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Error estimates for approximation of tramslation invariant operators

by

DAVID €. SEREVE (Milwaukee)

Abstract. Wo consider 4 a translation invariant operator on L? (R%), 1< P < oo,
‘Wo construct an approximating operator Az, h> 0, and establish estimates for
[l 4w — Apul, when we W' or Byl.

1. Introduction. In this paper we give error estimates for approxi-
mation of translation invariant operators on LP(R"). These estimates im-
prove and extend the results given in [5]. The main results are Theorems
4.1 and 4.4 for approximations with functions in the Sobolev space Wy,
and Theorem 8.1 with functions in the Besov space Bp?.

Section 2 containy notation and standard results on Fourier multi-
pliers. In Section 3 we define the approximation A, for A a translation
invariant operator on LP, 1<p < co, and summarize the principle
theorems from [6]. We define in Section 4 the approximation for p = 1, oo;
and prove estimates for |Au—Aull, when we W7, 1<p< co. For
1< p< oo the error bounds need involve only pure derivatives of u.
Section B contains error estimates for we By?. .-

In Section 6 we give results similar to those of Sections 4 and 5 for
approximation of singular integrals with variable kernels. In & subgequent
paper we ghall establish a discrete smoothing property for commutators
of approximations of singular integrals.

2. Preliminaries. R denotes n-dimensional Euclidean space, Z" the
points in R with integer coordinates, and 7™ the dual group of Z”. For
h> 0 we define @, = {£¢ B*: —m<hf<m j=1,...,n} and we iden-
tity I with @ = ¢,. For 1< p < oo, LP(G) denotes the usual L? space
of functions on @, where ¢ is R*, 2", or T™. |ju], denotes the norm of
in L¥(@Y, and @ will be clear from the context. xy denotes the charac-
terigtic function of @,. We write D; = —id/0x;.

S(R" denotes the family of (* functions u om R" such that
sup {|#° Du(w)|: w¢ R*} < co. 8(Z7) is the family of functions « on 7z
such that sup {|4’u ()| pe Z"} < oo. The Fourier transform 4 of a function
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" we S(R") is defined by

RIGE (zn)—nlz f,w(m)e-—i(w,bdw
Rn

n
where {z, £) = 3 @;&. The Fourier transform 4 of ue §(2") is defined by
i=1

w(®) = (m Yulp)e o, £eq.

peZt

% denotes the inverse Fourier transform of u.

A bounded linear operator is said to be franslation invariant if it
commutes with translations. The bagic properties of translation invariant
operators and Fourier multipliers are colleeted in [1], 2], and [3] ¥/4
denotes the space of distributions Te 8’ (R") Cmch that

Ue S(R")

The smallest constant ¢ for which (2.1) holds is L5 (T). The space of distri-
butions T'e §(Z") such that

(2.1) | T uflp < COllully,,

(2.2) 1Teull, < Ollul,, we 8(ZM,

iy called 75 and B(T) is the smallest constam C for which (2.2) holds,

The space of Fourier tramsforms 7' of dmtrlbutxonﬁ TeLb or B is
denoted by M, or] m,, respectively. We write M, (T ) LTy and
mm(T) = F’(T) T is called a Fourier muliiplier of type (p,p). It is well

known that M, = I®(B"), m, = I°(Q), M, = My, m, < m,, and
M, =M, = M the space of Fourier transforms of bounded measures
on R".

We shall use the following theorems, which are proved in [3].

TemorEM 2.1. There is a constant O such that if fe M, and f =0
outside Q, then fe m, and m,(f) < OM, ()

TeEoREM 2.2. Suppose that g is periodic with period 2w and in L> (RM),

and fe L*(Q) with f(£) = g(&) for £ Q. Then ge My, if amd only if fem,,
and if ge M, thzm M, (g = My (f).

3. Approximation in Bessel potential spaces. In [B] we constructed
a family of approximations 4,, k> 0, of a transla.uon invariant operator
4 on I?, 1< p < o0, We recall here the definition of A, and state the
principle theorems. It is known that there is a unique Te 8'(R™ such
that Au = Txu for all ue §(R™), and thus TeILf (see [2]). For h>0
defme T,, to be the periodic function with period 27 /h such that T W (€)
=T (E )y, £¢Qy. Then we have the following theorem.

icm
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THEOREM 3.1, For h >0 we have Ty LE, and there is a constant C
independent of h-and T such that for all h > 0 we have

TE(Ty) < OLE(T).
Define 4, as the closure of the mapping
‘ IP 5 8(R") su—>(2m)" (T,5)" < IP.
We proved in [5] estimates for |Aw— A,ul, when « is in the Bessel

potential space L™* defined as follows. For s > 0 ‘the Bessel potential
Ju of ue LP iy defined by

(Tow)" = (L+|E7) 4
I7% iy the range of L? under J, and is & subspace of L. Define the operator
= |E[*%. It is well known that if we L*® then Adue L.

TurorEM 3.2. Let 8 > 0. There is a constant ¢ mdependom of h such
that for h > 0 and for all ue L*® we have

MAw — Ayul, < CLE(T) B A% ul),.

Since O = L”® and 07 is dense in I?, we obtained the following
corollary.

COROLLARY 3.3. If we L” then ||[Au— Ahu]]p»O as h—>0.

We note tham T, is given by ,\

T, = h™2 Zap(z',, e
© pez™

‘where §, is the Dirac measure supported at # and

ap(T) = (hf2m)"™ [ Ty(8)e PO ag.

@
4. Approximation in Sobolev spaces. For 1 < p < oo.and m a positive
integer, let Wi denote the space of functions ueL”(B") all of whose
distribution derivatives of order at most m are in L”(E"). Define

Wl = ID"ull-
|“|€mi

I‘Is is well known that for 1< p < co and m a positive integer, L#™
', Thus it is possible to apply Theorem 3.2 to estimate ||dw— A,ul,
for ’Lbe Wi We ghall present ervor estimates for we Wy without using
L?™ which are sharper than those obtained using L?' directly. Also
if 4 ig bounded on IL* (or equivalently, on L) we shall construct A4,,
show that 4, is bounded on L' (or on L*), and prove error estimates

for we W (or in W2). These cases were not considered in [5].
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First we consider the case 1< p < co. Using the Hormander—Mihlin
multiplier theorem (see [2]) it is possible to show that there is a constant
Cp,m such that for all ue Wy
(4.1) Cpm tly,m <
where we define

< [l - [%1p,m

= DD} ull,-

J==l

‘Let [|A] denote the norm of A as an operator from L” to L”. Then
we have the following estimate.

TurorEM 4.1. Let 1< p < oo and let m be a posilive integer. There
exists a constamt O independent of h such that for k>0 and for all ue W
we have .

(4.3) . o — Apull, < CAIE™ %]y, -

Proof. Let Au =T+uw and 4,u = Tixu for ue §(R"). Then it follows
from the definition. of T, that
(4.4) (du—Ayu)” = (29" (L — Ty [1— 1,(8)] .
The following identity is easily established.

(45) ﬁaj——ﬁbj = Z(Hbj)[n(arbz)];

where the sum is over all sets J and L of integers such that JnL =@,
L #@, and JuL = {1, ..., n}. Since L #:0, we may write L = Ku{l}
with 1¢ K. With g, , the characteristic funetion of {&: —n<h§ < n}
it follows from (4.5) that

(4.6)  [1—p(H)]w

=i 3 [[] ws(6)]{ 1’[ (1 —2,(8)]

J,K,1

< “p,m

(4.2) (%lp,m

L — 20801/ (REY™ (D w)

Since Xng 18, & multiplier with norm independent of h, (4.3) follows from
(4.4), (4.6), and Theorem 3.1.

COROLLARY 4.2. Let 1< p<< oo and let m be a positive mtwgor There
ewists a constant O independent of b such that Joro<h<1, % =0,1,...,m,
and for all we Wi we have

(4.7) ] 4w — Ayl < Ol 4f 1% [, m -

Proof. The case & = 0 is Theorem 4.1. For k> 0 it follows from
(4.1) that it suffices to prove

(4.8) Mu— Ayul, , < 041K fu, .

icm°®
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Now
(4.9) [Df (Au— Aqu)]” = (2m)"* (T — 1) [L — ()] & .

We apply the expansion (4.5) again to [1—y,(£)]£% and obtain in the
sum terms of each of the forms y, ,(5)5 % and [1— x,,,,,(E)]E,u In the
first case write

(4.10) i (6) & =D 1,;(8) (h&) e (h&)

where pe OF°(R') and ¢ =1 on [ —=, =].
In the second case write

[1— 21,y (&)1 & = Hm*{[1— 5, (

Since x,,,,(éj)(hé‘)’“qa(hé‘,) and [1—y,;(6)1/(R&)™ " are multipliers on
R* with norms independent of %, (4.8) now follows easily from (4.9), (4.10),
and (4.11).

The cases p =1 and p = oo are equivalent sinee L} = L% = B,
the space of bounded measures on R". In general, 4, cannot be constructed
using y;, since y, ¢ M. Choose pe O (@) such that ¢ =1 on Q,. Let Au = uxu
where ue B. Define ; as the function with period 2n/h such that u,(&)
= p(h&) 4 (§) for £e Q. Then we have the following result.

THEOREM 4.3. For h >0 we have u,e L}, and there is a constamt C
independent of h and u such that

I’i (fuh) <

Proof. The result follows immediately from Theorems 2.1 and 2.2
and the fact that dilation of R™ preserves multipliers and their norms
in M,

Define .A4,u = y;xu. Then we have the following error estimate.

THEOREM 4.4 Let m be a positive integer and p =1 or oo. There is
a constant C independent of h such that for h > 0 and for all ue W) we have

(4.11) E)1/(hE)™ " (Dyu)”

0Tk ().

(412) M — Ayl < CLAIW™ 3 IDF ulye

J=1

Proof. Choose fe 0P (—=/2, =/2) such that f =1 on [—=/4, n/4]

Define n by
= n 1(&).

Je=1
Then it follows from the definition of i, that

(Au—dyu)" = (27" (f— fir) (L —n (hE) ]
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Now we apply (4.5) to 1 —7(h€) and proceed as in the proof of Theorem
4.1. Using the fact that f and 1—f are Fourier transforms of bounded
measures, we obtain (4.12).

COROLLARY 4.5. Let m be a positive integer and p = 1 or od. There
s a constani C independent of h such that for 0 < h<1, k =0,1,...,m,
and for all we W' we have

(4.13) Mu— dyull < CIAIR™E 3T D ulj,.
(] =
Proof. The proof iy similar to ‘that of Corollary 4.2 except that here
we must include all derivatives of order at most % in {|dw—Ayull, 5, S0
the right-hand side of (4.13) must contain mixed derivatives of order m.

5. Approximation in Besov spaces. In thig gection we shall prove
estimates for |l 4w — 4, ull, when « is in the Besov space B2?. The estimates

involve the modified Besov spaces B" % in & natural way. For the defini-
tions and properties of these spaces, see [4] and the references. given
there. We summarize the results we need here.

Let 1<p< o0, 1<g<< 00, and 0< ¢< oco. For ueL”(R”) and
0 <?<C od, define

ap (4 ) = sup oo (- + ) —ull,,
(b5 u) = sup‘llu( )= 2u+u(—y)p-

For s =dJ 40, 0< o<1 and J 2 non- negative integer, the Besov space
Bj? is defined by the norm

S+ Y f oot o1 0<o<,

el laf=J
and for o = 1 wj s replaced by of. We make the usual change in (5.1)
if ¢ = oo.
We shall use an equivalent definition of By given in [4]. Lot Pe O
be posmve on B = {§: 27" < |§ < 2} and zero outside &, and

00

D 6@y =1, Es0.
k=00
Write ‘
P(§) = (278, B =0,£1,42,...,
(5.2)

P(E) =1— 3 d,(8)

k=1

icm

Hrror estimates for operators 197

Then B3* may be defined as the Banach space corresponding to the norm
(which is equivalent to the expression in (5.1))

(5.3) [l = {% 2% o, 19},
with @, = (2m)"* Wi ; 4, = (27)"" @i,k =1,2,... It is apparent

from (5.3) that By? < Bp? if 0 <r<<s. )
We shall also work with the modified Besov spaces By? which are
defined by the seminorm

(5.4) : llgeg ={ > 2%l o},
» Je=—00
with @, = (27)"*@,4, & =0, £142, ... It is known that lel 5o o2 is equiv-

alent to the second sum in (5.1) and that Hul] B ¢ 18 equlvaleut to Jufl, +

+|[u|\ .07 that is; there are constants O, and 02 such that

(5.5) Oy llul] < Oy llull

< Bl 0l 300 < Osltl

By g S
Let A be a translation invariant operator from L? to L? with norm
4]l For 1 < p < oo let .4, be the approximation constructed in Section 3, .
and for p =1, oo, let 4, be the approximation constructed in Section. 4.
It i3 clear from (5.3) that for s > 0 and 1 < ¢ < oo, A and 4, are bounded
operators from Bp? to By? with norms no larger than their norms as
operators from I® to LP. We have the following error estimates.
THEOREM 5.1. Let 1<K<p< o0, 1K g o0, and s> 0. Then there
s & constant O independent of b that for b > 0 and for all we By® we have

(5.6) ‘ A — Ayull, < O | A|A ]

B5C
Proof. We give the proof for 1 < g < co. The cases ¢ =1, oo are
similar, Write du = Twwu and A,u = Tyxu. Then we have
(Au—Ayu)" = (20" (T — Ty . '

It follows from the definition of &; that there is a comstant x > 0 such
that
2 o) =1,

njo

where 7, is the integer part of log,(»/h). Hence

£¢Qy,

ldu— Ay, < CIIAL DT H(B;%)” -

J=fy
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Applying Hélder’s inequality we obtain

4w — Ay ul, < Ol A |[{ > 2—314'}1/11' ul

FESTY
where 1/¢+1/q" = 1. An elementary estimate now yields the result
1w — Ay ul, < CAJ4 2 —1)7 (b)) o] ,0-
P

38,07
Bﬂ

and the proof is complete.
THEOREM 5.2. Let 1< p < oo, 1< g oo, and 0 < r<g. There is
a constant O independent of h that for h >0 and for all ue BY? we have

(5.7) M — Ayl < C LA |3 ]
»

o
bt

Proof. Let j, be as in the proof of Theorem 5.1. Then
Mu— Ayl < O] 3 1271(258)"1,19"
» ' J=7y

< ONA)2= Yo ), ,.
]31,'
(5.7) now follows easily.

' COROLLARY 8.3. Lot 1<p< o0, 1< g oo, and 0 <7< g, There
18 & constant O independent of h such that for 0 < h <1 and for all we By
we have :

I Ayl < O ] g

Proof. This follows immediately from (5.5) and Theorems 5.1 and 5.2.

'6. Approximation of singular integrals with variable kernels. We
consider now 1 << p << co. Let § > 0 and 7 = [8]. We shall say that fe By
provided

sup{|D“f(x)|: weR", |a| < r}< oo
and

sup{ly| =" | D%f (2+9) — D*f (@)]: we R, y # 0, |a] = 1} < oo.

We denote by ||fl5 g the maximum of these quantities.
We consider an operatior A defined by

Au (@) = a(w)u(w)-lim

0 gy >s

b(z, 5 —y)u(y)dy

.where we §(R") and k hag the following properties. For each me R"™ I (w, 2)
Is 0% in 2 for 2 7 0, k(w, 2) is positively homogeneous of degree —m in 2,
and k(x,2) has mean value zero on {¢: |2| = 1}. Let f(m, £) denote the:
Fourier transform in the second variable of principal value %(w, #). Then,
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for each @< R", i’(m, £)is C*in & for £ £ 0, i’(m, &) is positively homo-
geneous of degree 0 in &, and 7'(», £) has mean value 0 on {&: | = 1}.
We write

o(4)(w, &) = a(e)+T (e, &

and call o(4) the symbol of 4. We review the assumptions on o(4) and
their consequences which may be found in [0]. We suppose that for each -
index a with 0 < |a| < 2n and for each & with |£ =1, the functions

t0(A) (2, &) are in B, in @, and we say that 4 is an operator of type B.
‘We define

4y = sup{|Dio(4)(®, &)llp,: 18] =1, 0< lal < 20},

Then A may be extended to a bounded operator on 17[7,’,‘I for oS MLy
and there is a constant O depending on p and # such that if we W3, then

1wy, pr < CllAIg Wy, 2 -

Thigs result was proved by establishing series representations for &(z, 2)
and o(4)(z, &) using spherical harmonics. Let {¥},,} be a complete ortho-
normal system of spherical harmonics in L?(ZX), where X = {&: |£] = 1}.
The positive integer m is the degree of ¥, and the number of harmonics
of degree m is O(m™?). The expansions are

(6.1) B, 2) = ) (@) V() 217
Lm>1

and -

(6.2) o(A)(@, &) = (@) + D byn(®) Tyu(8).-

Lmz=1
The coefficients in the expansions satisfy

(6.3) lalls <Ol  Bmlls< Om™*"|| Alls,

and

lltzmlly < O 1A ||g,

O, = P by, Where  |ypl| < Om™",
Finally it is known that

(6.4) |Vl = O (m=37).

Thuy the series for o(4) converges uniformly and hence

(6.5) Au(w) = a(@)u(@)+ D)ty (@) Ripu(@)
Lm

where Ry, is the translation invariant singular integral operator with
kernel Yy, (%) 2|~". The operator norm of Ry, on L7 is bounded independent
of m. .

7 — Studia Mathenlatica LIIL2
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We define the approximation 4, as the operator with symbol
o(4y) (@, &) = a(2)+Ty(, &)

where for each z, Th(m‘, £) has period 2w/h in & and f’,,(m, &) = _’[’(m, &)
for £e @;. That is, for we S(R"),

Ayu(z) = a(@)u(®) + [Ty (@)u](z)
where the distribution 7',(») bas support on hZ" and
Tu(@) = W*2m)™" ' [Ty (w, &6 ®uOags_,,.
pezh @y, ’

THROREM 6.1. For b > 0 and 0 M << v, 4, may be ewtended to o bound-
ed operator on W', and there ewists a constant O independent of h such
that for we Wi, .

Azl 5z < OllA g 1l 22
Proof. Since the series for o(4) converges uniformly, we have
(6.6) Ay u(@) = a(@)u (@) + Dty (@) By ()
I,m

where Ry, is the approximation to R, considered in Section 8. It is
easy to see that for M <r, ue W, and fe B,,

(6.7) Il nr < ONFlle 12l 2 -

Now the result follows easily from (6.6), (6.7), and (6.3).
Now-we prove an error estimate for we Wi

THEOREM 6.2, Let 0 KK < M <r. There ewists a constant ¢ such
that for we W and 0 < h < 1,

v — A, ul, x < CllA],B"—% [, 32 -
Proof. Since
Au—dyu = 3 4 (2) (Rith — Ry ),
Iym
the result follows easily from (6.3) and Corollary 4.2.
Finally we consider the Besov space Bl and show that 4 and Ay,
are bounded on Bj™ and prove estimates for Av—dyu, ue BY>,

".[‘HEOREM 6.3. Let A be a operator of type § and A, the appromimation
considered above. Then A and A;, are bounded on By amd there ewist constants
Cy and Oy such that for we By,

H-A’l(,”Bz,oo < Ol Al Il p,eo
»

icm
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and for h >0, :
”'A'hu[IBﬂ,oa < Oz“A”ﬂ ”””Bﬁ,eo-
» »

Proof. We shall use the fact that if fe B and we By*™ then fue By™
and there is a constant O independent of f and « such that

(6.8) Ilfﬂllﬂﬁ,m < Clflsplwll, p,00-
»

(6.8) follows easily from the definition of B2*, (6.7), and the following

identities, Let v,u(w) = u(v-+y) and let 1 denote the identity operator.

Then

(7 =1) () (&) = (7, 1) () % () + (@) (5, —1)u(2)

and i .

(Ty =2 +v_y) (fu) () = f(@) (v, —2 +7_y) (%) + 7y % () (7, —1)f (2) — -

—7_yu(®)(1—71_,)f(@).

The theorem is an immediate consequence of (6.5), (6.6), (6.8),"and (6.3).
THROREM 6.4. There is a constant C depending only on p, n, and B

such that for we BY® and h > 0, ‘

A — Ayl < OlAlpH 4] p,00-
D

Proof. The estimate follows from the expansion for Aw—A4,u,
(6.3), and Theorem b.1. »

TarnoREM 6.5. Let 0 < a < f. Then there is a constant C such that
for 0< h<1 and we BE>,

Mt 430l 0 < C VAW .o
et

Proof. Itis clear that for 0 < a < §, By < B, and By® < By™. The
estimate now follows easily from the expansion for Au—A4,u, (6.8), (6.3),
and Corollary 5.3. .

It is clear that the results of Section 4, B, and 6 are also valid if the
approximation 4; is copstructed in the following way. Let 7 be a OF
funetion which is one in a neighborhood of the origin and va.llishes outsic}e
@,. Define fi’n to be periodic with period 2/l in & and T, = n(&M)T,
Ec Q. Then A,u = Tywu. The operator 4, is bounded as before and
the ostimates fov Auw—.4,u are easily established.
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