T(1_Y) = 1_X$.
(c) the range of $T(f)$ is contained in the closed convex hull of the range of f.

The operator T is continuous if both spaces have the compact-open topology or the topology of uniform convergence.

The map T, restricted to $BU(Y)$, is a linear map of norm one.

The compact-open topology on $C(X)$ is the locally convex topology induced by the seminorms $p_K(f) = \|f\|_K$, K a compact subset of X. The space $TBC(Y)$ is a subspace of $BO(X)$ isometric to $BO(Y)$. The space $TBC(Y)$ is, in fact, complemented in $BO(X)$. The map $F = TR$, $R : BO(X) \to BO(Y)$, R the restriction map, is a projection of norm one: $P^2 = (TR)(TR) = TR(R) = TR = P$ since, clearly, $RT = Id_{BO(Y)}$.

To obtain Theorem B we have only to prove that, under the hypotheses of the theorem, X contains a closed subset homeomorphic to \mathbb{N}^m or $\mathbb{N} \times \Delta$.

2.2. PROPOSITION. Let X be an uncountable Polish space which is not locally compact at any point. Then X contains a closed subset homeomorphic to \mathbb{N}^m.

Proof. Fix on X a complete metric. Since X is not compact, there is a countable discrete subset $\{x_n : n \in \mathbb{N}\}$ of X. We can then find mutually disjoint closed balls $B_n (n = 1, 2, \ldots)$, with the following properties: B_n has center x_n; each B_n has diameter at most one; the diameters of the balls B_n tend to zero as n tends to infinity. With these properties, the set $\bigcup B_n$ is closed.

By hypothesis none of the B_n is compact so, for each n, we can find a countable discrete subset of X which we can assume (by shrinking B_n a bit) to be contained in the interior of B_n. We then construct mutually disjoint closed balls $B_k (k = 1, 2, \ldots)$ with the following properties: B_k has center x_k; B_k has diameter at most $\frac{1}{k}$; for fixed n, the diameter of B_n tends to zero as k tends to infinity.

Proceeding by induction we get at the nth stage, for each fixed choice of indices $(1), \ldots, (n-1)$, the following: (a) a discrete countable set $\{x_{k_0}, x_{k_1}, \ldots, x_{k_{n-1}}\}$ in X, contained in the interior of the
closed balls $B_{B_{(0, 0, \ldots, 0)}}$, (b) mutually disjoint closed balls $B_{B_{n_1, n_2, \ldots, n_k}}$
with the following properties: $B_{B_{(0, 0, \ldots, 0)}}$ has center
$(0, 0, \ldots, 0); k$ each of them is contained in the interior of $B_{B_{(0, 0, \ldots, 0)}}$; each of these balls has diameter at most 1/n; the diameter of $B_{B_{(0, 0, \ldots, 0)}}$ tends to zero as k tends to infinity.
We now define, for all n,
$$B(n) = \bigcup \{B_{B_{(0, 0, \ldots, 0)}} : n = 1, 2, \ldots, n\}.$$
This is, by construction, a closed set in X. We assert that the closed set $S = \bigcap B(n)$ is homeomorphic to N^n. Consider the map f: $N^n \to S$ defined by
$$f(i(1), i(2), \ldots) = \bigcap \{B_{B_{(0, 0, \ldots, 0)}} : n = 1, 2, \ldots\}.$$
The above intersection reduces, by construction, to a single point, so f is well defined. It is also clearly a bijection. Note that $f(N_0, 0, 0, \ldots)$ is the diameter of $B_{B_{(0, 0, \ldots, 0)}}$ at most 1/n; this shows that f is continuous. Finally, f is also an open map (onto S), because
$$f(N_0, 0, 0, \ldots) = \bigcap B_{B_{(0, 0, \ldots, 0)}} \cap S,$$
a relatively open set. This completes the proof of the proposition.

Remarks. We have used in the proof the notation $N_{n_1, n_2, \ldots}$. These sets, defined by $\{(n_1, n_2, \ldots) \in \mathbb{N} : m \leq i(1), \ldots, n_k = i(k)\}$, are open and the $i(k)$ range over \mathbb{N}, form the usual base of open and closed sets for the zero-dimensional Polish space \mathbb{N}^n. These sets have diameter $1/(n+1)$ for the complete compatible metric defined as follows: For $m = (m_1, m_2, \ldots)$ and $n = (n_1, n_2, \ldots)$ in \mathbb{N}, $d(m, m) = 0$ and $d(m, n) = 1/n$ if n is the first index i such that $n_i = m_i$.

In the locally compact case we have to use the following result.

2.3. Proposition. Let X be a Polish locally compact and non-compact space. If every non-empty open set in X has at least two points, then X contains a closed subset homeomorphic to $\mathbb{R} \times \mathbb{N}$.

Proof. Since X is not compact, it contains a countable discrete subset $\{x_1, x_2, \ldots\}$. By discreteness we can find mutually disjoint compact balls V_n centered at these points, such that their diameters tend to zero when n tends to infinity. In every one of these balls V_n we can find a closed subset A_n homeomorphic to the Cantor set. This is possible because each V_n is uncountable. By construction the set $\bigcup A_n$ is closed, and so $\bigcup A_n$. This last set is homeomorphic to $\mathbb{R} \times \mathbb{N}$, ending the proof.
(b) The mixed topology (in the sense of Wiweger, see [21] for references) \((O, (\| \cdot \|)) \) (CO the compact-open topology). A base of neighborhoods at zero is given as follows. For every sequence \((U_n)\) of CO-neighborhoods of zero, let

\[
U^* = U(U_1^*, \ldots, U_n^*) = \bigcup_{n=1}^{\infty} (U_1^* \cap B + \cdots + U_n^* \cap nB).
\]

(c) A base of neighborhoods at zero for \(\beta \) in the following. For any sequence \((\mathcal{X}_n)\) of compact subsets of \(X \) and any sequence \(0 < a_n \to \infty \) of reals, let

\[
\mathcal{W}(\mathcal{X}_n, (a_n)) = \bigcup_{n=1}^{\infty} \{ f : \| f \|_{\mathcal{X}_n} \leq a_n \}.
\]

Equivalently, consider the seminorms

\[
\rho(f) = \sup \{ \| f \|_{\mathcal{X}_n} : n \geq 1 \},
\]

where \(0 \leq \rho(f) = \| f \|_{\mathcal{X}_n} \) for all \(n \geq 1 \).

For later purposes we need to extend the definition of the strict topology to the vector valued case. Let \(E \) be a vector space provided with a Banach space norm \(\| \cdot \| \) and a second (weaker) locally convex Hausdorff topology \(\tau \). Let \((\alpha) \) be the topology defined on \(BC(\mathcal{X}, E) \) exactly as in (a), but replacing the CO topology by the \(\tau \)-topology, that is, by the topology of \(\tau \)-uniform convergence on compact subsets of \(X \). In other words, in this case \(V_a \) is a set of the form

\[
\{ f : \| f(x) \|_E \leq a \text{ for every } x \in \mathcal{X} \},
\]

with \(\mathcal{X} \) compact in \(\mathcal{X} \) and \(W \) a \(\tau \)-neighborhood of zero. Similarly, we define \(\tau(\alpha) \), making \(V_a \) an absolutely convex \(\tau \)-neighborhood of zero. The proof of the equality of these two topologies is exactly as before (see [21] for details and references). We do not need, for our purposes, to have an analogue of \(\tau(\alpha) \). We designate the space \(BC(\mathcal{X}, E) \) with the strict topology by \(BC(\mathcal{X}, E)_\tau \).

It can be shown that the strict topology on \(BC(\mathcal{X}) \) has the same bounded sets as the norm topology \([9],[21]\)]; that the strict topology coincides, in the locally compact case, with the topology homologically defined by Buck (e.g., [4]); and that the space dual to \(BC(\mathcal{X})_\alpha \) is a Banach space and can be identified with the space \(\mathcal{M}(\mathcal{X}) \) of all regular or complex valued measures defined on the Borel sets of \(X \) (total variation norm) (see [7] or [9]). We will specifically need the following facts about this topology.

3.1. Theorem. A linear map \(T \) from \(BC(\mathcal{X})_\alpha \) into a locally convex space \(F \) is strict continuous iff \(T \), restricted to each \(nB \) (\(n \) a positive integer, \(B \) the unit ball of \(BC(\mathcal{X})_\alpha \), is CO-continuous. Exactly the same thing is true for \(BC(\mathcal{X}, E)_\tau \), with CO replaced by \(\tau \)-CO.

See [4], the proof in the vector valued case is exactly the same.

3.2. Theorem. Let \(A \) be a subalgebra of \(BC(\mathcal{X}, R) \) which separates the points of \(\mathcal{X} \) and such that, for every \(x \) in \(\mathcal{X} \), there is a function \(f \) in \(A \) with \(f(x) \neq 0 \). Then \(A \) is strict dense in \(BC(\mathcal{X}, R) \).

This is a theorem of Stone-Weierstrass type. The simplest proof (using only the definition \(\rho(\alpha) \) of \(\beta \) is that in [9]. If \(A \) is a self-adjoint subalgebra of \(BC(\mathcal{X}, C) \) with the above properties then, of course, \(A \) is also strict dense in \(BC(\mathcal{X}, C) \). As in the classical norm case we have as a consequence the following result.

3.3. Corollary. If \(\mathcal{X} \) is separable and metrizable then \(BC(\mathcal{X}) \) is separable in both the CO and strict topologies.

See [23] for a more general result and related material. The space \(BC(\mathcal{X}) \) need not, of course, be separable in the norm topology.

3.4. Theorem. The locally convex space \(BC(\mathcal{X})_\tau \) is complete iff \(\mathcal{X} \) is a \(\kappa \)-space. In particular, this is the case if \(\mathcal{X} \) is metrizable.

Recall that a topological space \(\mathcal{X} \) is called a \(\kappa \)-space if every bounded function, continuous on each compact subset of \(\mathcal{X} \), must be continuous on \(\mathcal{X} \). Among the \(\kappa \)-spaces are the first countable topological spaces (e.g., Dugundji [6], p. 248), in particular the metrizable ones. For the proof see [7], [9], or [21].

4. Averaging operators and Mitjuint’s lemma. In this section we extend Mitjuint’s lemma to the setting of polar spaces and bounded continuous functions on them. We begin with an extension of Pečenýuš’s localization lemma [17].

4.1. Proposition (Localization lemma). Let \(\mathcal{X} \) and \(\mathcal{Y} \) be Hausdorff topological spaces, with \(\mathcal{X} \) completely regular, and \(\gamma \) a locally finite open covering of \(\mathcal{Y} \). Let \(\pi : \mathcal{X} \to \mathcal{X}' \) be a continuous surjection, \(\mathcal{X}' \) a closed subset of \(\mathcal{X} \) such that \(\pi(\mathcal{X}) = \mathcal{Y} \), and \(\pi_n \) the restriction of \(\pi \) to \(\mathcal{X}_n \). Assume that for each \(n \) we have a regular averaging operator \(L_n : BC(\mathcal{X})_\tau \to BC(\mathcal{X})_\tau \) for \(\pi_n \). Then there is a regular averaging operator \(L : BC(\mathcal{X})_\tau \to BC(\mathcal{Y})_\tau \) for \(\pi \). Moreover, if \(L_n \) are also assumed to be strictly continuous, \(L \) is then strictly continuous.

Proof. Let \((\lambda_n) \) be a partition of unity subordinate to the locally finite open covering \((\gamma_n) \). Since \(\lambda_n \) is zero off \(\gamma_n \), defining the function \(\lambda_n L_n(\mathcal{X}) \) to be zero off \(\gamma_n \) makes it continuous on \(\gamma \). Define, for \(f \) in \(BC(\mathcal{X}) \),

\[
L(f) = \sum_n \lambda_n L_n(\mathcal{X}).
\]

Then \(L(f) \) is in \(BC(\mathcal{Y}) \) and \(L(\mathcal{X}) = \mathcal{X} \) is the identity on \(BC(\mathcal{X}) \). This last statement follows from the following computation:

\[
(L \mathcal{X}(g)) = \sum_n \lambda_n L_n(\mathcal{X}(g)|_{\gamma_n}) = \sum_n \lambda_n L_n(\mathcal{X}(g)|_{\gamma_n}) = \left(\sum_n \lambda_n(g|_{\gamma_n}) \right) = g.
\]
The following computation shows that \(L \) is regular if all the \(L_n \) are,
\[
\|L(f)\| = \sup_{y \neq x} \left| \sum_{n=1}^{\infty} L_n(y) \mathcal{E}_n(f)(x_n)(y) \right| \\
\leq \sup_{y \neq x} \left(\sum_{n=1}^{\infty} L_n(y) \|\mathcal{E}_n(f)(x_n)\| \right) \\
\leq \sup_{y \neq x} \left(\sum_{n=1}^{\infty} L_n(y) \|f\| \right) \cdot \|f\|.
\]

From the regularity of \(L \) we prove its strict continuity by showing (3.1) that, for every net \((f_\lambda)\) in \(BC(X) \) with \(\|f_\lambda\| \leq 1 \) such that \(f_\lambda \) converges to zero uniformly on compact sets of \(X \), we have that \(L(f_\lambda) \) converges to zero uniformly on the compact sets of \(Y \). Indeed, if \(K \) is a compact set in \(Y \), only finitely many of the \(Y_n \), say \(Y_{1}, \ldots, Y_{N(K)} \), can intersect \(K \). Then, for every \(y \) in \(K \), we have
\[
L(f_\lambda)(y) = \sum_{n=1}^{N(K)} L_n(y) \mathcal{E}_n(f_\lambda)(x_n)(y),
\]
and the uniform convergence of this net on \(K \) follows from that of each \(L_n(f_\lambda)(x_n) \). This ends the proof of the proposition.

Remarks. Observe that, if \(\pi : X \to Y \) is a continuous surjection, the map \(\pi^T \) has norm one, in particular it is norm continuous and its range is norm closed. It is also strictly continuous: By (3.1) it suffices to check that, if \(f_\lambda \) is a net in \(BC(X) \) with \(\|f_\lambda\| \leq 1 \) and \(f_\lambda \) converging to zero uniformly on compact sets in \(X \), then \(\pi^T f_\lambda \) converges to zero uniformly on compact sets in \(X \) (since also \(\|\pi^T f_\lambda\| \leq 1 \)). Indeed, if \(K \) is a compact set in \(X \), \(\pi(K) \) is compact in \(Y \) and, since \(f_\lambda \) converges to zero uniformly on \(\pi(K) \), we have that \(\pi^T f_\lambda = f_\lambda \pi \) converges to zero uniformly on \(K \). Also the image of \(\pi^T \) is strictly closed because strict convergence of \(f_\lambda \) implies pointwise convergence of \(f_\lambda \), and consequently, if each \(f_\lambda \) is constant on each fiber \(\pi^{-1}(y) \), so is the limit function. If \(L \) is a strictly continuous averaging operator for \(\pi \), then \(\pi^T BL(Y) \) is a complemented subspace of \(BC(X) \). The map \(P = \pi^T L \) being a strictly continuous projection from \(BC(X) \) onto \(\pi^T BL(Y) \).

We are now in a position to prove Theorem C, and thus complete the proof of Theorem A.

Proof of Theorem C. The proof of this theorem will be divided into several parts.

(a) Construction of the space \(X_\alpha \). Fix a complete metric on \(X \). Then there is a family \(\{A_\alpha : \alpha \in \mathcal{N}\} \) of (possibly empty) open subsets of \(X \) of diameter at most one, forming a locally finite covering of \(X \). Let \(\mathcal{E}_n \) be the closure of \(A_\alpha \) in \(X \). Define a new topological space \(X_\alpha \), to be the disjoint union (topological sum) of the \(A_\alpha \).

Cover each \(\mathcal{E}_n \) in the same way by a family \(\{A_{\alpha n} : \beta \in Y\} \) of open subsets of \(\mathcal{E}_n \) of diameter at most \(1/n \), forming a locally finite covering of \(A_{\alpha n} \). We think of the \(A_{\alpha n} \) as being open sets in \(X_\alpha \); a suitable complete metric is obtained on \(X_\alpha \) by defining \(d(x, y) \) to be the distance induced from \(X \) if \(x \) and \(y \) are in the same \(\mathcal{E}_n \), and equal to one otherwise. Let \(A_{\alpha n} \) be the closure of \(A_{\alpha n} \) in \(X_\alpha \).

Proceeding by induction, we define at the \(n \)th stage closed subsets \(A_{\alpha 0, \ldots, \alpha_{n-1}} \) of diameter at most \(1/n \), these sets being the closures of the sets of a locally finite open covering of \(A_{\alpha 0, \ldots, \alpha_{n-1}} \). Then define \(X_\alpha \) to be the disjoint union of the \(A_{\alpha 0, \ldots, \alpha_{n-1}} \), with \(\bar{a}_1 \) fixed and \(\alpha(1), \ldots, \alpha(n) \) in \(\mathcal{N} \).

Observe now that for every sequence of elements of \(\mathcal{N} \), that is, for every element \(\alpha = (\alpha(1), \alpha(2), \ldots) \) of \(\mathcal{N}^\infty \), we have that
\[
A_{\alpha 0} \supset A_{\alpha 0, \alpha_1} \supset A_{\alpha 0, \alpha_1, \alpha_2} \supset \cdots,
\]
and that the diameters of these tend to zero. By completeness of \(X_\alpha \), whenever all the sets in one such chain are non-empty, the corresponding element \(\alpha \) of \(\mathcal{N}^\infty \) defines a unique point of \(\mathcal{E}_n \) which we denote by \(\pi(\alpha) \), namely, \(\pi(\alpha) = \text{the point} \in \bigcap_{\alpha 0, \alpha_1, \ldots, \alpha_n} A_{\alpha 0, \alpha_1, \ldots, \alpha_n} \). Similarly, for fixed \(\beta(1), \ldots, \beta(n) \) in \(\mathcal{N} \) and for any \(\alpha = (\beta(1), \ldots, \beta(n), \alpha(n+1), \ldots) \) in \(\mathcal{N}^\infty \) such that all the corresponding sets are non-empty, we obtain a unique element of \(X_\alpha \) (in fact, of \(A_{\alpha 0, \alpha_1, \ldots, \alpha_n} \)) which we denote by \(\pi_\alpha(\alpha) \).

Let \(X_\alpha \) be the subset of \(\mathcal{N}^\infty \) for which all the sets \(A_{\alpha 0, \alpha_1, \ldots, \alpha_n} \) are non-empty. The above construction then gives functions \(\pi_\alpha : X_\alpha \to X \) and \(\pi : X_\alpha \to X_\alpha \); these functions are clearly surjective. We also have
\[
(X_\alpha \cap \mathcal{N}_{\alpha 0, \alpha_1, \ldots, \alpha_n}) = A_{\alpha 0, \alpha_1, \ldots, \alpha_n},
\]
for every \(n \) (in fact we have equality here). Indeed, if \(\alpha = (\alpha(1), \ldots) \) is in \(X_\alpha \) then \(\pi(\alpha) \) is in \(A_{\alpha 0, \alpha_1, \ldots, \alpha_n} \) for every \(n \); if also \(\alpha \) is in \(\mathcal{N}_{\alpha 0, \alpha_1, \ldots, \alpha_n} \) then \(\alpha(1) = \beta(1), \ldots, \beta(n) = \beta(n) \) and \(\pi(\alpha) \) is in \(A_{\alpha 0, \alpha_1, \ldots, \alpha_n} \).

(b) The map \(\pi_\alpha : X_\alpha \to X_\alpha \) is closed in \(\mathcal{N}^\infty \), in particular zero-dimensional. If \(\alpha \) is in \(\mathcal{N}_{\alpha 0} \) then \(\mathcal{E}_n \subseteq A_{\alpha 0, \alpha_1, \ldots, \alpha_n} \) is empty for some \(n \). Then \(\pi_\alpha(\alpha) \) is \(\pi(\alpha) \), and \(\pi_\alpha(\alpha) \) ranges over \(\mathcal{N}_{\alpha 0, \alpha_1, \ldots, \alpha_n} \), and hence \(\pi_\alpha \) is continuous. Each point of \(\mathcal{N}_{\alpha 0, \alpha_1, \ldots, \alpha_n} \) belongs to a compact set disjoint from \(\pi_\alpha \), thus \(\pi_\alpha \) is closed in \(\mathcal{N}^\infty \).

It is then automatically zero-dimensional.

(c) The maps \(\pi : X_\alpha \to X \) and \(\pi_\alpha : X_\alpha \to X_\alpha \) are continuous. Let \(\alpha \) be in \(X_\alpha \) and fix a positive \(\varepsilon \). There is an integer \(n \) such that the diameter of \(A_{\alpha 0, \alpha_1, \ldots, \alpha_n} \) is less than \(\varepsilon \). Then, by (a), the diameters of \(\pi(x) \cap \mathcal{N}_{\alpha 0, \alpha_1, \ldots, \alpha_n} \) must also be less than \(\varepsilon \). Since \(X_\alpha \) is a neighborhood of \(\alpha \), it follows that \(\pi \) is continuous at \(\alpha \). The case of \(\pi_\alpha \) is similar.
(d) If K' is a compact set in X, so is $\pi^{-1}(K')$ in X_m. Similarly for π_n.

In particular, the fibers $\pi_m^{-1}(x)$ of π are compact. Let K' be a compact set in X and $K = \pi^{-1}(K')$. There is a natural continuous surjection $\pi_n: X_l \to X_n$ defined through the covering. There are similar maps $\pi_n^{-1}: X_n \to X_l$, and, by composition, $\pi_l: X_l \to X_m$ ($n \geq m$).

Now $(\pi_l)^{-1}(K')$ can intersect only finitely many of the A_n (because K' is compact and the A_n form a locally finite covering), say for a in I_l, a finite subset of N.

Similarly,

$$(\pi_l)^{-1}(K') = (\pi_n)^{-1}[(\pi_l)^{-1}(K')]$$

is a compact subset of X_l. Thus, this set can intersect only finitely many of the sets A_n for a in I_l, say only for those β in I_l, I_n a finite subset of N. Proceeding by induction, we obtain for each a a finite set I_m of elements of N, with properties similar to those described for I_l and I_n.

The set $K = \pi^{-1}(K')$ is a closed subset of X_m and the fact that it is compact follows from the fact that K is a subset of the compact set $\bigcap_{l=1}^\infty I_l$ in X_m.

(e) The map π from $BC(X)$ into $BC(X_m)$ is a strict isomorphism onto its range. Similarly for π_n.

We already know that π is strict continuous and has strict closed range. It remains to prove that $(\pi_n)^{-1}$ is strict continuous. Since $(\pi_n)^{-1}$ is an isometry (from the range of π_n), it suffices to prove that if a net f_i converges to zero uniformly on compact sets, the same thing is true for the net f_i in $BC(X)$. This is now clear because of the previously proved fact that, if K' is a compact set in X, then $\pi^{-1}(K')$ is a compact set in X_m.

(f) The map $\pi: X_m \to X$ admits an averaging operator. This operator is both strict and norm continuous. The localization lemma, applied to the functions $\pi_m: X_m \to X$, and the sets A_m (i.e., gives regular averaging operators $L^m_n: BC(X_m) \to BC(X_m)$). The hypotheses of the lemma are trivially verified. Then, by composition, one obtains regular averaging operators

$L_n: BC(X_m) \to BC(X)$, and $L^m_n: BC(X_m) \to BC(X_m)$ $(n \geq m)$.

Define a subset M of $BC(X_m)$ by

$$M = \bigcup_{n=1}^\infty (\pi_n)^{-1}BC(X_m).$$

We construct a linear map $L: M \to BC(X)$ as follows: if f is in M then f is in some $(\pi_n)^{-1}BC(X_m)$ and we write

$L(f) = L_n[(\pi_n)^{-1}(f)]$.

It is clear that L is linear as soon as it is well defined. That it is well defined follows from the following self-explanatory computation:

$L_n[(\pi_n)^{-1}(f)] = L_nL^m_n[(\pi_n)^{-1}[(\pi_m)^{-1}(f)]]$

$= L_n[(\pi_n)^{-1}[(\pi_m)^{-1}(f)]] = L_n[(\pi_n)^{-1}(f)]$, where $n \geq m$, and $L_n = L^m_nL_n$. We have used here the fact that

$[(\pi_n)^{-1}] = [(\pi_m)^{-1}[(\pi_n)^{-1}^{-1}]$.

and that $L_n[(\pi_m)^{-1}(f)]$ is the identity on $BC(X_m)$.

By the localization lemma, all the maps L_n and L_m are strict continuous and have norm one. The same thing is then true for L_n, by definition. Also L_n^m is the identity map on $BC(X_m)$.

We would like to extend now L_n from M to $BC(X_m)$.

The subset M of $BC(X_m)$ is a self-adjoint subalgebra which contains the constants and separates the points of X: if a and β are two different points in X_m, there is a first n such that $a(n) \neq \beta(n)$. Consider a function f in $BC(X_m)$ which is equal to one on $A_m(0) \cdots (n)$ and equal to zero on $A_m(n+1) \cdots (2n)$. Then the function $(\pi_n)^{-1}(f)$ is equal to one on a and equal to zero on β.

Now we are faced with some problems in extending L_n to $BC(X_m)$ because the Stone-Weierstrass theorem is not valid for the norm topology on $BC(X_m)$ (if M may not be norm dense in $BC(X_m)$, see the example after the end of the proof). In any case, we can apply the Stone-Weierstrass theorem (3.2) for the strict topology, to conclude that M is strict dense in $BC(X_m)$. Since the strict topology is complete (3.4), L_n has then a unique strictly continuous linear extension to $BC(X_m)$: we also denote this map by L. By the strict continuity of all three maps in the relation $L_n^m = L_nL_m$ this relation also holds for the extended L_n. There is no reason to expect that L is an operator of norm one (i.e., regular). However, the extended map turns out to be norm continuous. This last point is a consequence of the following very general fact about linear operators.

Lemma. Let E and F be Banach (or Fréchet) spaces; let a and β be weaker Hausdorff topologies on E and F, respectively. If a linear map $L: E \to F$ is continuous when E (resp. F) has the topology a (resp. β), then L is also norm continuous (continuous in the metric topologies in the Fréchet situation).

Proof. Since β is weaker than the norm topology on E, L is also norm-to-β continuous. To prove that L is norm continuous, it is enough to verify that the graph of L is closed in the (product) norm topology of $E \times F$. Assume that (a_n) is a sequence in E, converging to zero in norm and such that $L(a_n)$ converges in norm to some element y in F. Then also a_n converges to zero for the topology a and, by the axioms of continuity of L, $L(a_n)$ converges to both 0 and y. Since β is a Hausdorff topology, y must be equal to zero. This completes the proof of the lemma.
(g) In case (a) in the theorem \(X_\varepsilon\) can be taken to be \(N^\varepsilon\). We are not claiming that \(X_\varepsilon\) is \(N^\varepsilon\) or even homeomorphic to it, due to the possible presence of isolated points in \(X_\varepsilon\). However, if we replace \(X_\varepsilon\) by the topological space \(X_\varepsilon \times N^\varepsilon\), this new space satisfies the hypotheses of the previously-mentioned characterization of \(N^\varepsilon\); that is, \(X_\varepsilon \times N^\varepsilon\) is homeomorphic to \(N^\varepsilon\). Finally, it is enough to define an averaging operator from \(BO(X_\varepsilon \times N^\varepsilon)\) onto \(BO(X_\varepsilon)\), since then we can obtain the desired averaging operator by composition.

Let \(p: X_\varepsilon \times N^\varepsilon \to X_\varepsilon\) be the natural projection onto the first factor. Let \(s: X_\varepsilon \to X_\varepsilon \times N^\varepsilon\) be any continuous section for \(p\); then it is immediate that \(s^*: BO(X_\varepsilon \times N^\varepsilon) \to BO(X_\varepsilon)\) is a (regular) averaging operator for \(p\). (This argument is adapted from Ditor [5].)

Observe that this argument can be avoided, since all we need at the end is the fact that the space \(BO(X)\) is isomorphic to a complemented subspace of \(BO(N^\varepsilon)\). Indeed, the theorem proves that \(BO(X_\varepsilon)\) is isomorphic to a complemented subspace of \(BO(N^\varepsilon)\), and \(X_\varepsilon\) being a closed subset of \(N^\varepsilon\), \(BO(X_\varepsilon)\) itself is isometric to a complemented subspace of \(BO(N^\varepsilon)\), by the linear extension theorem.

(h) In case (b) in the theorem \(X_\varepsilon\) can be taken to be \(\Delta \times \mathbb{X}\). Observe first that if \(X\) is compact, then so is \(X_\varepsilon\), so, using \(\Delta \times X_\varepsilon\) instead of \(X_\varepsilon\), we can assume as in the last section that \(X_\varepsilon\) is the Cantor set.

In the locally compact case we can assume that the sets \(A_\alpha\) of the covering are compact. Observe that we have, by the localization lemma, an intermediate regular averaging operator \(C(A_\alpha)_\rightarrow C(X)\) for \(n^\alpha\). Now, on each of the compact sets \(A_\alpha\) we do as in the first paragraph to get a regular averaging operator \(C(A_\alpha)_\rightarrow C(X)\). This gives a well-defined map from the space of bounded continuous functions on the disjoint union of the Cantor sets \(A_\alpha\) onto \(BO(X_\varepsilon)\). This is also a regular averaging operator. We now obtain the desired regular averaging operator from \(BO(X_\varepsilon)\) onto \(BO(X)\) by composition. Observe, finally, that the collection of indices \(\alpha\) for which \(A_\alpha\) is non-empty is countable, so \(X_\varepsilon\) is indeed the countable disjoint union of Cantor sets.

We remark that in this case, as in the compact case, the use of the strict topology is not necessary because the Stone-Weierstrass theorem applied to the norm topology for compact spaces (or the strict topology coincides with the norm topology in the compact case). This ends the proof of Theorem C.

Remarks. 1. If, in case (a) in the theorem, all the sets \(A_\alpha_{n_0} \cdots_{n_0}\) are non-empty, then \(X_\varepsilon\) coincides with \(N^\varepsilon\), without having to take products.

2. If \(X\) is not compact, then the subset \(M\) will not, in general, be norm dense in \(BO(X_\varepsilon)\). For example, if \(X\) is \(N^\varepsilon\) itself then this is the case. The characteristic function of the subset \(X \cup Y \in (X \cup Y)\) is clearly not in the norm closure of \(M\).

5. Some variants of the main theorem.

(A) The non-separable case. We consider the case of metrizable topologically complete (but not necessarily separable) \(X\). All the proofs remain essentially unchanged; however, we need a slight strengthening of the hypotheses.

A subset \(Y\) of a metric space \((X, d)\) is called metrically discrete if there is a positive \(\varepsilon\) such that \(d(x, y) \geq \varepsilon\) for every pair of distinct points of \(Y\). Clearly, such a set is also discrete. A metrizable, topologically complete space \(X\) is called \(\varepsilon\)-totally unbounded (\(\varepsilon\) being an infinite cardinal), if \(X\) is non-empty and each non-empty open subset of \(X\) has a subset of cardinality \(\varepsilon\) which is metrically discrete in \(X\), for some choice of a complete compatible metric on \(X\). (Both the \(\varepsilon\) and the metric depending on the open set.) In case \(\varepsilon\) is countable, we say that \(X\) is \(\varepsilon\)-totally unbounded.

Observe that this condition is slightly stronger than the one used in Proposition 2.2. Examples of spaces satisfying these conditions are following: The space \(N^\varepsilon\) is \(\varepsilon\)-totally unbounded. Indeed, in the basic open set \(\mathcal{N}_{(n_0 \cdots_{n_0})}\), the sequence of points \(\mathcal{N} = (\mathcal{N}(1), \ldots, \mathcal{N}(n), m, \ldots)\), \(m = 1, 2, \ldots\), forms a metrically discrete countable subset (with the usual metric on \(N\) and \(n = 1, n + 1\)). Similarly, \(W^\varepsilon, W\), a discrete space of infinite cardinality \(\varepsilon\), is \(\varepsilon\)-totally unbounded. The space \(R^\varepsilon\), the countable product of lines, is \(\varepsilon\)-totally unbounded. Every infinite dimensional separable Banach space is \(\varepsilon\)-totally unbounded, and so is every non-empty open subset of such a space. This is also true for separable, infinite dimensional Fréchet spaces. We mention that it is known (see Anderson and Bing [1] for part of the proof and further references) that all separable infinite dimensional Fréchet spaces are homeomorphic; this makes the corresponding \(BO\) spaces isometric. All separable topological manifolds modeled on the above spaces are also \(\varepsilon\)-totally unbounded. The Banach space \(l^\varepsilon\) is \(\varepsilon\)-totally unbounded (\(\varepsilon\) the cardinality of the reals), and so is the Hilbert space \(l^2\).

With these definitions we can give modified versions of propositions (2.2) and (2.3). In proposition (2.2) assume that \(X\) is a \(\varepsilon\)-totally unbounded topologically complete metrizable space. Then \(X\) has a closed subset homeomorphic to \(W^\varepsilon, W\) a discrete space of cardinality \(\varepsilon\). In (2.3) assume that \(X\) is locally compact, metrizable and topologically complete. Assume that every open non-empty subset of \(X\) has at least two points, and that \(X\) has a metrically discrete subset of cardinality \(\varepsilon\). Then \(X\) contains a closed subset homeomorphic to \(\Delta \times \mathbb{W}\), \(\mathbb{W}\) a discrete space of cardinality \(\varepsilon\).

The proofs of these propositions need only minor modifications with respect to the separable case. For example, in the modified version of (2.3), we now take a family \(\{Y_\alpha\}_{\alpha \in \varepsilon}\) of compact balls of diameters at most \(\varepsilon/2\) (the \(\varepsilon\) of the metrical discrete subset), to assure that the set \(\bigcup \{Y_\alpha; \alpha \in \varepsilon\}\) is closed. These balls are centered at the points of the metrical discrete set assumed in the hypotheses.
Observe that, applied to the separable case, these modified propositions have stronger hypotheses than the previous ones. This is due to the fact that in the original propositions we made strong use of the countability of the discrete sets.

The following is now the final theorem in the non-separable case. The rest of the proof is the same as in the separable case, replacing N by W.

Theorem. Let X be metrizable, topologically complete and of infinite weight w.

(a) Let X contain a closed subset which is w-totally unbounded. Then the Banach spaces $BC(X)$ and $BC(W^w)$ are isomorphic.

(b) Let X be locally compact and contain a closed subset which is a metrically discrete subset of cardinality w, every non-empty open subset of which has at least two points. Then the Banach spaces $BC(X)$ and $BC(A 	imes W)$ are isomorphic.

(B) The case of the strict topology. Theorems A and (5.1) also hold for the strict topology. That is, the corresponding BC spaces are also strictly isomorphic. This, in fact, implies isomorphism in the norm topologies.

It has already been observed that Theorem C is true for the strict topology, we had to prove this to do the norm topology case. The fact that Theorem B also holds for the strict topology is an immediate consequence of the fact that the linear extension operator in the linear extension theorem is both an isometry and continuous in the compact-open topology (see 2.1 and 5.1). It remains to see how to modify the argument in Section 1.

For simplicity we deal only with the separable N^w-case. Let E be a Banach space with a weaker locally convex topology τ. We put on $BC(X; E)$ the norm topology and also the (weaker) strict topology τ defined in Section 3. This was the finest locally convex topology on $BC(X; E)$ coinciding, on norm bounded sets of $BC(X; E)$, with the topology τ-CO. The topology τ-CO is, in this particular case, just the topology of pointwise τ-convergence on X. The symbol \simeq in this case will stand here for strict isomorphism.

If $(E, \| \cdot \|, \tau)$ and $(E, \| \cdot \|', \tau')$ are as above and $L : E \to F$ is an isomorphism, both in the norm and τ-τ' sense, then relation (1) in the proof becomes

$$\text{BC}(X; E) \simeq \text{BC}(X; F)$$

Indeed, define a map $L : BC(X; E) \to BC(X; F)$ by

$$L(e_1, e_2, \ldots) = (1(e_1), 1(e_2), \ldots).$$

By symmetry, and because L is a norm bounded linear bijection, it suffices to check that: if $E(a)$ is a net in $BC(X; E)$ with $\|E(a)\| \leq 1$ and $E(a) \to 0$ pointwise (i.e., if each $e_i(a) \to 0$ with respect to τ in E), then $L(E(a)) \to 0$ pointwise. This is now clear. Relation (2) becomes

$$\text{BC}(X; E) \simeq \text{BC}(X; F) \times \text{BC}(X; F)$$

This is again clear since both sides are isometric (when the right-hand side has the max norm). Relation (3) becomes

$$\text{BC}(X; E) \simeq E \times \text{BC}(X; E)$$

Again this follows as above (i.e., by an application of (3.1)), by considering the map

$$(e_1, e_2, \ldots) \mapsto (e_1, (e_2, e_2, \ldots)).$$

Writing $E = \text{BC}(X^w)$ and $\tau = \beta$, and observing that $X \times X$ is homeomorphic to X^w, we have

$$\text{BC}(N^w) \simeq \text{BC}(X \times X)^w \simeq \text{BC}(X; \text{BC}(X^w)).$$

Indeed, let $L : \text{BC}(X \times X)^w \to \text{BC}(X; \text{BC}(X^w))$ be the natural map, which is clearly an isometry. We again use (3.1) to prove that L is strict continuous. Let $\|f_\alpha\| \leq 1$ and let f_α converge uniformly on compact subsets of $X \times X$. It suffices to show that, for each $m \in N$, $f_\alpha(m, \cdot) \to 0$ in $\text{BC}(X^w)$.

For this, in turn, it suffices to show convergence in the CO-topology of $\text{BC}(X^w)$; but this is clear by hypothesis. Similarly, L^{-1} is strict continuous.

From (3) and (4) we get

$$\text{BC}(X^w) \simeq \text{BC}(X^w)^w \times \text{BC}(X; \text{BC}(X^w))$$

(product topology).

As before we have

$$\text{BC}(X^w) \simeq \text{BC}(X)^w \times U,$$

$$\text{BC}(X^w) \simeq V \times \text{BC}(X^w),$$

where U and V have the relative β topology. In (5) and (6) we have used the easy to check fact that, if E and F are closed subspaces of a topological vector space G, with $G = E \oplus F$ a topological direct sum (i.e., there is a continuous projection from G onto E, which annihilates F), then $G \simeq E \oplus F$.

The decomposition process now runs as before, except that we must change all symbols \simeq to \sim. This completes the argument in the strict case.

(C) Other topologies. We mention briefly the cases of the compact-open and uniform topologies. In both of these cases we have to consider unbounded functions to have completeness, that is, we work with the space $C(X)$ instead of $BC(X)$.

2 — Studia Mathematica LXXII
The main theorem is true for the space $O(X)$ with the compact-open topology. The proof of this is just a streamlined version of the arguments already given, with obvious changes. Observe only two points: First, the locally convex space $(O(X), CO)$ is complete if X is a k-space; the proof of this is similar to that of (3.4), but simpler. Second, in the proof of Milutin’s lemma we define the subalgebra M of $BC(X)$ exactly as before; since M is strictly dense in $BC(X)$, it is also dense in the O-topology (which is weaker), and then observe that $BC(X)$ is dense in $(O(X), CO)$.

A similar conclusion can be stated for $B(X)$ with the uniform topology (the topology of uniform convergence on all of X). However, this is only a metrizable topologically complete abelian group, and the isomorphism result is only for this topological group structure. Secondly, we have to restrict ourselves to the case of separable X. The reason for this is that then we can apply, in the proof of the corresponding Milutin lemma, the following theorem of Stone-Weierstrass type: Let X be a Hausdorff Lindelöf space. Let A be a subalgebra of $O(X; R)$ which contains the constants, separates points and closed sets, and is closed under uniform convergence and inversion in $O(X; R)$ (that is, if f is in A and does not vanish at any point, then $1/f$ is also in A). Then A is uniformly dense in $O(X; R)$.

This result is due to Henriksen and Johnson [8] and Mrówka [16]. In relation to the proof, we observe the following points: (1) The localization lemma fails, in general, in this setting. However, all we need is the case where each operator E_{x} is the identity operator, and in this case the proof of that lemma works. To prove the uniform continuity of L_{f}, write $L_{f} = L_{x}$ instead of L_{f} in the inequality for $|L_{f}|$. Observe that $(f-g)$ makes sense in $O(X)$ as soon as f is uniformly near g. (ii) In the proof of the Milutin lemma define $M = \bigcup_{n=1}^{\infty} n^{2}C(U_{n})$ and use the Stone-Weierstrass theorem discussed above.

5.3. COROLLARY. With the same hypothesis as in the theorem, the Banach spaces $O(X - X)$ and $C(\beta X \times X)$ are isomorphic.

Remark. 1. Since X is sigma-compact, the topological spaces $\beta X - X$ and $\beta(\alpha X \times X) = \alpha X \times X$ are compact (and not-metrizable). This corollary thus gives an isomorphism result for some (very special) compact non-separable spaces.

2. All the above extends to the locally compact non-separable case by the structure theorem for paracompact locally compact spaces (see Dugundji [6]). This says that such a space is the topological disjoint union of a family of sigma-compact spaces.

3. One could do something similar for $BC(X)$ and $C_{0}(X)$ with the strict and compact-open topologies.

We describe below the modifications in the proof of the norm topology case that are needed to obtain this theorem.

(a) In the linear extension theorem (2.1). The following modification in the proof will give a map T from $BC(X)$ into $BC(X)$, which is still of norm one and such that $Tf_{0}(X)$ is contained in $C_{0}(X)$. We will only lose the property $T(1) = 1$. Let (K_{n}) be an increasing sequence of compact subsets of Y, whose union is Y. For every point in X, choose a relatively complete open ball with center at this point and radius at most 1. Select a finite subcovering of K_{n} from these balls, and write V_{r} for the (finite) union of them. Then V_{r} is an open, relatively compact, neighborhood of K_{1}, consisting of points at distance at most one from K_{1}. Do the same thing for K_{n}, with balls of radii at most 1/2, to get an open relatively compact neighborhood V_{r} of K_{n}, consisting of points at distance at most 1/2 from K_{n}.

Proceed by induction. Then $V = \bigcup_{n} V_{r}$ is an open neighborhood of Y.

There is a continuous function F_{0}, with $0 \leq F_{0} \leq 1$ on X, $F_{0} = 1$ on Y_{n} and $F_{0} = 0$ on $X - V$. In the proof of (2.1) replace then Tf_{j} by $F_{r}Tf_{j}$; this will be the new linear extension map T.

To conclude that Tf_{j} is in $C_{0}(X)$ whenever f_{j} is in $C_{0}(X)$, it is enough to prove that if f_{j} is in $C_{0}(Y)$ then the (old) Tf_{j} restricted to the closure V_{f} of V_{f}, is in $C_{0}(V_{f})$.

For this it suffices in turn to prove that if (say) x^{0} is a point in V_{f} for $n = 1, 2, \ldots$, and $x^{n} \in V_{n}$, then $Tf_{j}(x^{n}) \to 0$ for j in $C_{0}(Y)$.

The proof of the linear extension theorem 2.1 gives the following (see [11] or [20]): For each point $z \in X - Y$, an open ball V_{z} with center z and radius $d(x, y)/\beta$; a locally finite open refinement $(W_{a}; a \in T)$ of this covering of $X - Y$; points $w_{a} \in W_{a}$ and points $t_{a} \in X$ with $d(w_{a}, t_{a}) < 3d(t_{a}, x)$. Further, Tf_{j} is some convex combination of the $j(t_{a})$, for those t_{a} such that a is in W_{a}, specializing all this to the x and changing the notation slightly, we obtain corresponding $W_{a}^{r}, w_{a}^{r}, t_{a}^{r}$ for $i = 3, \ldots$.
... Also choose, for each \(n \) and \(i \), a ball \(V_i^n \) such that \(W_i < V_i^n \), and let \(x_i^n \) be its center. Then \(V_i^n \) has radius \(d(x_i^n, Y) / \beta \), and \(d(x_i^n, z_i^n) < 3d(x_i^n, Y) \). The scalar \(I(f^n) \) is a convex combination of the \(f_i^n, i = 1, \ldots, k(n) \), and we want to prove that \(I(f^n) \) tends to zero.

To prove that \(I(f^n) \) tends to zero, it suffices to verify that, given an integer \(N \), there is an integer \(n_0 \) such that, for all \(n \geq n_0 \) and \(i = 1, \ldots, k(n) \), we have \(x_i^n \in K_{n, N} \).

To see this, observe first that, by hypothesis, \(a_{n, \epsilon} = d(x_i^n, Y) \rightarrow 0 \). Then we prove that, for \(i = 1, \ldots, k(n) \), we have

\[
(*) \quad d(x_i^n, z_i^n) < 7a_{n, \epsilon}.
\]

Indeed,

\[
d(x_i^n, z_i^n) < d(x_i^n, w_i^n) + d(w_i^n, z_i^n) < 3d(x_i^n, Y) + d(w_i^n, z_i^n) = 3d(x_i^n, Y) + 3d(x_i^n, Y) = 6d(x_i^n, Y) < 6 \epsilon / \beta \leq 3a_{n, \epsilon}/2.
\]

(b) It is not true in general that \(\pi^{-1}(K) \) is contained in \(C_0(X) \). However, in the case at hand we proved that the fibers \(\pi^{-1}(y) \) of \(\pi \) are compact, and this implies the above stability property.

(c) In the localization lemma. In the present situation we may assume that the sets \(X_{\alpha} \) and \(Y_{\alpha} \) are compact. Then, if \(f \) is a function in \(C_0(X) \), given \(\epsilon > 0 \), choose a compact subset \(K \) of \(X \) such that \(\| f \| < \epsilon \) off \(K \). Then only finitely many of the \(X_{\alpha} \) intersect \(K \), say \(\{ X_{\alpha_1}, \ldots, X_{\alpha_m} \} \). Then a finite subset of the index set in the localization lemma. We can write

\[
I(f) = \sum_{\alpha_1} I_{\alpha_1} I_{\alpha_1}(f|_{X_{\alpha_1}}) \geq 0.
\]

The first summand is a \(C_0 \) function, being a finite linear combination of such functions. The second summand is a function which vanishes on \(K \) and is equal to the second summand is a function which vanishes on \(K \) and is at most \(\epsilon \) off \(K \). This proves the \(C_0 \) version of the localization lemma in the case of compact \(X \).

(d) In the Milutin lemma. In general the maps \(I_n \) (see part (t) in the proof) do not preserve \(C_0 \) as is easily seen by example. However, we may again assume here that all the sets \(A_{\alpha_0}, \ldots, A_{\alpha_m} \) are compact. The modified version of the localization lemma then gives us \(C_0(X) \) that preserves \(C_0 \).

There is no problem at the level of the subalgebra \(\mathcal{M} = \mathcal{M}(X) \); the map \(L \) defined in part (t) of the proof sends the subalgebra \(\mathcal{M} = \bigcup_{\alpha_0} \mathcal{C}_0(X_{\alpha_0}) \) onto \(C_0(X) \). Another application of the modified localization lemma then gives an extension of \(L \) to a map from \(BC(X_{\alpha_0}) \) onto \(BC(X) \) such that the image of \(C_0(X_{\alpha_0}) \) is \(C_0(X) \) (as in part (t) of the proof).

(e) In Theorem B we use the modified version of the linear extension theorem.

(f) In the Milutin theorem. We are only dealing with the locally compact case here. The subspace \(C_0(X; E) \) of \(BC(X; E) \) has the obvious definition. The \(C_0 \) version of formulas (1) through (7) follow through restriction and using the previous modifications. The decomposition argument that ends the proof also follows by restricting everything to the corresponding \(C_0 \) subspaces.

6. Applications of the main theorem. In this section we discuss a few applications of the isomorphism theorem. We begin with a result on bounds for the norms of the isomorphisms.

(A) Uniform bound for the norms of the isomorphisms. We could obtain a numerical estimate, except that, by using the strict topology in the proof the Milutin lemma, we have lost control of the norms of the operators (see [17] for a numerical bound in the compact case).

For the sake of concreteness we discuss only the \(X^n \) case. We claim that there is a positive number \(M \) such that, if \(X \) is any polish space with an uncountable closed subset which is not locally compact at any point, then there is an isomorphism \(T \) between \(BC(X) \) and \(BC(X^n) \) with \(||T||/||T^{-1}|| \leq M \). Otherwise there would be polish spaces \(X_n \) above such that, for any isomorphism \(T_n \) between \(BC(X_n) \) and \(BC(X^n) \), we would have \(||T_n||/||T_n^{-1}|| \geq n \). Observe now that the space

\[
(BC(X) \times BC(X) \times \ldots)^{\mathbb{N}}
\]

is isometric to \(BC(X) \), \(X \) being the topological disjoint union of the \(X_n \). But \(X \) is of the same type as the \(X_n \), so \(BC(X) \) is isomorphic to \(BC(X^n) \).

Let \(T : BC(X) \to BC(X^n) \) be an isomorphism; let also \(T_n \) be the natural
injection of $BC(X_0)$ in $BC(X)$ and P_* the natural projection from $BC(X)$ onto $BC(X_0)$, both of these maps have norm one. The map T_0 is an embedding of $BC(X_0)$ into $BC(X)/\kappa_{n, m}$, and the map $T_{\kappa_{n, M}}$ is a projection onto its image, of norm at most $|T|_M \leq M$ (independent of n). Since X_0 is homeomorphic to a closed subset of X, the decomposition method, as in the proof of the main theorem, gives an isomorphism from $BC(X_0)$ onto $BC(X)/\kappa_{n, 0}$ (independent of n). This is a contradiction.

B) Contractibility of the corresponding linear groups. In Mitagin [15] it is proved that if X is an uncountable compact metrizable space and $E = C(X)$, then $GL(E)$, the general linear group of the Banach space E, is contractible to a point. We observe that the same result holds for the Banach spaces $E = BC(\Delta \times N)$ and $E = BC(N\times)$, the proof being a trivial adaptation of that in [15]. The same thing is true for the non-separable cases.

C) Extension of a theorem of Pełczyński. In [18], Pełczyński proved that if X is compact and metrizable and if E is a complemented subspace of $C(X)$, containing a further subspace isomorphic to $C(X)$, then E itself is isomorphic to $C(X)$. There is a somewhat simpler proof of this result in the 1972 Berkeley thesis of James Hagler. We extend the theorem and slightly simplify the argument given by Hagler, by using the Bartle-Graves selection theorem. For simplicity we state the theorem in the Polish case only. Also, since we have simple criteria for a Polish space to contain a closed copy of Δ, $\Delta \times N$ or $N\times$, we do not include these conditions in the statement of the theorems.

6.1. Theorem. Let X be a Polish space and E a Banach space. Let T be an isomorphism from the Banach space $BC(X)$ into the Banach space E such that $|T|_M \leq \lambda$. Assume that E is either countable or contains a closed subset homeomorphic to $\Delta \times N$ or $N\times$. Then there is a closed subspace F of $BC(X)$, F isometric to $BC(X)$, such that the space TF is κ-complemented in E.

Proof. The adjoint map $T^*: E^* \rightarrow BC(X)^*$ is surjective so, by the Bartle-Graves selection theorem (see, e.g., Michael [12]), there is a continuous (not necessarily linear) function $\delta: BC(X)^* \rightarrow E^*$ such that $T^* \delta = 1_{BC(X)^*}$; the map δ is then a homeomorphism from $BC(X)^*$ with a closed subset of E^*.

Let us identify X with the corresponding set of point masses in $BC(X)^*$. Let now Y be a closed subset of X (or its image in $BC(X)^*$) which is all of X if X is countable, and Δ, $\Delta \times N$, or $N\times$, in the other cases. Let $Z = \delta(T)$, δ being the restriction of δ to Y (the canonical map δ being the canonical map from E into E^*).

Then $P = TLS_E^*E'$ is a projection from E onto TF, where $F = LBC(Y)$. Indeed, $P = TLs_E^*(T^*Z)S_E^*E'$, which is the same as $TLs_E^*(T^*Z)S_E^*E'$, which in turn collapses to TLs_E^*E', which is the same as P. Also this projection has the correct image and the correct estimate on the norm. This ends the proof of the theorem.

The next result is the extension of Pełczyński’s theorem. It is obtained from the corresponding isomorphism theorem and a decomposition argument. The countable compact case follows from an isomorphism theorem of Besaga and Pełczyński [3] for this case. We leave out the countable non-compact cases because they would need an extension of the above-mentioned result in [3], an extension we do not have.

6.2. Corollary. Let X be a Polish space which is either countable and compact, or locally compact and contains a closed subset homeomorphic to $\Delta \times N$, or contains a closed subset homeomorphic to $N\times$. If E is a closed complemented subspace of $BC(X)$, containing a further subspace isomorphic to $BC(X)$, then E itself is isomorphic to $BC(X)$.

7. Some open problems. It remains to be shown whether there are further isomorphisms between the classes of spaces considered in the previous sections. The most interesting problem left open in this direction seems to be the following one.

Problem 1. Are the Banach spaces $BC(\Delta \times N)$ and $BC(N\times)$ isomorphic?

Equivalently, are the Banach spaces $BC(\mathbb{R})$ and $BC(\mathbb{P})$ isomorphic?

The usual invariants coincide. For example (Rosenthal [19], Remark 3, p. 242), these spaces have (up to isometry) the same dual, namely $(P^n)^*$. On the other hand, these two classes are indeed non-isomorphic for the strict topology. This is so because the minimal number of semi-norms necessary to describe the topology is an isomorphic invariant, and this cardinal numbers is easily seen to be countable for the first class and uncountable for the second. Similarly, other cases can be distinguished.
by this or similar techniques (like F_m and the above Banach spaces, and cases of different weights).

Bessaga and Pelczynski [3] have classified all the Banach spaces $C(X)$, with X compact metrizable and countable. Such an X is homeomorphic to a countable compact ordinal by a classical theorem of Mazurkiewicz and Sierpiński (see, e.g., Semadeni [20], 8.6.10). If, now, X is a countable polish space, a theorem of Knaster and Kuratowski (cf. Kuratowski, vol. II, [10], p. 25) implies that X is homeomorphic to a subset of the countable ordinals. Thus the situation is rather similar, if more complicated, to the case considered in [3].

Theorem 2. Classify up to isomorphism all the Banach spaces $BC(X)$, with X countable and polish.

Typical spaces arising here are F_m, c and $F_m \oplus c$.

In the proof of the Milutin lemma we do not get, at least in principle, a regular averaging operator in the X^* case.

Problem 3. Is the averaging operator in the proof of the Milutin lemma always of norm one? If not, is there always an averaging operator of norm one?

One can also consider some related questions. For example: (a) Are the Banach spaces $BC(\ell^m \rightarrow N)$ and $BC(\ell^m \rightarrow X)$ isomorphic, for X uncountable and not locally compact at any point? (b) Are the Banach spaces $BC(\ell^m \rightarrow N)$ and $C(\beta \mathbb{R} \setminus \mathbb{R})$ isomorphic? (c) Is $C(\beta \mathbb{R} \setminus \mathbb{R})$ isomorphic to $C(\mathbb{R} \setminus \mathbb{R})$? (The first space is just $F_0 \oplus c_0$ and the second is $BC(\mathbb{R} \setminus \mathbb{R})$.) One could also try to deal with other compactifications, besides the Stone–Čech compactification. Equivalently, one could consider other subalgebras of $BC(X)$ besides the full algebra. For example, the bounded uniformly continuous functions on some (uniform) spaces X. In general there are, however, problems with partition of unity arguments and with the linear extension theorem.

References
