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On the analytic transform of bounded linear functionals
on certain Banach algebras

by
YNGVE DOMAR (Uppsala)

Abstract. A generalization of the Fourier-Carleman transform is introduced
for bounded linear funectionals on certain commutative Banach algebras. The. in-
vestigation concerns the relations between the set of singularities of the transform
and the structure of the largest annihilating ideal of the funectional. Generalizations -
are obtained of earlier results which have been proved by different and more
limited methods.

1. Introduction. In many investigations of special, commutative
Banach algebras with a subspace M of C as regular maximal ideal space,
one has found it useful to map the dual Banach spaces of bounded linear
functionals into the space of functions, holomorphic on' C\M, using
transformations of Borel type. Following ideas from Carleman [3], this
approach has been wsed for instance in the papers [1], [2], [8], [11]-
171, [20], [21], [23], [24].

Of particular concern in these studies are bounded linear functionals
which annihilate some non-trivial ideal in the algebra. It was shown that
every such functional has a transform which can be continued across
some part of the boundary of M to a meromorphic function in the interior
of M. Close relations were found between the singularities of.the con-
tinued transform and the spectrum of the functional, i.e. the co-spectrum
of ity largest annihilating ideal. By means of estimates from above of
the modulus of the transform and its continuation, it was~ possible to
obtain information on the nature of the singularities of the transtorms
of certain functionals, and this in its turn could be used to reveal interesting
properties of the ideal structure of the studied Banach algebras. A typical
question which was settled in many Banach algebras by this method
is the problem of determining all closed ideals which are primary, i.e. have
one-point co-spectrum.

The methods which were employed in the mentioned papers to esta-
blish basic properties of the analytic transform are essentially function-
theoretic and depend very much on particular properties of the individual
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Banach algebras. Hence these methods cannot be used to build a unified
and more general theory. It is, however, possible to attain this by means
of the following simple observation: For every commutative Banach
algebra B with unit, a bounded linear functional # with spectrum A (F)
and largest annihilating ideal I (F) can be interpreted as a bounded linear
functional on B/I(F), a Banach algebra with maximal ideal space A (TF).
This makes it possible to define the amalytic transform of ¥ dirvectly
a8 a function, holomorphic in C\A(F). It turns out that many properties
of the analytic transform, earlier proved only for very special algebras,
can be proved very generally using Bamach algebra theory applied to
BI(F).

It is necessary to remark here that the analytic transform was used
in the papers mentioned only as a means of investigating the ideal strue-
ture in special algebras, it was not studied for its own interest. The main
result in fthese papers concern the ideal structure and they do not gen-
eralize as extensively as the transform theory, since they depend very

strongly on the special nature of the Banach algebra and on funetion-

theoretic results of limited validity, for instance the lemma of Sjoberg
and Levinson ([5], [18], [22]). It is, however, probable that our general
theory of the analytic transform can be of value in the continued detailed
study of the ideal structure, even in more complicated situations, for
instance for the quasi-analytic algebras studied by Geisberg and Konju-
hovskii [9] and Vretblad [24].

The contents of this paper are as follows. The analytic transform is
defined in Section 2 and the examples in Section 3 connect our definition
with those used earlier. Section 4 contains a presentation of some basic
properties of the transform. Especially important is Theorem 4.1, which
extends the above-mentioned special results on the meromorphicity of
the analytic continuation. Section 5 deals with the subspace of bounded
linear functionals with rational transform. In Section 6 relations. are
established between the spectrum of a functional and the set of singularities
of its analytic transform. A general result (Theorem 6.3) gives a corollary
(Theorem 6.10) which says that if a functional has totally disconnected

spectrum, then the spectrum is the natural boundary of the analytic:

transform of the functional. In Section 7, a representation formula is
given, which is convenient to use in order to estimate the modulus of
the analytic transform of F in the set M\ A(F). Sections 8 and 9 contain
results for more special types of algebras, in Section 8 regular algebras
and in Section 9 algebras satisfying the analytic Ditkin condition, intro-
duced by Bennett and Gilbert [1].

Especially in Sections 5 and 6 it would have beén possible to make

a more thorough use of the existing theory of analytic operator-valued
funetions, but we have preferred to make the exposition as self-contained

iom
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as possible. In this context it should be mentioned that the paper [7]
contains comparisons between the spectral notion used here and other
notions, more closely related to operator theory.

2. Preliminaries. Definition of the analytic transform. B is always
assumed to be a commutative Banach algebra with identity e and con-
taining an element & such that rational functions of a with poles outside
the spectrum Sp(a) of a form a dense subspace of B. We present some
simple and essentially well-known properties of B.

Let us first observe that B need not be semisimple. This is shown
by choosing as B an arbitrary radical algebra with unit, of dimension > 2
and generated by one of its elements. Secondly, the assumptions do not
imply that B is singly generated. An example of this is ¢ (T'). For if we
consider T' as the unit circle in C, we find that the element 22, zeT,
has spectrum T, and rational functions of it, with poles outside 7', give
& dense subspace of C(T). Hence B = ((T) fulfils our conditions. But
it is well known and easily proved that two elements are needed in. order
to generate C(T).

Let M denote the maximal idedl space of B. The Gelfand transform
of an element beB is denoted by s—>b(x), xe M. The range of z->b(w),
@e M, coincides with Sp(b). If @, ye M give a(z) = a(y), then Q(a)(x)
= @ (a)(y) for all rational @ with poles outside Sp(a), and thus b(z) = b(y)
for every beB since the elements @ (a) form a dense subspace of B. Hence
@ =y, which shows that s->a(x), ze M, is injective. Since r->a(2) is
a econtinuous bijection from the compact space M to the Hausdorts space
Sp(a) = C, it is a homeomorphism. Thus we can in the following put
M = 8p(a), a(s) =z for every z¢ M. For rational functions @ on C with
Doles outside M, Q(a)(2) = Q(2), for every ze M. The Gelfand transform
of an arbitrary element in B is continuous on M. Since it is the uniform
limit of rational functions z—Q(2), ze M, it is holomorphic in the interior
M of M.

For every closed ideal I B its co-spectrum Cosp(I) is the set of
all maximal ideals containing it, or, otherwise expressed, the set of common
zeros for the Gelfand transforms of its elements. B/I is a Banach algebra.
with maximal ideal space Cosp(I) in the sense that the element b+1,
beB, has the Gelfand transform '

z—b(2), zeCosp(l).

B* is the Banach space of bounded linear functionals on B. To every
FeB* which annihilates a cloged ideal I = B, it corresponds a bounded-
linear functional #; on B/I with

<b+17 FI) = <b1F>7
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for every beB. To every given FeB* there exists a largest (closed) ideal
I(F), annihilated by F. A(F) = CospI(F) is called the spectrum of I.
Obviously, .

(2.1) AF) =0 < F =0,

. DEFINITION 2.2. The analytic transform #—F(2) of a functional Fe<B*
is defined by the relation

(2.3) F(z) = {la—ze+I(I)™, Fym),

THEOREM 2.4. (2.3) is well defined and represents a holomorphic function
in CN\A(F).

Proof. B/I(F) has maximal ideal space A(F), and if 2,<C\NA(F)
the Gelfand transform z—¢—z, of a—z,6+I(F) in B/I(F) does not
vanish on A(F). Hence (a—zoe+I(F))™" is a well-defined element in
B/I(F), and F(z,) is defined. Now (a—ze+I(F))™" is moreover a holo-
morphic function of 2, ze C\NA(F), with values in B/I(F), and hence
z—>F(2), 2e O\ A(F) is holomorphie.

Remark. It is important to observe that if I is any closed ideal,
contained in I(F), then .

(2.5) F(2) = <(a—ze+I)7", Fp),

2eC\Ap.

if ze C\Cosp(I). In particular, choosing I = {0}, we obtain

(2.6) F(2) = {(a—2e)7", ),
if zeC\ L.

3. Examples. The following examples are chosen in order to show
the connection between our definition of the analytic transform and those
used earlier.

Exsweie 3.1. M =T. Let FeB*. The normal situation is- that
A(F) =T. Then z->F(2) is defined and holomorphic in the inside and
in the outside of T' < C. But if A(F) T, i.e. it I(F) contains an element
b with b(z,) % 0 for some 2,7, then, by the continuity of 2—b(z), C\A(T)
contains some arc¢ of T. The function in the outside is the continuation
of the function in the inside over every such arc.

It follows from Definition 2.2 (or from (2.6)), that I'(2)—>0 as z—oo.
Thus we have representations of the form

2] <1,

[ 2 F.~t,  for

Fz) =

1
l Zo'Fnz”‘

=]

bl
1, for |z >1.
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It is easy to show from (2.6) that
F, =<Ka™" F,

for every . Hence the analytic transform in this case agrees essentially
with the Fourier-Carleman transform, used for instance in [1], [8], [15],
(161, [21], [23]. .

We specialize still further. Let p,,neZ, form a positive submulti-
plicative sequence with p,>1, neZ, and satisfying logp, = o(n), as
|n]—o0. We define B as the Banach space of functions b defined by

o0
z—>2bnz“', zeT < C,
—00 ) .
where b, are complex numbers and

bllz = D palbal < oo

Bis a Banach algebra under pointwise multiplication, and it is well known
from the early Gelfand theory that its maximal ideal space is T' in the
sense that the Gelfand transform of every beB is b ifself. Taking a as
the element z—2,z¢T, we have Sp(a) =T, and rational functions of
a with poles only in 0 and oo form a dense subspace of B. Hence B satisfies
all our conditions. It is interesting to observe that we obtain the analytie
continuation between inside and outside as A(F) # T, without needing
to assume

D) (1 4n*)logp, < oo,
a condition which eannot be avoided if the continuation is proved by
function-theoretic methods of the type used in the earlier mentioned
investigations.

ExavMpre 8.2. The Banach algebra A(R) of absolutely convergent
Fourier integrals does not directly fit into our theory since it has no unit.
‘We shall show how this difficulty is overcome, by simply adjoining a unit
to the algebra.

‘We consider R as the real axis of a complex plane, where the points
are denoted by w. Rational functions, regular on the extended R and
vanishing at infinity, belong to 4 (R) and form a dense subspace of it.
By adding a unit ¢ to the algebra, and mapping the w-plane into a 2-plane
by the formula #z = (w—i)(w+4)~', we obtain a funection algebra on
T < € with maximal ideal space 7', and such that rational functions
of a: z—, with poles outside T, are dense in it. Hence the enlarged algebra
is of type B.
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Let F be a bounded linear functional on A (R). It can be extended
to a bounded linear functional on the enlarged algebra by defining
{e, F) = 0. The analytic transform of ¥ is for 2z ¢T defined by the formula

F(2) = {(a~—ze)™, F).

Mapping back to the w-plane, we obtain a function w—>@(w), defined
by

G (wo) = T ((wo—i)(wo+1)7") = {(wy+14)((wo+3)a— (wo—i)e) ™%, F,

wy ¢ R. Here a is the element w—>(w —4)(w+4)"! in the enlarged algebra.
Thus G(wo) = {by,, F), where b, is the element

1 Wy -4
w—>(w, —
(0o +12) 2¢+21}(w——w0))’
we R, in the enlarged algebra. But (¢, F'> = 0, which gives

(wn + 1)?

(3.3) G (wo) = Ouyy B,
w, ¢ R, where C, 18 the element fw—->(w—w,,)‘1 in A4 (R).
For every beA(R), we write
= [b(t)e™at, weR,

where b<L*(R), and observe that a bounded linear functional 7' on 4(R)
can be represented by a function peI®(R) in the sense that

B Fy = [ot)b(—t)ds.
Since, for we R, )

Im(w,) > 0,

f oo
i f gitwo—itw dt, if
Uwo
—1

SRo

e“‘"o““wdt, it Im(wy) < 0,
we see that

J T (e ™dt, it Im(wy) >0,
(3.4)
® t) G-Mwodt if

I
[

gy Iy =
l -t Im(w,) < 0.

.

(3.‘3) ‘a,nd (?..4) show that w,—>G(w,) apart-from an unessential factor
coincides with the Carleman transform of ®, a8 defined in [3].

icm
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Similar results hold for more general function algebras on R, for
instance for the algebra of Fourier transforms b of functions b with
bpeIM(R) and ‘ ‘

Bl = [ 1p@Ip@aE,

where the weight function p satisfies p(2) >
multiplicative and satisfies
logp(t) =o(t), as

Hence the analytic continuation of the Carleman transform for such
algebras follows from our general definition, and there is no need to
agsume that

1, zeR, is continuous, sub-

t]—=c0.

~ logp (1)
1+

dt << oo

This is of interest for the type of algebras studied in [2], [3], [9], [20],
[21], [24]. '

ExAMPLE 3.5. We start by considering the case where M is the closed
unit dise D. Normally, A(F) = D, and in that case e—F () is only defined
outside D. But if A(F) # D, A(F) is contained in the set of zeros of
some not identically vanishing function z-»b(2), beB. This function is
continuous in D, holomorphic in D°. Thus, A(F) is a totally disconnected
get, and all points in A(F) N D° are isolated. Similar results hold if M
is an annulus or a more general subset of C such that M° is connected
and the boundary of M “consists of sufficiently well-behaved curves.

By Mobius transformations we see, as in Example 3.2, that the dis-
cussion applies as well to certain Banach algebras without unit and with
M as, for instance, a half-plane or a parallel strip. All these cases cover
the variants of the Carleman transform discussed in [1], [8], [11]-[17],
[21], [23], and our definition gives directly the analytic continuation,
which was proved in these papers by more limited methods.

4. The mapping (F, b)—Fb and its properties. For every FeB* and
beB, Fb denotes the functional defined by the relation

¢, Fb) = <be, Ty,
ceB. Obviously, FbeB* and
[17B||pe < [1F'l|+ O]l

assuming that the norm in B is defined so that it is sub-multiplicative.
The mapping (¥, b)—~Fb determines B* as a module over B. Evidently,

A(Fb) = A(F),
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for every choice of FeB*, beB. Another evident relation is

(4.2) , Fb =0 <+ beI(F),

FeB*, beB.

In the remainder of this section we assume that F' is a fixed element
of B*. We shall first prove four lemmas which describe some gimple prop-
erties of A(F) and the mappings (F, b)—>Fb for various types of beB.

‘We need the following definition.

DEFINITION 4.3. U(F) is the union of all those components of M°
which are not included in A(Z).

Lmvva 4.4. AT points in U(F) 0 A(F) are isolated.

Proof. For every component V of U(F), there exists a belI(F) such
that z—b(2) does mnot vanish identically in V. ¥V n A(F) is included in
the seb of zeros of the holomorphic function 2—b(2), z¢ V. Hence all points
in ¥V n A(F) are isolated, and from this the assertion follows.

Levma 4.5. For every choice of ceC\NM and zeC\A(TF).
(4.6) (—0)F(a—ce) ™ (z) = F(2)—F(c).

Proof. (& —oce)™" exists as an element in B, and by (4.1) the spectrum
of F(a—ce)™" is included in A(F). Hence the left-hand member is defined.
Using (2.5), we obtain with b,eB chosen as an arbitrary element in
(a—ze+I(F)7,

(e~c)F(a—ce)™ () = (2—¢){(a—ze+I(F), (If’(a——ce)“l)z(FQ
= (2—0) by, Fla—ce)™> = (2—c) {(a—ce)~ by, F>
=(2—¢) ((cz——oe—l—I(‘lf’))“1 (a—ze+I(F), Prmy
=<(a —2e +I(F>)——1, FI(F)> —_ <<a/ —ce-+ I(.F’))_l FI(F')>
= F(z)—F(¢).

Levina 4.7. For every rational function @ with poles outside M we
form the rational function R, which is completely determined by the condi-

tions thai it is holomorphic on M and such that F(2)Q(2)+ R(2) has only
removable singularities on C\M and tends to 0 as z—»co.. Then

(4.8) FQ(a)(2) =T (2)Q(2)+ R(z)

holds when ze C\A(F), emcept at the poles of Q.

Proof. Dividing (4.6) by (2—¢), we obtain (4.8) in the case where
@ has only one pole, of order 1, and not placed at oo. Taking linear com-

binations of such relations (4.8), we obtain (4.8) in the case where @ has -

icm
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arbitrarily many poles, all of them of order 1 and not placed at co. Ob-
serving the inequality

(4.9) [Fb(2)] = |{(a—2e-+I(F)™", Fb)|

< |75+ ”(“ —ze ‘I‘I(F))—IHB/I(F)

< [ H|zs [1bll5 ”(“ —ze +I(F))_1”E/I(F)7
for ze C\A(F'), beB, we obtain the general case of (4.8) by a simple passage
to the limit.
- LemumA 4.10. For every beB there emists a function z—f(2), defined
and continuous in (MNA(F)) U U(F), holomorphic in U(F) and such
that :
(4.11)
for ze MN\A(F).

Proof. Here we use the existence of a sequence @,,, neZ_, of rational

functions with poles outside M and such that @,(a)—b as n—oco. By
Lemma 4.7 there exist rational functions E,, neZ,., with poles outside
M, and such that

FQ,(a)(2) — F(2)Qn(2) = By (2),

for neZ,_,ze MN\Ap. By (4.9), FQ,(a)(2) converges to Fb(z), uniformly
on compact subsets of C\4y, as n—>co, since

ll(@— e +I ()7 |5z

is bounded on such sets. Furthermore, @, (2)—>b(z) uniformly on M, as
n—oco. Hence R,(z) converges, as n—>co, uniformly on compact subsets
of MNA(F), and if f denotes its limit funetion, (4.11) holds in M\ A(F).
By Lemma 4.4, all points in

MNA(F)) U UEN(MNAF) = UF) N A(F)
( ) (

are isolated. Let 2, be an arbitrary point in this set. f is defined and holo-
morphie in a deleted open neighborhood of z,, and it remains to prove
that #, is a removable singularity for f. Take any circle around 2, situated
in this neighborhood, and such that the whole circle disc is contained
in M°. On the circumference, the functions R,,, n€Z ,, are uniformly bounded
and they are holomorphic in the disc sinee all singularities of the functions
R, lie outside M. By the maximum principle the functions R, are uniformly
bounded in the circle disc. Hence f is bounded in the deleted disc, and
2z, is a removable singularity for f. .

'We end this section with the following theorem, previously known
only in special cases.

THEOREM 4.12. For every FeB*, 2—F (2) in U (F)\A(F) is the restriction
of a function, meromorphic in U(F).

Fb(2)~F(2)b(2) = f(2),
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Proof. Take any component V' of U(F). By Definition 4.3 there
exists a beI(F) such that z->b(2) does not vanish identically in V. By
(4.2) we have Fb =0, and hence by Lemma 4.10

(4.13) F(2)b(2) = —f(2),
for ze V\A(F). z—>f( is holomorphic in V by Lemma 4.10, and since

#—b(2) is holomorphic and not identically vanishing in V, the theorem
is proved.

5. Elements in B* with rational analytic transform. We shall investigate
the properties of elements FeB* for which the analytic transform is the
restriction to C\A(F) of a rational function. We start with the following
special theorem.

TEEOREM 5.1. Let FeB*. F = 0 implies that F(z) = 0on C. F(z) =0
on CN\M implies that F = 0.

Proof. The first part is trivial. Using a simple passage to the limit,
F(2) =0 on C\J implies that <(Q(a), F> = 0 for every rational function
@ with poles outside M. Since the corresponding elements Q(a) form
a dense subspace of B, F =0.

For every FeB* we introduce the notation

(5.2) L(F) = {Fb|beB}.

LevmA 5.3. I(F) is the annihilator of L(F)

Proof. ceI(F) is equivalent to {bc, ') =0 for all beB. ¢ annihilates
L(F) is equivalent to (¢, Fb) =0 for all beB. Since (be, Iy = {c, b},
our lemma follows.

The following theorem is basic for the continued investigations in

this section.
THEROREM B5.4. For every FeB* the following statements are equivalent:
(1) L(F) s finite-dimensional.
(2) I(F) has finite co-dimension.
(8) There emists a not identically vamishing polynomial P such that
I(F) is the smallest closed ideal containing P(a).

(4) There ewist poimds 2 M, i =1,2,...,m, non-negative <niegers

Nyt =1,2,...,m, and comples constants Cy, i =1,2,...,mj = 0,1, ..
<vey My, SUch that -

m Ny
(5.5) ) By = 31 31 0;9(=),

i=1 j=0

for all rational functions @ with poles outside M.
(B) z2—F(2) coincides on C\M with a rational function.
Proof. (1) = (2) follows from Lemma 5.3.

icm
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:
(2). = (8). If (2) holds and = is the co-dimension of I(F) then

e+I(F), a+I(F), @+I(F), ..., a"+IF)

are linearly dependent in B/I(F). Thus there exists a polynomial P, not
identically 0 and of degree <, such that P(a)eI(F). Let Bp denote
the closure in B of the subspace of all P(a)Q(a), where @ is rational with
poles outside M. Bp together with ¢, a, a?, ..., o:,”‘1 spans B, and hence
Bl‘, has co-dimension < n. But Bpis contained in 7 (¥), and hence Bp= I(F).
Obviously, Bp is contained in every closed ideal containing P(a), and
hence (3) is proved.

(8) = (4). We start from (3), where we assume that P is chosen with

minimal degree. Put
m

P() = [[e—=y+,

i=1

where the points #; are all ‘different and n; > 0. Then every z;¢ M, for
otherwise P(z)(¢—z;)* woulll be a polynomial of lower degree, still satis-
fying (3). The elements of type P(a)@Q(a), @ rational with poles outside
M, are contained in I(F) and from this it is easily proved that <@ (a), F;
Q rational _with poles outside M, does only depend (linearly) of @9 (z),

i=1,2, ,'m,j =0,1,...,n. Hence we have a formula of type (5.5)
(4) (5). (B.5) gives with @ (a) = (a—=ze)™", 2zeC\M,
F(2) = {(a— =
() = {(a—se)” F>1§%7szm

(B) = (1). We start from (5), and denote by @, the rational function
on C which coineides with F(z) on C\ M. For every rational @ with poles
outside M, it follows from Lemma 4.7 that we can find a rational R with
poles outside M such that

FQ(a)(2) = Qo(2)Q(2) +E(2),

for ze C\ M. The right-hand member is a rational function, and it follows
from the properties of R, stated in Lemma 4.7, that all poles of the right-
hand member are at the same time poles for @, of not lower degree. This
implies that the functions 2—F@Q(a)(z), ze C\ M form a finite-dimensional
linear space. Hence, by Theorem 5.1, the elements F(Qa) form a finite-
dimensional subspace of B*. But this subspace is dense in L(F), and
hence Ly is finite-dimensional.

By Theorem 5.1 there exists at most one ¥ «B*, satisfying (5.5) for
given #z and C;. Hence the following definition determines a unique
funetional.
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DEFINITION 5.6. For z< M and je N, D,; denotes the functional in
B* determined by

@), D, = Q=)

for rational @ with poles outside I if such a functional exists in B*.
By taking (b, D,,> = b(2), for every beB, we see that D,, exists
in B* for every ze M. If j > 0, we can assure the existence of D, ; if z¢ Mo,
namely by defining
<b: Dz,j> = b(j)(z)'

The analyticity of 2—b(z) in M° and the inequality |b(2)| < [[b]z show
that this is & bounded linear functional. It should be observed that
D, ; may exist for special algebras B even at points 2, where derivatives
of 2—b(z) are not defined, for instance at isolated points of M.

In Theorem 5.9 we shall show that the functionals D, ; in B* can
be used to represent functionals, satisfying the equivalent conditions in
Theorem 5.4. To prove Theorem 5.9 we need the following lemma.

LemMA B.7. For every z,e M, je N, every D,o,jeB* has {z,} as spec-
trum, and )

T

o PR

Dy () =

if 26 C\{zy}.

Proof. D, ; annihilates the closed ideal generated by (@ —#)*%, and
2, is the only common zero of the Gelfand transforms of the elements in
this ideal. Hence the spectrum is included in {2,}, By (2.1) it coincides
with {z}. ,_

Hence D, ;(#) is holomorphic outside {z}. (5.8) holds for zeC\M
by (2.6) and Definition 5.6. By analytic continuation, (5.8) holds for
every zeC\{z,}.

TeEoREM 5.9. Let FeB* satisfy Theorem 5.4, (4) with O, 0,
©=1,2,...,m. Then D, ; evists in B* and belongs to L(F) for every

t=1,2,...,m,j=0,1,...,m;. We have the representation
m ny
(5.10) F=) 304D,
=1 f=0
Furthermore,
(5-11) A(F) *_‘{251722:“'721::}7
and
m oy '
i
512 - )
(8.12) P = D) > 0y e

i=1 j=0
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if 2eCNA(F). L(F) coincides with the span of D, 4, ¢ =1,2,...,m,
j=0,1,...,n;. The dimension of Ly is
' m
2 (n;+1).
=1
Proof. Forming FP(a) for convenient polynomials P, we find that
D, jelp = B* to the extent stated in the theorem, and that all functionals
FQ(a), Q rational with poles outside M, are contained in their span.
Taking limits we find that L(F) is the linear span of these functionals
D, ;. The representation (5.10) is obvious. By Lemma 5.7 we find that
A(F) is included in {2y, 2, ..., %,}. Conversely, D, ,eL(F) implies that
2;cA(F) due to (4.1), hence (5.11) holds. (5.12) is a direct consequence

" of (5.10) and Lemma 5.7. The assertion on the dimension of L(F) follows

from the linear independence of all D,, ;, which in its turn follows from
the linear independence of their analytic transforms.

Theorems 5.4 and 5.9 give various characterizations of the functionals
FeB* such that L(F) is finite-dimensional. Turning to the dual space
B, we can easily use these results to obtain the structure of the closed
ideals in B of finite co-dimension. It should, however, be observed that
it i not always trivial to find out whether a given closed ideal has finite
co-dimension or not. We state here a theorem which is proved and applied

- to classieal Banach algebras in [7].

TEEOREM 5.13. Let {21, ..., 2n} = M, and suppose that D, ,<B",
where n; >1,4 =1,2,...,m, and that

1P (@) bells < O P (a)bllz 1P (@) ¢z,

for some C >0 and every b, ceB, where

b3
P(a) =H(a—zie)"z‘.
=1
Let T be a closed ideal of B, only contained in the mawimal ideals cor-
reSPORAING 10 21y Pgy « -y 8- Lfy for every 4, I contains an element b; with

<bi7 Dzi,ni> 7= 0)
I has fiwite co-dimension.

6. Relations between / (F) and the set of singularities of the analytic
transform. In this section we assume that FeB* and that B < A(F)
with B+ @ and both E and A(F)\F compact. Our main result is Theorem
6.3. In order to formulate this theorem we need two definitions.

DEFINITION 6.1. 2—F(2), 2« CNA(F), is said to be meromorphio
(holomorphic) ot B if there exists a meromorphic (holomorphic) funection
26 (2) in a neighborhood N of F such that F(z) = G(z)for ze(CNA(F)NY.
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The subspace L(F) of B* was defined in (5.2). L(F) denotes its
weak® closure.

DErFrNITION 6.2, L(F, E) is the subspace in B* of all GeL(F) with
A(@) < B.

It should be remarked that the dimension of L(F, F) is positive,
since # is non-empty and L(F, H) contains the functionals D, ,, z¢H.

TumorEM 6.3. L(F, E) is finite-dimensional if and only if z—F(z)
is meromorphic at B. If L(F,H) is finite-dimensional, then B is finite,
z~F(z) has a pole at every point of H, and the dimension of L(F,H)
equals the sum of the pole orders at E. In particular, z—>F(z) is never holo-
morphic at B.

Proof. By a theorem of Shilov ([10], § 14), applied to B/I(F), or,
even simpler, by the elementary theory of Banach space valued analytic
functions, there exists an element b,eB such that

) 1 on- FH,
bo(2) =
0 on A(F)\E,
while by(6—b,) e I(F). We shall show that
(6.4) L(F, B) = L(Fb,).
By (4.2), Fby(e—b,) =0, which shows that Fb, annihilates the

closed ideal I in B, generated by ¢—b,. Hence the whdle subspace I (Fb,)
annibilates I. Since (e—by)(2) =1 #£0, for zeA(F)\H, all elements
@ eL(Fby) have A(G) = B, and hence

L(Fby) <« L(F, E).

"To prove the opposite inclusion we take an arbitrary GeL(F, H).
A(@ —Gh,) is contained in B, and since G annihilates T (F), we have

(@ —Gby)by = G(e—by)by = 0.

Since b,(2) 5= 0 for zeH, no point in # belongs to the spectrum of G —Gb,,
and thus, by (2.1), G = Gb,. Let N be any neighborhood of @ in the weak*
topology of B*. The mapping H—+Hb,, H eB*, {5 continuous in this to-
pology, and hence we can find a neighborhood N, of G = @by which is
mapped into N. Since GeL(F), N, contains an element b, beB, and
thus ¥ contams the element Fbb, = li‘b b, beB. This proves GeL( o)
and hence (6.4) holds.

(6.4) implies that Fb, itself is an element with itg speetrum included
in . Changing the réle of # and A(F)\F in the discussion above, we
find similarly that F(e—b,) has spectrum included in A(F)\E. But

r = Fby+F(e—b,),
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and this yields
A(F) « A(Fby) + A(F(e—by)),

and hence
(6.5) A(Fby) = H,
(6.6) A(F(e—«bo)) = A(F)\E.

‘We shall now prove the theorem, using the identity
(6.7) F(z) = Fby(z) +F(e—be)(2), =eCNA(F).

Let us first assume that z->F(z), 2e C\A(F), is meromorphic. at H.
‘We keep the notation ¥ for the continuation of the analytic transform
into a neighborhood N of K. We can assume that N is disjoint from
A(F)\E. By (6.6), ‘

z2—>F(e—by) (), =2eN,
is holomorphic, and hence
(6.8) e—F(2)—F(e—Db,)(2), =2eN,

is meromorphic. By (6.7) and the mclusmn Nn(CNE) < C\AF, (6.8)
and the holomorphic function

(6.9) 2-TFby(2),

coineide in their common set of definition. Hence they can be combined
to a meromorphic function in ¥ U (C\E) = C. This function is there-
fore rational, thus (6.9) is rational. By Theorem 5.4, L(Fb,) is finite-
dimensional, hence by (6.4) L(F,B) is finite-dimentional. Applying
Theorems 5.4 and 5.9 to L(Fb,) one finds that E is finite and that the
dimension of L(F, F) equals the sum of the pole orders of 2—>F(2) at .

It remains to prove that finite-dimensional L(F,H). implies that
z—F'(2) is meromorphic at E. By (6.4), L(F, H) finite-dimensional irplies
that L(Fb,) is finite-dimensional, thus by Theorem 5.4 and Theorem
5.9 the function (6.9) is rational. Hence (6.7) proves that z—F () it
meromorphic at .

A corollary of Theorem 6.3 is the following theorem.

THamoREM 6.10. If A(F) s totally disconnected, then A(F) is the nat
wral boundary of z—F(z).

Proof. Since A(F) is compact, the assumption implies that every
2pe Ay has an arbitrarily small open neighborhood N such that 4p N N
is cloged. By Theorem 6.3, 2—F(z) cannot be continued to a holomorphic
function in N, and the theorem follows.

Theorem 6.10 should be compared to the corollary of Theorem 3 in
Lindahl [19]. Our results in this section are related to his and the proof
of our Theorem 6.3 is similar to the proof of his Theorem 3.

2¢C\EH,
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Theorem 6.3 can be applied for instance to the type of algebras,
discussed in Example 3.5. Theorems 6.3 and 6.8 extend results which have
been proved before only in very special cases and using special methods.
One such earlier result is given by Theorem 2 in Nyman [21]. His theorem
and its proof are reproduced in Gurarii [14].

7. Estimates for |F(2)| in M\A(F). As mentioned in Section 1,
estimates of |F(2)| in ON\A(F) play an important réle in the investiga-
tions of the ideal structure of B. If 2¢C\.M we have by (2.6)

1F(2)] < | Flpe (@ —2€) 5,

and it is often easy to determine the behavior of the right-hand member
of this inequality, as z approaches the boundary of M. If ze M\ A(F),
(2.3) gives

|F(2)] < 1Pl || (@ —2e -I-I(F))"IHB/I(m,

but this is in general more difficult to use, due to the less explicit definition
of the norm in B/I(F). A more suitable way to obtain the desired esti-
mates when ze M\ A(F) is to look for estimates of the norm of the function
f in Lemma 4.10. Choosing b in that lemma so that Fb = 0, we obtain
then estimates for |F(z)| when ze M\ A(F). First we prove a representa-
tion theorem for f in (4.11).

THEOREM 7.1. Tet FeB*, 2ge MNA(F). Then B* contains an element

@y, with .

(7.2) A(F) = A(G,) = A(F) U {2},

and

(7.3) Gyo(2) = F(2)(z—20)7", |

2e C\(A(F) U {25}). For every beB, the function f in Lemma 4.10 satisfies
(7.4) Flzo) =<0, Gy>.

Proof. a—=z,6+I(F) has a Gelfand transform z—z—"2,, which does
not vanish on the maximal ideal space A(F) of B/I(F). Hence (a»ﬂzoe—}«
+I(F))™" exists and can be represented by d-+I (I"), where d<B. Define
H = Fd. Obviously, A(H) « A(XF). Since d(a—z,¢)— el (F), we have

H(a—2g6) = Fd(a—zye) = T,
and Lemma 4.7 gives
F(2) = H(2)(z—2,)-+ 0,
where ¢ is a constant. Thus H +0D,,, = T, is a functional, satistying
(7.3). The relation (7.2) is easy to see, its proof iy omitted.

In order to prove (7.4), let us first observe that it follows from (4.11)
that f(2,) is a linear functional of b, and an application of (4.9) shows
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that it is continuous. Hence it suffices to prove (7.4) for b — (a—ce)™,
where ¢¢ M. We have then

by Gd = <(a—co)™, G, >

By (4.11) and Lemma 4.5

=6,(0) = F(e)(0—2)".

F(20) = Fb(20) — F(2,) b (20)
= (F(20) = F(0)) (20— 0) ™" — F () (20— €)™ = F(6) (c—2,)~",

and (7.4) is proved.

Remark. It i§ easy to prove that &, with the properties (7.2) and
(7.3) exists when 2, is isolated in A(F) with F(2) having a pole of order
P at 2y, assuming that D, ,eB".

A direct consequence of Theorem 7.1 is the following

TEROREM 7.5. Let FeB*, gye-M\A(F), and suppose that bel(F) is
chosen with b(z)) % 0. Then ‘

Gz, 15+ 1Bl
1B (20)]

Proof. Since Fb = 0, Lemma 4.10 gives

| (20)] <

' (20)1 [ (20)] = 1F(20)| = I<B,; G > | < Gy lize D]

BXAMPLE 7.6. Let p,, neN, be a submultiplicative positive sequence
satisfying p,>1, neN, and 'n“‘logp,_bﬁo, a8 m—>oco. B is the Bamnach

algebra of all functions b: 2~ }'b,2™ on the unit disc D, with
0 .

0

olls = > By p, < co.
[

It is well known that this algebra is of the type discussed in Example
3.5 with M = D. If p,,neN, is  monotonically increasing, elementary
calculations show that o

(7.7) Gl < (L= l25]) ™~ 1|

for every 2, D°\NA(F). In cases like this, the representation in Theorem
7.1 has been used earlier, both to define the analytic transform in M\ A(F)
and to obtain the estimate of |F(z)| in this set. The reason why this has
worked ‘without using B/I(F), is that only such cases have been studied,
‘where the existence of Gz“eB* and the analytic continuation between
CN\M and M\A(F) have been provable by special methods.

B Al At mcmm mdd e T TTT &
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One interesting consequence of the estimate (7.7) in Example 7.6
is the following. It is easy to find an element FeB* such that F(2) can
be continmed to a function, regular except at z = 1, while F' is not of
bounded characteristic in D. Then there exists no bounded holomorphic
function b(z) % 0 in D, sach that F(2)b(z) is of bounded characteristic,
and hence no relation

Pl s
L P TPATI

beI(F), 2ye D°\NA(F), can hold unless b ==0. By Theorem 7.5 and (7.7)
this means that 4(F) = D. Thus A(F) is the whole circle dise, while

" F(7) has just one singularity, & striking contrast to the result in Theorem
6.10 for the case of totally disconnected A(F).

8. Regular algebras B. The Banach algebra B is said to be regular
if it is semisimple and if theve exists, for every zc M and every neighbor-
hood N of z,, an element beB such that 2—b(2) vanishes outside N, while
b(2,) 7 0. Obviously, regularity implies that M°is empty. It is not known
if regularity implies that the spectrumof every FeB* is the natural
boundary of the analytic transform, but the following shows that this
is true under a certain condition on B, slightly stronger than the condition
of regularity. ' .

THEOREM 8.1. Suppose B is semi-simple and that there ewists, for every
2o M and every meighborhood N of z,, a beB with b(z) = 0. outside N,
b(zy) 7= 0, and such that b can be approximated arbitrarily closely in B by
elements

¢ = [ (ammau),
(2]

formed by uniformly bounded complex Borel measures u, with their support
included in N\DM.
Then, for every FeB*, A(F) is the natural boundary of z—1'(2).

Proof. Taking an indirect approach, we assume that Fe B*, gqed(F)
and that z—F(2) can be continued to a function, holomorphic in some
neighborhood N of z,. Let b be an element of B, of the kind described
in the formulation of the theorem. We shall prove that Fb = 0. Let
(eu); with

0w = [ (a—26) dp, (2),
[5)

be a sequence of elements of the kind described in the lemlﬁaa, and con-
vergent to b.
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) A consequence of the regularity is that A(¥b) < N. Hénce z%—Fb(z)
is holomorphic outside N. We shall prove that it is holomorphie inside .
For we N\M we have by Lemma 4.5

Fe,(w) ={(a—we)™, F [ (a—ze) ™ dp,(2)>
C

F(w)— F(2)
w—z

~ [t <ha—we)™, Fla—zeyy = [ dpate)
C C

By the assumptions of F and 0{ |dun(2)l, neZ ., we see that Fe,(z),

neZ,_, is a sequence of uniformty bounded holomorphic funetions in
N\ M, analytically continuable to N. Its limit is Fb(z), in N\M, and
since M° is empty, 2—Fb(z) is continuable to N , too.
) Thus, Fb(z) can be extended to a bounded holomorphic function
in C. This means that Fb(z) is constant, and since it vanishes at infinity,
ib vanishes identically. Thus Fb = 0, which means that bel (F). But
b(2) %0, which gives z,¢A(F), a contradiction, .which proves the
theorem.

We shall apply Theorem 8.1 to the case where B is a weighted
l-algebra of the kind deseribed in Example 3.1, with Dn, neZ, satisfying

(82) » D (1+7%) logp, < oo.

'It ig well known that B is regular (a more general result is Theorem 2.11
in [4]). Let b be any element in B. Then, if 0 < < 1,

1 o 1 F
A ety —1 10y ,—i0 _ T I | i6y 416
P _{(a 76*) " b (e”) e~ db T f(a, r‘ )b (6%) e a0

-1 oo
— Z a,"r‘”"lbn +2anrn+l bnl
~00 0

which converges to b, when r—>1 — 0. It follows from this that the assump-
tions of Theorem 8.1 hold for these algebras. It is interesting to observe
that if (8.2) does not hold, then it can be deduced from Theorem 22 in
Levinson [18] that b = 0 is the only element of B such that b(#) vanishes
on a non-empty open arc of T. Hence A(F) # T implies in this case that
A(F) is totally disconnected, i.e. A(F) is the natural boundary of z—F(2).

For weighted L'-algebras on R of the type described in Example
3.2 'we have, at least for weight functions p which are monotonic: on
]—0c0, 0]and [0, cof a similar classification into two types, regular algebras


GUEST


299 Y. Domar

where Theorem 8.1 can be applied, and algebras where A(F) + R implies
that A(I) is totally disconnected, hence A(F) ig the natural boundary
of z—F (). .

9. On the analytic Ditkin condition. Let be B, z,¢ M. Following .B.ennetﬁ
and Gilbert [1] we gay that B fulfils the analylic Ditki'n condition for
(b, 2,), it there exists a sequence ¢,, neZ,, of elements in B such that
¢, (%) =1, for every m, while be,—0, as n—>co. -

Tt is easy to see that a necessary condition in order to have the
analytic Ditkin condition fulfilled for (b, 2,) is that (b, Dy, ;> = 0 when-
ever D, ; exists in B. In [1] a large family of Banach algebras I%as
been shown to fulfil the analytic Ditkin condition for every (b, z,) with
b(z) = 0. :

. TrmoreM 9.1. Let beB, z,c M, and let B fulfil the analytic Ditkin
condition for (b, 2,). If FeB*, and if 2, is am isolated point of A(Fb), then
2o 98 am essential singularity of z—>Fb(2).

Proof. We choose ¢,, neZ,, in accordance with the formulation
of the analytic Ditkin condition for (b, 2,), and choose & >0 such that
{2 0< |p—2,| < ¢} and A(FDb) are disjoint. Since A(Fbc,) = A(Fb), for
every m, an application of (4.9) shows that there exists, for every meZ,
a congtant C,, such that

(9.2) ] [ & Fho,(2) 82| < Oy 1 Fbo, g
lz—2gl=2 )
for every neZ, .
Let us assume that Fb(2) has not an essential singularity at z,.
By Theorem 6.3 and the assumption 2z,e./(Fb), the singularity is a pole
of order p > 1. We have Laurent expansions

Fb(z) = 5? F,,(2—2)",

M=

Fbo,(2) = D Fpnlo—2",
: .
in {2| 0< |z—2o < &}. The particular form of (9.3) follows from Lemma
4.10, which moreover shows that
(9.4) By, =F_, #0,

for every neZ,. Now (9.2) and the assumption [be,|z—0 show, gince

(9.3)

1 b0y /|pe < [ E iz 06,1z,

that F_, ,—0, a8 n—oco. This contradiets (9.4), and the singularity has
to be essential.
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Remark. Theorem 9.1 was proved for a special class of algebras by
Bennett and Gilbert [1], but their proof differs from the one presented
here and is difficult to generalize. They applied the theorem in the fol-
lowing situation.

Suppose that we know that A (F) is denumerable. Then, by a classical
theorem, everyone of its non-void compact subsets containg at least one
isolated point. Let beB have the property that b(z) =0 on A(F). We
want to conclude that under certain additional conditions on b, Fb = 0.
It suifices to have conditions which guarantee that the analytic Ditkin
condition holds for (b, 2), for every zeA(F), and that z—Fb(z) is mero-
morphic at all isolated points of A(Fb), for A(Fb) must then be empty,
hence Fb = 0. ' ;

For the subalgebra 4, (R) = A(R) of Fourier transforms of L'-funec-
tions on R, vanishing outside R, Gurarii [14] proved the same result
as Bennett and Gilbert in [1] by a method, slightly differing from theirs.
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STUDIA MATHEMATICA, T. LIIIL. (1975)

Systeme einiger singuliirer Gleichungen vom micht normalen Typ und
Projektionsverfahren zu jhrer Lisung

von

SIEGFRIED PROBDORYF (Karl-Marx-Stadt)

Zusammenfassung. In dieser Arbeit werden einige von I. Z. Gochberg und
I. A. Feldman [8] studierte T‘unktmnalglemhungen in dem Fall betrachtet, wenn das
Symbol in einzelnen Punkten entartet (sogenannte Gleichungen vom nicht normalen
Typ). Is werden exakte Paare von Banachriumen angegeben, in denen solche GHlei-
chungen mit Matrixkooftizienten aus einer bestimmten Algebra von stetigen Funk-
tionen ~auf dem Einheitskreis Noethersche (Fredholmsche) Operatoren erzeugen.
AnschlieBend wird die Konvergenz von Projektionsverfahren fiir solche Gleichungen
in einem allgemeinen Schema untersucht. Diese Ergebnisse werden auf Systeme von
singuliren Integralgleichungen iiber dem Einheitskreis, auf Systeme von Wiener—
Hopfschen Integralgleichungen sowie deren diskretes Analogon angewandft. Auf
diesern Wogo lassen sich selbst fiir Gleichungen mit nicht entartetem Symbol einige
neue Konvergenzaussagen iiber Projektionsverfahren (z. B. fiir singulire Integralglei-
chungen in R#umen holderstetiger Funktionen) gewinnen.

Als einen wichtigen Vertreter der genannten Gleichungen stelle man
sich die Wiener—Hopfsche Integralgleichung der Gestalt

(0.1) as f T(w—y)ply)dy —f(w) (0< o< oo)
0

vor; hierbei sei k(@) eine Matrixfunktion der Ordnung # mit Elementen
aus L' (— oo, 00), f(x) eine gegebene n-dimensionale Vektorfunktion mit
Komponenten aus dem Raum IA = L*(0, c0), 1K p < co (: Fle(I8),)
und ¢(@)e(L2), die gesuchte Vektorfunktion. )

Bekanntlich gilt folgender Satz, der auf I. Z. Gochberg und M. G-
Kroin zuriickgeht (siche [3], S. 284):

Dafiir, daB der Operator 4 im Rawm (L%), ein 9-Operator (*) ist,
ist notwendig und hinreichend, daf

(0.2) det 7(A) #0 (—o0o< A< 00)

(*) Beziiglich der Definition eines @-Operators siche §2, Punkt 1.
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