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On vector-valued analytic functions
with constant norm
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Abstract. Let X be a complex Banach space and £ a domain in the complex
plane. Let f: 2—X be an analytiec function such that ()l is constant as Le 2. Iftx
is the space of complex numbers then by the classical maximum modulus theorem
F(Z) itself is constant on 2. This is not the case in general. In the paper a characteri-
zation of the analytie functions with constant norm is given.

0. Introduction. If f is a coraplex-valued analytic function, defined on
a domain & in the complex plane, then the classical maximum modulus
theorem asserts that |f(£)| has no maximum on £ or that f({) is constant
on 2. It f has values in a complex B-space, the theorem holds, but its
strong form, asserting f(£) to be constant if |f({)|f is constant on 2, does
not hold in general. B. Thorp and R. Whitley [4] characterized those
complex B-spaces in which the strong form of the maximum modulus
theorem holds — these are exactly the spaces in which every point on
the unit sphere is a complex extreme point. Although many B-spaces have
this property (e.g. strictly convex complex B-spaces), there remains
a large class of the spaces which do not have this property (e.g. O*-algebras
of dimension greater than one [1]). Given such a space, we characterize
those analytic funetions with values in it, which have constant norm.
We study the functions with values in B-spaces. The funetions with
values in B-algebras will be studied in a separate paper.

The idea is to linearize the problem in the sense that for every vector
o of the unit sphere we construct the subspace B (a) of all vectors showing
that o is not a complex extreme point of the unit sphere, and then to
obtain the characterization of the analytic functions with constant norm
in terms of these subspaces.

1. Preliminaries. Throughout the paper B-space stands for Banach
space. X being a B-space, we denote by S(X) = {we X: o] = 1} the
unit sphere of X and by X' the dual space. The image of e X under
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we X' is denoted by (&, u). If § is a subset of a B-space, we denote by
8, coS and GoS the closure, the convex hull and the closed convex hull
of the set S, respectively. An open connected subset of the complex plane
is called domain. ‘

DErINITION 1.0 (cf. [4]). Let X be a complex B-space. A point
ae8(X) is called complen extreme point of S§(X) if lla+Cyl<1 (< 1)
implies y = 0.

L. A. Harris [2] greatly simplified the original proof of Thorp-Whi-
tley’s result, using the following lemma.

Ievva 1.1 (L. A. Harris [2]). Let f be o comples valued fumction,
analytic on the open unit disc in the complew plane, satisfying [f(L) <1
(1¢] < 1). Then

1-[¢]
FO)+ 20

This lemma is the main tool in our paper.

2. The subspace E(a).

DErINITION 2.0. Let X be a complex B-space and let ae X. The set
F(a) = X is defined as follows. xe E(a) if » > 0 exists such that |a -+ wl
< llalf (161 < 7).

ProrosirioN 2.1. Let X be a comples B-space and let ae X. Then
xe H(a) if and only if a constant M < co ewists such that

[F) —flO)<1

(181 <1,¢ #0).

Ko, wy| < M (ol —Ka, wp])  (ue S(X)).
Proof. If
Ko, uyl < M{llall— Ka, w)])  (we8(X")
then
[Km, upy| < ol —Ka, wy|  (we S(X'); (1< 1/M),
8o
o+ alf < fla ICI 1/M).

Conversely, if » > 0 exists such that
llo+Call < llall - (151 < 7)

then
K@y wy + &, wp| << flall (1] <75 we S(X))
80
Kay ud|+rike, wy| < llal]  (ve S(X")
and .

Kz, wl < (1Lfr)(llall— Ka; wpl)  (we §(X7). QED.
DerpiNrrioN 2.2. Let X be a complex ‘B-space and let ae X. For
ze B(a) we define

loll, = nf{M: (o, wp < M (lall —I<a, ud]) (we S(X)}}.
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PROPOSITION 2.3. Let X be a complew B-space. Let ae X and e B(a).
Then |z}, = 1/r(a), where
7(a) = sup{r: lla+ Lol < lloll (1] <)}
Proof. Tt is easy to see that the inequalities

o+ Lol < llall  (IE1<7)
and

K, wy] < (Lfr)(lall~[<a, %))
are equivalent. Now the assertion follows immediately. Q.E.D.
PROPOSITION 2.4. Let X be a complex B-space and let aec X. Then
E(a) is a linear subspace of X and | |, is a norm in H(a).
Proof. Let xe E(a). By Proposition 2.1 and Definition 2.2 we have

Ke, uy| < lolla(lall —I<a, wd)  (ue S(X1).

Clearly |l > 0. If |z, = 0 then <w, u)> =0 (ue S(X’)), sox =0 Ifais
a complex number, we have '

(we 8(X"))

Ko, wy| = lal [, wy| < lal ol (ol —[<a, wpl)  (we (X))
which shows that aze E(a) and that [w|, = |a|fzll,. Further, if also
Yy € E(a), then

Ky, wyl < Illa(llall —I<a, wpl)  (we S(X),
80 .
Ke+y, upl < K@, wy| +Ky, v .
< (1@l + ) (lall —I<ay wdl)  (we S(X7))

which shows that z+yeB(a) and that o+ yl, < lzl,+lyl,. QE.D.

PROPOSITION 2.5. Let X be & complex B-space and let ae X. Then

lotal>lal  (oe B(a).

(Throughout, E(e) is the closure of F(a) as a subset of X.)

Proof. Assume that |l& + 2| < |le| for an x ¢ E (a). By the Hahn-Banach
theorem an we §(X’) exists such that {a,u) = |a|. Since z< F(a), an
#> 0 exists sueh that [+ o)< llal ({¢| <) what implies [{a, %)+
+&dmw, wdl < lall (16 < 7). Now, by {a, up = lla]] it follows that {=, wy =0,
so that (a-m,uw> = |al, contrarily to the assumption {la- 2| < lall.
So |la-+a|| > el (xe H(a)) which proves the assertion. Q.E.D.

Levma 2.6. Let X be o complex B-space and let ae X. Let ye F(a)
where |lyll, < 1/2. Then E(a+y) = Ha).

Proof. Since |y, < 1/2, by Proposition 2.3 an B> 2 exists such_
that |la+ 2yl < lafl (/& < RB). Consequently, an r>1 exists such that
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la+y+Cyll < llall (1< 7). Since by Proposition 2.5 |a--y|l= |all, it
follows that ye B(a-+y) and by Proposition 2.3 we have [yll,,, <1.

Now, let ze #(a) and [l], < 1. We prove that H(a+2) > H(a). By
Proposition 2.3 we have [la+{z| < llall (1£] < 1/kll,) and by Proposition
2.5 it follows that a2 = |a]. Let x< E(a), # 5 0. Choose r such that
0 < r < (1—|#l,)/llell,- By Proposition 2.4, || ||, is a norm so that we have

e+ Gally < llelle+ [ —lRlla) /llllad ol =1 (12 < 7).
By Proposition 2.3 it follows that

la+&E+)l <lall  (2<r; 14<1).
Taking & =1 we get
(a+2) + Lol < lall = a2l (1Z<7)

which gives ¢ B (a+#). This proves that B(a) = ¥ (a+2). Consequently,
yeB(a) and |yll, <1 imply B(a+y) > E(a). Further, by the first part
of the proof we have ye B(a+y) and |y, <1, which implies H(a)
=El(a+y)—y]l> B(a+y). QED.

3. The local characterization.

THEOREM 3.0. Let [—F(L) = ag+ a8+ ayl2 ... be o function with
values i a comples B-space X, defined and analytic in o neighbourhood
of the point 0 in the complex plane.

Then o neighbourhood of the point 0 in which ||f(L)| s constant ewisis
if and only 4f

o) : aeBa) (i=1,2,..)
and
*® . .
(if) the series znamao-w converges for an v > 0.
i=1

Proof. Let |If(2)) = llaell (| < R). This gives
[Kao, w) +<an, up it o < llagll (2] < B we 8(X)).
Applying Lemma 1.1 to the function L= (F(RE) , w) [llagll, we obtain
<1, ) E ot {aay w82+ o] <l =<y W) (I < Bf3; we S(X)).

Cauchy’s estimates (if y is a complex valued analytic function and [y (¢)]
< M (|E] < 7), then [p"(0)| < M-r7"n! (n =1,2,...) give

Kaig up] < (BIRY (lagl —1<a0, wd]) (3 = 1,2, ...; weS(X')).
By Proposition 2.1 it follows that a;e B (a) (i=1,2,...) and llola,

< (3/RY (i =1,2,...). Clearly the series 2 llaglly,#*  converges  if
0<7r<RJ3. =
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To prove the converse, let a;e B(a,) (¢ =1,2,...) and let Y llﬂiﬂuo"'{
= M < co for an r > 0. By Definition 2.2 it follows that =1

D e, wy < M(lagl —I<ag, wl)  (ue S(X).
i=1
If ¥ = max{l, M} it is easily seen that

a0, wpl+ X aglr|N), ud] < lag]  (we S(X).
Tl
S50

<l (121 <7 /W)

00
o S
i=1

and by the maximum modulus theorem
IFCON = llegll (1] <7/N).  Q.E.D.

CoroLLARY 3.1. Let X be a complex B-space and let a;eX (1 = 0,1, ...
wieyn). Then ll@g~+ayl-+ ... +a,l™ is constant in a neighbourhood of the
point 0 if and only if a;e E(a,) (4 = 1,2, s n).

Proof. Trivial. Q.E.D.

COROLLARY 3.2. Let X be a complex B-space and let a;e X (1 = 0,1, ...

coym). Let |lag+al+ ... +a, ™| be constant in a neighbourhood of the
point 0. If by, by, ...., b, lie in the subspace spanned by Gy, dsy ..., Oy

" then a neighbourhood of the point 0 ewists in which Jlag~+b, & +b,2* +... +5, 2"

8 constant.

Proof. By Theorem 3.0 we have a;e B(a,) (¢ =1,2,...,m). Let
by, byy ..., b, be in the linear subspace, spanned by ag, Gz, ...y Gy. BY
Proposition 2.4 F(a,) is linear subspace, so we have b;e B(ay) (¢ =1,2,...
..., n) whence the statement follows by Corollary 3.1. Q.E.D.

COROLLARY 3.3. Let X be a complex B-space. Let age X and a,;¢ E(a,)
(6 =1,2,...). Then the sequence {a;; i =1, 2,...} of positive numbers
ewists with the following property: if {y;; & =1,2,...} is & sequence of
(complem) numbers such that |yl <y (i =1,2,...), then a nea}ghbom‘hood
of the point 0 ewists in which ||ay+(y16:) 5+ (v20) -+ ...l is consiant.

Proof. Choose {;; i =1,2,...} so that the series 3 [a;as, "
converges for an » > 0 and apply Theorem 3.0. Q.E.D. = )

In Theorem 3.0 the asswmption (ii) can be dropped if the function
considered is a polynomial (Corollary 3.1). The same holds also for an
arbitrary function if the subspace B(a,) is finite-dimensional, as the
following theorem shows. i
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THEOREM 3.4. Let Lr>f(8) = ao+ayl+asl®+ ... be a function with
values in a complex B-space X, defined and analytic in o neighbourhood of
the point O in the comples plane. Lot dimB(a,) < co.

Then o wmeighbourhood of the point 0 in which ||f ()|l s constant exisis
if and only if a;e B(a,) (i =1,2,...). Consequently the latter holds in the
special case when X is finite-dimensional.

Proof. If |f({)] is constant in a neighbourhood of the point 0, then
by Theorem 3.0 a;¢ H(ay) (¢ =1,2,...).

To prove the converse, let {er, ¢s; ...,
Proposition 2.1 an M < co exigts such that

Kooy wd| < Mool —1<@e, wpl) (6 =1,2,...,5;uec§(X")}.

‘Now, let a;e B(ay) (3 =1,2,...) and let the series a,-a,l-- ... converge
for |Z| < R. Denote ¢g({) = a;l+a,*+ ... The subspace FE(a,) being
finite-dimensional, it is closed. It follows that g(l)e H(a,) (/{| < R). Now
we may write g({) = yi(L)es+ya(l)es+ ... +yall)e, (IC] < R) and an
easy application of the Hahn—Banach theorem shows that the functions
y: (1 =1,2,...,n)are continuous for |{| < B with y;(0) =0 (¢ = 1,2, ...

n). It follows that a positive » << R exists such that |y;(¢) < 1/(nM)
(4 =1,2,...,m; || <7). So

e.t be a basis of F(a,). By

9

a0, w5t = | 36y 3|

i=1

< D) (01 (laoll —I<ai, 1)

< llaol] — <ag, ud

what means that |If({)]| = lla, +9(d)l <
modulus theorem it follows that [f(

(I8 < 7; we S(X)),
llaoll (14| < #). By the maximum
Oll.= llaoll (I < 7). QE.D.
4. The global characterization.

THEOREM 4.0. Let X be o complex B-space, @ a domain in the complew
plane and f: D-+X an analytic function.
Let [f(0)] be constant on 2. Then

(i) the subspace H[f({)] does not depend on Le D, i.e.

B[fO]1=EF ({9,

(i) f(&) —f(La)e B (Lre D, Loe D).
Conwersely, let the following conditions be satisfied :

(i) the closure E[f )] does mot depend on e D, i.e.

BfO1=F (lc9),

iom
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(i) f(G) =f(La) e F (816 D, Lae D).
Then ||f(0)l is constant on 2.
Proof. Let [|f(0) = M ({e 2) and let £ contain a dise |£— ol < 7.
Then

IKF(D)y wol < M
and applying Lemma 1.1 to the function {—>{f({o+1L), up/M we have

(1E—2ol <75 we 8(X),

—le—gl
0, w1+ R 1) (e, wi < |
(0 < 16—l <7; we S(X),
what gives
KFE)—(Za) ] < ——":]ch—] (FE—IKF(E), )

_ (18— 2ol <7j we S(X)-
By Proposition 2.1 it follows that )

1) FO)—F (L) e BIf(50)]

where

(I6— Lol < 1)

17(2) —f Colllrg < 1/2 (16 —Lol < 7/B).
Now Lemma 2.6 applies to show that

2) BIf(2)] = B[f(&)+ (f()) —F(L))] = BIf(%)]

(1€ =8l < 7[5).

Since the set 2 is open, for every {,¢ 2 a dise with center at [, is contained

in @ so that for every ,e¢ 2 we can prove (1) and (2). Now, £ being con-

nected, any two points of 2 can be connected by a (compact) are and by

the compactness argument it follows that B[f(()] = E ([<2). By (1)

the same argument yields f(ly) —f(ls)e B ({15 Lo D). : .
Conversely, let (i') and (ii’) hold. Let {y, {z< 2. Wntlng

f(ﬁ) = Cz)‘f‘[f fl)"f ¢a
and noticing that by (ii")

F(&) —f(G)e B = BIF(E)],

by Proposition 2.5 it follows that [If(Z)ll = If(L:)l. Since £y, Lae 2 were
arbitrary, the last statement of the theorem follows. Q.E.D.

Remark 4.1. The result of Thorp-Whitley ([4], Th. 3.1) folows
immediately. One has only to notice that B(») = {0} if » is a complex
extreme point of §(X) and then.to use Theorem 4.0 and Corollary 3.1..
Later (Corollary 4.5) we shall generalize this result.
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PrOPOSITION 4.2. Let X be a complex B-space. Let a,be X and
co{a, b} = 8(X). Then the subspace Flaa-+(1—a)b] does not depend on
ae(0,1), i.e

Elaa+(1—a)b] =F
Further, E(a) < B, E(b) <« B.
If in addition b—ae B(a)NE(b), then also B(a) = I and E(b) =

Proof. Let u,ve X, co{u, v} = §(X) and let we H(u). So an r >0
exists such that |u-+Ca] <1 (|£] < 7). Let 0 < a < 1. Then :

(0 <a<<]).
%

1—a)o]+ {aw)| =.la(s+ o) + (L—a)o| < alu+ Lol + (L — o]
Sat(l—a)=1 (<.

Since co{u,v}.c S(X), we have |lau+(L—a)o|| =1. It follows that
awe Hfow-+(1—a)v]. Now, by supposition e £0 so Proposition 2.4
yields 2e Blaw-(1—a)v], which proves that H(u) <« Hlau-+(1—a)v]
(0 < a < 1). Interchanging the roles of u and v we get also

E(v) c Blau+(1—a)v] (0

Now, let 0 < a;<a,<1l. Put a1a+(1—a1)b =9 and & = . By
the assumption co{a, b} = 8(X) so that by the first part of the proof

Blaa4(1—ay)b] = Elay0+(1—ay)b].

Putting b = and a,a+(1—a,)b = 4, we have similarly

e +(

<a<l).

E[ach— (1—ap)b] = Blay0+(1—a)b].
So we proved that
Blaa+ (1 I-a)bl =8 (0<a<l).

Similarly, for ¢ =  and b =v we get H(a) < B, E(b) < B.
) To prove the last statement of the proposition, let b —ae E(a) NE (b).
This means that an 7 > 0 exists such that '

le+i@—a)i<laf =1 o+ —a)l < bl =1 (1¢] < 7).
By the maximum modulus theorem we have
lo+l—a)l = p+L@—a)l =1 (151<).

By Theorem 4.0 it follows that the subspaces H[a--{(b—a)] and
B[b+t(b—a)] do not depend on {: |{| <<r. Since E[ea-+(1—a)b]
=F (0 <e<1) it follows that B(a) = B(b) = E. Q.E.D.

' Lgmm 4.3. Let X be a complew B-space and let N be a subset of X
3amsfi't,/;ng coS < 8(X). Let B(a) =F (ael) and let s—ye B (v ( ,ye ).
en

and

EHa) =T (ae co»S’)

icm

~ point of §(X), but still f(£) is not constant on £ where Z = {¢:

On vector-valued analytic functions 37

Proof. In view of Proposition 4.2 the proof is straightforward, so
we omit it.

TreoreEM 4.4. Let X be a complex B-space, D domam W the complew
plane and f: 2-+X an anolytic function, satisfying |f(C) (Ce 2).
Then

E(a) =F (accof(2)).

Proof. By [4], Lemma 3.3, we have cof(2) = S(X), so that by
Theorem 4.0 the set f(2) satisfies the assumptions of Lemma 4.3 which
proves the assertion.

COoROLLARY 4.5. Let X be a complex B-space, 2 a domain in the complex
plane and f: F—+X an analytic function, satisfying |f(Ol =1 (Ce D).
If cof(P) contains a complew extreme point of S(X) then f({) is constani
on 2.

Proof. Let a point aye cof(2) be complex extreme of S(X) This
means that #(a,) = {0}. By Theorem 4.4 it follows that H(a) = {0}
(#ccof(@)). Since by Theorem 4.4 we have f(li)—f(5) eE[f &)1
(&1, Eae D), it follows thab f(E,) —f(e) = 0 (L1, Lae 2). QE.D.

Remark 4.6. In general, Theorem 4.4 and Corollary 4.5 do mnot.
hold for cof(2) instead of cof(2). To see this, let X be the complex B-space
of complex number pairs 2z = {2, 2;}, where (2] = max{|e|, [z} Let
£(2) = {1, &} Then f is analytic, Hf Ol =1 (gl <1), but f(1) = {1,1}
is a complex extreme point of S(X). So f(.@ ) contains a complex extreme

gl <1}
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