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Subsets of the unmit ball that are separated
by more than one

by
CLIFFORD A. KOTTMAN (Corvallis, Ore.)

Abstract. The unit ball of each infinite dimensional Banach space is shown
to contain an infinite subset such that the distance between each two of its points
is greater than ome. The question whether the number “one” may be replaced by
«one plus &” is related to the problem whether an infinite dimensional Banach space
must have a subspace isomorphic to ¢, or to Iy. A related isomorphic invariant is
algo investigated.

0. Introduction. In this paper we shall show that the unit ball of an
infinite dimensional normed linear space contains an infinite subset
with the property that the distance between each two of its points is
greater than one. The proof is based on 2 combinatorial lemma that
may have independent interest. The question whether the unit ball has
subsets which are (1 - &)-separated, where ¢ i3 a positive number depending
on the normed space, is related to a question of J. Lindenstrauss [10]
concerning the structure of Banach spaces: does every infinite dimen-
sional Banach space contain a subspace whieh is isomorphie to ¢ or to
1, for some p, 1<p < c0? We show a negative answer to the first
question implies a negative answer to the second.

‘We shall employ the following notation: For an infinite dimensional
normed space X, U(X) = {we X: |l <1} denotes the unit ball and
8(X) = {we X: |lo|| =1} is the unit sphere. For a number 4 > 0, we say
a subset A of X is A-separated if for each pair of distinet points, & and v,
in A4, one has |z—yll=> A We define P(X) = sup{A: U(X) contains an
infinite A-separated subset}. In [9]it is shown that 1 < P(X)< 2 and that
P(X) provides information concerning the tightest packing of balls of
equal size inside the unit sphere. Two normed spaces, X and Y, are iso-
morphic if there is a one-to-one linear map, T, from X onto Y with T
and 7' bounded; in this case Tis called an isomorphism and we write
X ~Y If X and Y are isomorphic then the Banach—Mazur distance
between X and Y.is defined by &(X,Y) = inf{ln(|T|-|T7)} where
the inf is taken over all isomorphisms between X and Y. If [X] denotes
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the set of all normed spaces isomorphic to X, then ([X], d) is a pseudo-
metric space ([1], p. 242). _

In part 3 of this paper we examine the isomorphie invariant P(X)
={P(¥): ¥ ~X}.

We use R to denote the real numbers and R* to denote the real
vector space of all real sequences with finitely many non-zero terms.
For an element o = (2, @,...)e R, let [luf, = (3 lz[?)"* for 1< p
< oo, and |#lle = max{jz;]: ¢ =1,2,...}. For each p, 1<p < oo,
the normed space (R®, |||} is dense in 7, and (R®, ||-|,,) is dense in ¢,.

1. Subsets separated by meore than wunity. One may use the Riesz
lemma ([17], p. 96) to show that for each infinite dimensional normed
space X there is an infinite subset of U(X) that is 1-separated. We shall
use the following combinatorial lemma, to show somewhat more; namely
that U(X) has an infinite subset, 4, such that for each pair of distinct
points, & and ¥, in A4, we have ¢ —y|| > 1. Credit is due to D. G. Larman
for some rewarding conversations concerning this lemma and for inde-
pendently supplying a proof of it. )

Let {¢;: ©+ =1,2,...} be the usual basis in R™, that i3, ¢; = (0, ...
..., 0,1,0,...) where the non-zero term appears in the 7th coordinate.
Let % be the set of sequences in R® whose terms are elements of the set
{”17 O, 1}'

Lemma 1. There is no subset A of % such that

(i) e;e A for i =1,2, ...,

(ii) we A implies —we A, and

(iii) of {®,, 24, ...} 28 @ sequence of elements of A then for some distinct
positive integers i and j, v;—m;e A. :

Proof. Suppose such a set A exists. Let & = (&, #,, ...) be an element
of A and suppose that », is the last non-zero term of x. We say that an
element 4 = (¥, ¥», ...)e 4 is an extension of » if there is an element
% = (24, %, ...)e A such that y, =¢#; = x; for all i< n and for some
k> mn, y, =1 and 2, = —1. As a shorthand, we say that 2 verifies in the
kth coordinate that y is an extension of z. A sequence &, %y, ..., @, of
elements of A4 is called a chain if each ,; is an extension of »;_,. Choosing
elements ¥,, ¥s, ..., 4, in 4 such that for each 4, y,; verifies in the k;th
coordinate that ; extends ;_,, one may check that the set {y,, ¥, ..., Yn}
has the property that for each pair of integers ¢ and j, with 1< i <j< »,
the sequence 4; —4; has a 2 in the %,th coordinate, and therefore is not
in A. This property together with (iii) shows that there can exist no in-

finite chains in 4. Call an element of 4 maximal if it has no extension.

The argument above shows that each element » in A has a maximal
extension (if # has no extension, we call # a maximal extension of itself.)
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Now we inductively construct a sequence of maximal elements in A:
define w, to be maximal extension of e;, and supposing that w,, ..., w,
have been defined, choose an integer p such that all the non-zero terms
of w;, oceur before the pth coordinate and let wy ., be any maximal extension
of e,. Partition the set of all two-element subsets of the natural numbers
into two classes according to the rule: {7, j} is in class one if w;—w;e 4;
{¢, j} is in class two it w;—w;¢ A. Property (ii) shows that this partition
is well defined. Ramsey’s theorem [14] implies there is an infinite subset,
M, of the natural numbers such that all the two-element subsets of M
are in the same class. By (iii) this must be class one, and, by renumbering
if necessary, we may assume that M = {1,2,3,...}. Finally, consider
the sequence {w, —w,, w; —w,, w; —w;, ...} of elements of 4. By property
(iii) there are distinct odd integers ¢ and j such that (w; —w;, ) — (w; —w;.,)
is an element of A. But now w; —w;., and w; —w,, —w; +w;,, are elements
of 4 and thus w,—w;,,—w;+w;,,; is an extension of w; (verified by
w; —w;, in the first non-zero coordinate of w;,,) contradicting the maxi-
mality of w,. This contradiction establishes the lemma. &

THEOREM 2. For each infinite dimensional normed space X, there
is an infinite subset B = U(X) such that for distinct poinis @ and y in B,
lle —yll > 1.

Proof. Let {h;} ¢ X and {f;} = X*, the dual space of X, be ortho-
normal sequences, that is, b, = lIf;]l = Lfori = 1,2, ... and 8,(b;) = 8.
The existence of such sequences is guaranteed by the results of [5]. Let L
be the linear span of the set {b;: 4 =1,2,...} and for each we L define
T = (B.(2), Po(@),...)e R®. Let V ={F: xel and [w}<1} and let
A = Vn% where % is as in the discussion preceding Lemma 1. Clearly 4
satisfies (i) and (ii) of Lemma 1 and if each infinite sequence in U (X)
contains a pair of distinet points # and y with |z —y||< 1, then 4 also
satisfies (iii). Thus, there must exist an infinite set B of points of U (X),
indeed, of U(L), such that for distinet points z and y in B, |x—y|| > 1. B

‘We do not know if the following stronger statement is true: for an
infinite dimensional normed space X there is an infinite subset {z,, ®,, ...}
of U(X) and a sequence {e;, &1, ...} .of positive numbers such that for
each pair of distinet natural numbers, 7 and j, we have |, —;| > 14
+&;+¢;. Using the methods of [9], the validity of this statement would
imply the existence of an infinite pairwise disjoint collection of balls
ingide the unit sphere of X, each with radius greater than 1/3.

2. (1+ ¢)-separated subsets of the wnit ball. This section is devoted

" to the question of the existence of (1 4 &)-separated subsets of the unit ball

in an arbitrary infinite dimensional normed space. Although the question
is not resolved in general, it is answered for a large class of normed spaces:
those containing a subspace isomorphic to (R, |-{|,) for some p with

2 — Studia Mathematica LIIL1 ®ron
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1< p < oo. It has been conjectured [10] that this class contains all infinite
dimensional normed spaces. The main result is the following statement
about Banach spaces isomorphie to 6, or to I, for some p with 1 < p < oo.

TuEoREM 3. If o Banach space X contains o subspace ¥ which is
isomorphic to ¢,y then P(X) = 2; if X ds isomorphic to 1, for some p with
1< p < oo, then P(X) =27,

Proof. In case ¥ ~¢, or Y ~1;, this fact follows from the results
of [71], 2.1, 2.2, which show that if a Banach space Z 1s isomorphic o ¢,
(or to 1) then for each 4> 0, Z has a subspace W isomorphie to ¢, (or
to &) with d(c,, W) < 6 (or d(ly, W) < ). Thus, in these cases—as well
as the case ¥ ~ 1, since ¢, is a subspace of I, —for each &> O there
is & (2 —¢)-separated subset of U(X). In case ¥ ~1, for 1 < p < oo, we
will show that for each A with 0 < 1 < 27 there ig a A-separated subseb

of U(X) using the following modification of R. C. James’ method. Since -

Y is isomorphic to l,, there are points 2, 2y ...

and M such that
””2 lesl” < HZ‘%‘%‘
for all sequences of numbers {a;}. Let
— |7, P = 0 for i !
K, ——mf{”Za,,-zil : Daf? =1 and ¢ = 0 for 4<n}

" and let K = lim(K,) as n—occ. Then m < K < M. Choose 6> 0 so that
(1—8)/(L+0) > #7/2, and choose p, so that K, > (1—0)K. Finally,
choose {y,} and an increasing sequence of integers {p,} such that

in ¥ and numbers m

P D)l

Yn = 2 {a’n,izi: P i< Pnta -1}
where
and

D104l pa<i< P —1} =1 lynll < (L+O) K.

Now for any sequence a; we have

"> K, Y laf" = (1—0) K Y laf?,

“E“i%

s0, letting @; = y,;/[(1+ 6) K7 we have z;¢ U(X) for each ¢ and
| Y ae]” = rr—oya+ )1 3l > L0721 3 laat”.

In particular, |o;—zl > 4, for ¢ #j. W

‘We are indebtéd to J. R. Retherford for suggesting the method of
proof employed above.

Two remarks concerning Theorem 3 are appropriate. First, the
bounds for P(X) found above are the best possible, since, as shown in
[2] and [9], P(c,) =2 and for 1< p < oo, P(l,) = 2'?  Second, it should
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be noticed that this theorem does not guarantee the existence of (2'#)-sepa-
rated subsets in spaces isomorphic to T,, but that for each & > 0, (2" —¢)-
separated subsets exist. For example, a space X isomorphic to ¢, with
a strictly convex norm (that such a space exists in a theorem of J. A. Clar-
kson [3]) has P(X) =2 but no set of three points in U(X) can be
2-separated.

Notice that if Y is a dense subspace of X then P(Y) = P(X). Further-
movre, it i3 easy to show that if each infinite dimensional Banach space
contains a subspace isomorphic to ¢, or I, for some p, 1 < p < oo, then
each infinite dimensional normed space contains a subspace isomorphic
to (R, |[],,) for some p, 1 < p < co. Thus, if Lindenstrauss’ conjecture
is valid, the following statement shows that for each infinite dimensional
normed space X, there is an ¢ > 0 and an infinite (1 4 &)-separated subset
of U(X).

CoROLLARY 4. If a normed space X contains a subspace Y isomorphie
to (R, ||*[l), L < p < oo, then P(X) = 2P if ¥ is isomorphic to (R, || [l
then P(X) = 2.

We note in passing that recent work on Lindenstrauss’ conjecture
has appeared [11]in which a Banach space is exhibited that has no comple-
mented subspace isomorphic to ¢, or I,, 1< p < oo.

‘While we cannot demonstrate the existence of infinite (1 + s)-sepa-
rated subsets of the unit ball of every infinite dimensional normed space,
we can show that the existence of such sets is equivalent to the negation
of the combinatorial conjecture below.

CONJECTURE B. There ewists a subset A of R™ such that

(i) 4 ds conver, ‘

(i) e;e A for each ¢« =1,2,...,

(iii) wed implies —mwe A,

(iv) & = (&, Eay...)e A implies |&| <1 for each i =1,2,..., and

(v) for each sequence {®, %,,...} of elements of A and e> 0 there

ewist distinct natural numbers 1 and j such that (1 —e)(w; —x;)e A.

Notice that s cannot be taken equal to 0, otherwise the set of sequences
in A whose terms come from the set {—1, 0, 1} satisfies the conditions
of Lemma 1.

THROREM 6. There exists an infinite dimensional Banach space X
with P(X) = 1 if and only if Conjecture 5 is true.

Proof. First suppose a set A exists that satisfies Conjecture 5. Let Z
denote the normed space (R, ||-[,). Then U(Z) is a subset of 4 and thus
A is radial at 0. Clearly 4 is convex and symmetric. Thus, 4 is the unit
ball of a normed space ¥. Liet X be the completion of Y. Since ¥ is dense
in X, P(¥Y) = P(X), and by property (v) of the set A, P(Y) = 1. On the
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other hand, if X is any normed space with P(X) =1, we let {b:}, {B:}, Ly
and V Dbe as in the proof of Theorem 2. Then V = R® and satisfies prop-
erties (i) through (v) of Conjecture 5.

We close this section with a remark on finite 1-separated subsets of
the unit ball of an infinite dimensional normed space. An application of
the main theorem of [6] shows that for each infinite dimensional normed
space X and s> 0 there are subsets of U(X) of arbitrarily large finite
cardinality that are (2'*—e)-separated. On the other hand, a result
of [15] states that for each ¢ > 0 there is an integer » such that there is
1o (2% 4 ¢)-separated subset of I, of cardinality ». Thus, in a sense, the
conclusion drawn from A. Dvoretzlcy’s theorem above is the best possible.

3. An 1somorphic invariant. For each infinite dimensional normed
space X we define P(X) = {4: P
for each X, P(X) is a subset of the olosed interval [1, 2]. If Conjecture 5
is false, then P(X) is a subset of (1, 2]. In this section we list some sets

that are possible candidates for the isomorphic invariant P(X), and, .

with. two exceptions, find & Banach space X corresponding to each pos-
sibility.

THEOREM 7. For each infinite dimensional normed space X there s
a number b, 1 < b < 2, such that P(X) equals either (b, 2] or [b, 2].
] Proof. We shall show that if ¢e P(X), then [¢, 2] is a subset of P(X).
To accomplish this, we first observe that the funetion P: X—P(X) is
a continuous funetion from the pseudo-metric space ([X], d) to the real
numbers. The easy details of this fact are left for the reader. Now since
([X], d) is connected (in fact pathwise connected [12]), it suffices to exhibit
a normed space Ye[X] with P(Y) = 2. Let {b;} = X and {8;} = X* be
as in the proof of Theorem 2 and define V = convex hull (U (X)U{+2d;:
i=1,2,...}). Let || denote the norm in X and let |-||' denote the Min-
kowski functional of V. For each ze X we have |2[| < 2| < 2| and
thus Ye[X] where ¥ denotes the vector space X with the norm |j-].
It remains to show that the set {2b;: ¢ =1, 2, ...} is is 2-separated in Y.
If B is a continuous linear functional on X, let ||f|| denote the norm of #
congidered as an element of X* and let |3 denote the norm of 8 considered.
as an element of Y*. Since [|;| = 1 for each i =1, 2, ..., it follows that
18;— ;1 < 2. Furthermore, it ®econvex hull {£2b;: ¢ =1,2,...}, then
I(8: — ;) ()] < 2. Thus ||f;— i’ < 2. Now

125 —2b,1" = (1/2) (8 — B;) (2b; —2by)

which completes the proof. B

Since P: ([X], d)—R i3 continuous, the parameter P (X) is potentially
useful for determining that certain normed spaces are not mnearly iso-
metrie. This technique is discussed in'[13] and [18].

= (1/2)(2+2) =

= A for some space Y ~ X}. Clearly,.
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The results of [2] and [9] show that 2Y7e P(l {I,) for 1< p < oo and
Theorem 3 shows that 2 = inf{A: Ae P(i,)}. Theorem 3 further shows
that P(e,) = P(l,) = {2} and thus for each be (1, 2] we have an example
of a Banach space X with P(X) = [, 2]

‘We shall show in Theorem 11 that for each be (1, 2) there is a Banach
space X with P(X) = (b, 2]. We do not know whether there exists a nor-
med space X with either P(X) = [1,2] or P(X) = (1,2]. Of course,
an example of either type would yield a negative answer to Lindenstrauss’
conjecture. The path to Theorem 11 is segmented into three lemmas, the
first of which has independent interest since it gives a method for caleu-
lating P(X) for a large class of normed spaces.

It (X, X,,...) is a sequence of normed spaces, then X = (X; @X,&®
@ ...), denotes the normed space studied in [4], that is, X is the set
of all sequences » = (z(1), #(2), ) such that z(i)e X;foreachi = 1,2, ...
and .

ol = (3 {{lo(i)lx): i =1,2, ..

LevmmA 8. Let (Xy, X,

_})1/1) < oo.

...) be a sequence of mormed spaces with

dim(X;) > 1 for each ¢ =1,2,... and let X = (Xl@Xz@‘..),p. Then
P(X) = max (2%, sup {P(X): i = 1,2,...}).
Proof. Let @ = max (2%, sup{P(X,): i =1,2,...}). Clearly P(X)

>, since X contains subspaces isometric to I, and to X, for each
i=1,2,... To complete the proof we shall suppose that {z;: 4 = 1,2, ...}
is a (@ -+e)-separated subset of S(X) and obtain a contradiction via an
adaptation of the ‘gliding humyp’ method of [9], 1.5. To this end, we in-
ductively select a subsequence {7} of {#;} with special properties. First;
since Qf > 2, we may choose 8> 0 so small that for any number a,
0<a<1, we have

(1) {(@+ 8P (et 8)+2[8% + (1 —a+ O)FPPP <Qte.

We may assume, by passing to & subsequence of {s;} if necessary, that
lim Jjg; (§)]| = a; exists for each j. Next we construct & sequence of positive

00

numbers {r;} such that for each n we have

@) Dl <(Yap) +o
=1 J=1
and
n \ i
(3) D la—n"sgnia;—ny) = (3 af) — 9.
ji=1

j=1
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Notice that if #e X is such that [#] = 1 and
(i) —a) <m for all I<j<n

then (3) implies

n+i+s n
(4) > (@IP<1- an WE<1— D af +8
'~n+t j=1

f.or all positive numbers s and ¢. Let M, = 0, 2, = ‘®,; ehoose M, so that
2 e ()P < 6. et {y;: 4 =1, 2, ..
Such that -

.} be a subsequence of {w;: ¢ =2,38, ...}

[lye () —as) <=y for all i and all § < M.

Now the sequence {{a;+7,) " y:(1): 4 =1,2,...} is a subset of the unib
ball of X, and P(X,) < @Q. Partitioning all two element subsets of the
natural numbers into two classes according to the rule: {i,j} belongs
to class one if

flys (1) —; (Dl (@ + 7)1 < @ + 6

and to class two if the opposite inequality holds, an application of Ramsey’s
theorem shows an infinite subset, M, of the natural numbers has all
its two-element subsets in class one. By passing to another subsequence,
we may assume M = {1, 2,...}. Repeating this Ramsey argument in
turn for the sequences

Y@ i =1,2,...}, §=2,3,..

{(&;+n)7" .y My,

‘we may assume that
1Y:(3) = (D < (@ + 8) (a5 +7)
Let 2, = y, and choose M, > M, so that

D) la(i)iP< s.

J=M,

for all j < M.

Continuing this process in the obvious fashion we construct a sequence

{#} in §(X) and an increasing sequence of numbers {M,} such that
(5) ' 2 ()P < 6  for each &,

’ =My
(6) [lex(iil—a) <ny for'all & and j< My,

M ) =2 MI<(@+0)(a;+m;)  for < My, and j< My,
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and of course .
(8) ler—2mll > Q+e  for & # m.
‘We claim that for a fixed » and any & < n one has
My
@ D P> 8,
F=My_1+1
’ My_y
because, if mnot, then letting a = 3 af we have
=1

e —2l” = D llew () — 25 (I

=1

My_y My,

= X bl —z@P+ Y el s+
g=l J=Mp_3+1
+ D) Il —m()I”
=M+l
M3
< 3 [Q+8) (e +r)P +
i=1
My My, .
Y (Y @)Y+
J=Mp_1+1 J=Mp_1+1

0

+{( 5: llzn(j)ll”)””+( Z ”zk(j)“p)llp}_rp

J=Mp+1 §=Mp+1
(by (7) and Holder’s inequality)
My
<@+t )+l > lmP)T) +
F=Mp_q+1
Y )+
J=Mp+1 .
(by (2), the negation of (9), and (5))
<(Q+ 6P (a+ 8)+2[8P+ (1—a+8]?  (by (6) and (4))
) <(@+o” (by (1)

which contradicts (8). But the claim just established implies that
I2ml? > (m—1)6, which, for m sufficiently large, contradicts the fact
that each #; has unit norra. M
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The lemma above generalizes results in [2] and [16], where only I,
gpaces are considered, and also 1.7 of [9], where each space X, wag 1equu-ed
to be finite dimensional.

Although it seems attractive to hope.that if a Banach space X hag

P(X) = [21”’ 2] then X confains a subspace isomorphie to l,, an appli-
cation of Lemma 8 shows that if {py, ps, ...} is a sequence monotone
decreasing to p, then X = (l @1, @ ...) 1, has no subspace isomorphie
to 1, but P(X) = [2'7,2].

‘We suspect that the following form of Lemma 8 is valid for a bru.mlcr
class of sequence spaces than the I, spaces, but we have no proof: if ¥
is & sequence space and X = (X,@X,@® ...)p then

P(X) =max (P(X),sup{P(X,;): i'=1,2,...}).

Levma 9. If X is a normed space with P(X) = s and {x;} is & sequence
of points in the wnit ball of X, then for each natural mumber n and & > 0
there is o sequence of numbers § = (1, 13, ...) such that the terms of n come
from the set {1, 0,1} and exactly 2" terms of n are non-zero and

H 57 Ny
iz

Proof. The proof is by induction on #. For # = 0 the lemma is
obvious, and for » =1, the conclugion follows immediately from the
hypothesis P(X) = s. Suppose the lemma is valid for n = k—1. Fix
e>0 and choose 6>0 such that (s*'+46)s--8<s"+e Tind 5
= (71, 7z, --.) With 27! non-zero terms such that if & = Yz, then
lleal < 857 -+ 6. Choose K so large that all the non-zero tering of 7t occur
before the Kth coordinate and a,pply the lemma again to the sequence
{#x; x41, .-} to obtain a sequence n* = (7}, 7%, ...) with 2~* non-zero
terms, all occurring after the Kth coordinate, such that if z, = X R
then [jz,] < s*~* - 4. Continuing in this fashion, we obtain a@ bequence
{#1, %2, ...} contained in (s"~* + §) U(X). Shrinking by a factor of (8% - )~
and applying the fact that P(X) = s, there must exist two distinet elements,
#; and g;, such that

< s"He.

llog— 2l <5 (8514 8) (8) -+ 6 < 8% 5.
The required sequence 7 with 2* non-zevo terms is 7' —»'. ®

It may be of interest to notice that the non-zero terms of » can be
made to oceur in the pattern 1; —1; —1, 1; ~1,1,1 —~1;... where
the first term is 1 and for each % the terms fmm 5 +1 1:0 2’”+ ! are.the same

as those from 1 to 2% with the signs reversed. In gennml for m > 0 the:

2" non-zero terms of 5 consist of equal numbers of +1 and —1.
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LemMA 10. Let p be a fized number, 1 <p < oo. For each natural
number n and &> 0 such that 2'% 4 & < 2 there is a Banach space X with
P(X) =2" 1o and 2P P(X) such that if Y is isomorphic to X with
P(Y)< 2% then d(X, ¥) = In(n).

Proof. Choose ¢ < p such that 2/¢ = 27 +¢ and let r be any number
with p <r < oco. Let U be the unit ball of the space (R, ||-{,) and let
V be the unit ball of (B>, |-||,). For a number m > 2, to be chosen later,
let W = convex hull (Vu(l /m) U) and let ]||-]|| denote the Minkowski
functional of W on R®. We claim that, for the proper choice of m, the
completion, X, of (R®, |||'|ll) satisfies the conditions of this lemma. It is
easy to show, in a manner similar to the proof of Theorem 7, that the
usual basis in (R*®, |{|-]]]) is a (29)-separated subset of its unit ball. On the
other hand, let {w;} be a sequence of points in W and write w, = A, u;/m +
+(1—2A;)v; for each ¢ = 1,2, .,., where u;e U and v;¢ V. By compactness
of the interval [0, 1] we may assume, by taking a subsequence if necessary,
that for a fixed >0, |4, —4] < d for all 4,§ =1,2,... By Ramsey’s
theorem, there is an infinite subsequence of {;} (which, abusing notation,
we identify with {u,}) such that

o, — gl < 29746 for all 4 5 4.

Picking distinet integers ¢ and j such that {v,—v;ll, < 2171 5 we have,
since [|-l,= -1l and |-l = HI-lll/m,

[1e0; —w; 11l < 1Az — A0l 4111 — 2) 0, — (X = Z) vyl
< Al —wlllfm + 6+ (1 — ) [|v; — vl + 8
< Ayl — uylly + (L — A) v, — 050l +26
< A2 4 8) (1 —4,)(2Y9 4 8) 426
< oM 3.

Noticing that P(X) is the same as P(Z) for any denge subspace Z of X,
and letting 6 tend to 0, we have P(X) = 2. Furthermore, since V = U,
(R™, |||-Il) is isomorphic to I, and thus P(X) = [2"7, 2] -which verifies
the fact that 2'7 ¢ P(X). It remains to show that if ¥ is isomorphic to X
with P(¥) < 21" then d(X, ¥) > In(n). To do this we shall pick m in such
a way that if T: X—¥ is an isomorphism with |7 < 1 and P(¥) < 27,
then |7} = n. First let a be a fixed positive number and pick k so large
that 2%2)(2*? 4 g) > n. Then choose m such that 1jm < 27¥¢. It is not
hard to verify that for this choice of m, if n = (%1, 75, ...)-18 & sequence
in R® whose terms come from the set {—1, 0,1} and which has exactly
2% non-zero terms, then [||n|| = Inl, = 2¥7. To finish the proof, let ¥
be isomorphic to X with P(Y) < 27 and let T: XY be an isomorphism
with [|T]|< 1. Let {g: 1 = l,.z,. .} be the usual basis in (R, [|-]) so
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that {T(e): ¢ =1,2,...} is a subset of U(Y). By Lemma 9, for the
fixed number o> 0, there i3 a sequence 7 = (91; Mgy ---) Whose terms
come from the set {—1, 0, 1} with 2% non-zero terms such that

‘IZ{WiT(Ei)I i =1,2, "'}Hy<2k’”+a.

| e /(2

TreorREM 1Ll. For each number be(1,2) there is a Banach space X
with P(X) = (b, 2]

Proof. Choose p such that 27 = b and let ¢ be a positive number
such that b+ < 2. For each natural number 7, use Lemma 10 to construet
a Banach space X, with P(X,) = b-+¢&/n and b ¢ P(X,) and such that
it ¥ is isomorphic to X, with P(¥) < b thén d(X,, Y) > In(n). Let r = p
and define X = (X;®X,® ...}, Let T: X—Y be an isomorphism and
let (X, Y) = s < oo. Choosing # such that In(sn)>s and examining
P(T(X,)) we have P(Y)> 2 — p, Thus P(X) < (b,2]. On the other
hand, for an arbitrary 6 > 0, we may choose » such that ¢/n < 6 and find
Banach spaces ¥; ~X; for 1 <i<<n with P(Y;) =b. Then X is iso-
morphie to ¥ = (¥,® ... DY, X, ,®X,,®...), under the canonical
map, and by Lemma 8, P(¥)<b-+06. Therefore P(X) =(4,2]. H

Tt should be noticed that the freedom in the choice of the parameter »
in the proofs of Liemma 10 and Theorem 11 allows the example constructed
in Theorem 11 to be the i,-sum of a sequence of spaces, each of which
is isomorphic to 1,.

But now

17 > |¢> @)@+ zn. W

Added in proof. B. 8. Tsirelson has recently constructed a Banach space with
no subspace isomorphie to ¢, or any Iy, 1 < p < oo, thus providing us with a counter-
example to the conjecture of Lindenstrauss.
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