

Error estimates for approximation of translation invariant operators

b

DAVID C. SHREVE (Milwaukee)

Abstract. We consider A a translation invariant operator on $L^p(\mathbb{R}^n)$, $1 . We construct an approximating operator <math>A_h$, h > 0, and establish estimates for $\|Au - A_hu\|_p$ when $u \in W_p^m$ or $B_p^{p,q}$.

1. Introduction. In this paper we give error estimates for approximation of translation invariant operators on $L^p(\mathbb{R}^n)$. These estimates improve and extend the results given in [5]. The main results are Theorems 4.1 and 4.4 for approximations with functions in the Sobolev space W_p^m , and Theorem 5.1 with functions in the Besov space $B_p^{s,q}$.

Section 2 contains notation and standard results on Fourier multipliers. In Section 3 we define the approximation A_h for A a translation invariant operator on L^p , $1 , and summarize the principle theorems from [5]. We define in Section 4 the approximation for <math>p = 1, \infty$, and prove estimates for $||Au - A_h u||_p$ when $u \in W_p^n$, $1 \le p \le \infty$. For 1 the error bounds need involve only pure derivatives of <math>u. Section 5 contains error estimates for $u \in B_p^{s,q}$.

In Section 6 we give results similar to those of Sections 4 and 5 for approximation of singular integrals with variable kernels. In a subsequent paper we shall establish a discrete smoothing property for commutators of approximations of singular integrals.

2. Preliminaries. R^n denotes n-dimensional Euclidean space, \mathbf{Z}^n the points in R^n with integer coordinates, and T^n the dual group of \mathbf{Z}^n . For h>0 we define $Q_h=\{\xi\in R^n\colon -\pi< h\xi_j\leqslant \pi,\ j=1,\ldots,n\}$ and we identify T^n with $Q\equiv Q_1$. For $1\leqslant p\leqslant \infty,\ L^p(G)$ denotes the usual L^p space of functions on G, where G is $R^n,\ \mathbf{Z}^n$, or T^n . $\|u\|_p$ denotes the norm of u in $L^p(G)$, and G will be clear from the context. χ_h denotes the characteristic function of Q_h . We write $D_j=-i\partial/\partial x_j$.

 $S(R^n)$ denotes the family of C^{∞} functions u on R^n such that $\sup\{|x^{\beta}D^{\alpha}u(x)|: x \in R^n\} < \infty$. $S(\mathbf{Z}^n)$ is the family of functions u on \mathbf{Z}^n such that $\sup\{|\mu^{\beta}u(\mu)|: \mu \in \mathbf{Z}^n\} < \infty$. The Fourier transform \hat{u} of a function

 $u \in S(\mathbb{R}^n)$ is defined by

$$\hat{u}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} u(x) e^{-i\langle x, \xi \rangle} dx$$

where $\langle x, \xi \rangle = \sum_{j=1}^n x_j \xi_j$. The Fourier transform \hat{u} of $u \in S(\mathbf{Z}^n)$ is defined by

$$\hat{u}(\xi) = (2\pi)^{-n/2} \sum_{\mu \in \mathbf{Z}^n} u(\mu) e^{-i\langle \mu, \xi \rangle}, \quad \xi \in Q.$$

 \tilde{u} denotes the inverse Fourier transform of u.

A bounded linear operator is said to be *translation invariant* if it commutes with translations. The basic properties of translation invariant operators and Fourier multipliers are collected in [1], [2], and [3]. L_p^p denotes the space of distributions $T \in S'(\mathbb{R}^n)$ such that

$$(2.1) ||T*u||_{n} \leqslant C||u||_{n}, u \in S(\mathbb{R}^{n}).$$

The smallest constant C for which (2.1) holds is $L^p_p(T)$. The space of distributions $T \in S'(\mathbb{Z}^n)$ such that

$$(2.2) ||T*u||_p \leqslant C||u||_p, u \in S(\mathbb{Z}^n),$$

is called l_p^p and $l_p^p(T)$ is the smallest constant C for which (2.2) holds.

The space of Fourier transforms \hat{T} of distributions $T \in L_p^p$ or l_p^p is denoted by M_p or m_p , respectively. We write $M_p(\hat{T}) = L_p^p(T)$ and $m_p(\hat{T}) = l_p^p(T)$. \hat{T} is called a Fourier multiplier of type (p, p). It is well known that $M_2 = L^{\infty}(R^n)$, $m_2 = L^{\infty}(Q)$, $M_p \subset M_2$, $m_p \subset m_2$, and $M_1 = M_{\infty} = M$ the space of Fourier transforms of bounded measures on R^n .

We shall use the following theorems, which are proved in [3].

THEOREM 2.1. There is a constant C such that if $f \in M_p$ and f = 0 outside Q, then $f \in m_p$ and $m_p(f) \leq CM_p(f)$.

THEOREM 2.2. Suppose that g is periodic with period 2π and in $L^{\infty}(\mathbb{R}^n)$, and $f \in L^{\infty}(Q)$ with $f(\xi) = g(\xi)$ for $\xi \in Q$. Then $g \in M_p$ if and only if $f \in m_p$, and if $g \in M_p$, then $M_p(g) = m_p(f)$.

3. Approximation in Bessel potential spaces. In [5] we constructed a family of approximations A_h , h>0, of a translation invariant operator A on L^p , $1 . We recall here the definition of <math>A_h$ and state the principle theorems. It is known that there is a unique $T \in S'(\mathbb{R}^n)$ such that Au = T*u for all $u \in S(\mathbb{R}^n)$, and thus $T \in L_p^p$ (see [2]). For h>0 define \hat{T}_h to be the periodic function with period $2\pi/h$ such that $\hat{T}_h(\xi) = \hat{T}(\xi)$, $\xi \in Q_h$. Then we have the following theorem.

Live essentities for operators

THEOREM 3.1. For h > 0 we have $T_h \in L_p^p$, and there is a constant C independent of h and T such that for all h > 0 we have

$$L_p^p(T_h) \leqslant CL_p^p(T)$$
.

Define A_h as the closure of the mapping

$$L^p \supset S(\mathbb{R}^n) \ni u \rightarrow (2\pi)^{n/2} (\hat{T}_h \hat{u}) \in L^p.$$

We proved in [5] estimates for $||Au-A_hu||_p$ when u is in the Bessel potential space $L^{p,s}$ defined as follows. For s>0 the Bessel potential J_su of $u \in L^p$ is defined by

$$(J_s u)^{\hat{}} = (1 + |\xi|^2)^{-s/2} \hat{u}.$$

 $L^{p,s}$ is the range of L^p under J_s and is a subspace of L^p . Define the operator A^s by $(A^s u)^{\hat{}} = |\xi|^s \hat{u}$. It is well known that if $u \in L^{p,s}$ then $A^s u \in L^p$.

THEOREM 3.2. Let s > 0. There is a constant C independent of h such that for h > 0 and for all $u \in L^{p,s}$ we have

$$||Au - A_h u||_p \leqslant CL_p^p(T) h^s ||A^s u||_p.$$

Since $C_0^{\infty} \subset L^{p,s}$ and C_0^{∞} is dense in L^p , we obtained the following corollary.

COROLLARY 3.3. If $u \in L^p$ then $||Au - A_h u||_p \to 0$ as $h \to 0$.

We note that T_h is given by

$$T_h = h^{n/2} \sum_{eta \in \mathcal{I}^n} a_{eta}(\hat{T}_h) \, \delta_{-heta}$$

where δ_x is the Dirac measure supported at x and

$$a_{\beta}(\hat{T}_h) = (h/2\pi)^{n/2} \int\limits_{Q_h} \hat{T}_h(\xi) e^{-ih\langle \beta, \xi \rangle} d\xi.$$

4. Approximation in Sobolev spaces. For $1 \leq p \leq \infty$ and m a positive integer, let W_p^m denote the space of functions $u \in L^p(\mathbb{R}^n)$ all of whose distribution derivatives of order at most m are in $L^p(\mathbb{R}^n)$. Define

$$||u||_{p,m} = \sum_{|a| \leqslant m} ||D^a u||_p.$$

It is well known that for 1 and <math>m a positive integer, $L^{p,m} = W_p^m$. Thus it is possible to apply Theorem 3.2 to estimate $||Au - A_h u||_p$ for $u \in W_p^m$. We shall present error estimates for $u \in W_p^m$ without using $L^{p,m}$ which are sharper than those obtained using $L^{p,m}$ directly. Also if A is bounded on L^1 (or equivalently, on L^∞) we shall construct A_h , show that A_h is bounded on L^1 (or on L^∞), and prove error estimates for $u \in W_1^m$ (or in W_∞^m). These cases were not considered in [5].

First we consider the case $1 . Using the Hörmander–Mihlin multiplier theorem (see [2]) it is possible to show that there is a constant <math>C_{p,m}$ such that for all $u \in W_p^m$

$$(4.1) C_{n,m} \|u\|_{n,m} \leq \|u\|_{p} + \|u\|_{p,m} \leq \|u\|_{p,m}$$

where we define

$$|u|_{p,m} = \sum_{j=1}^{n} ||D_j^m u||_p.$$

Let ||A|| denote the norm of A as an operator from L^p to L^p . Then we have the following estimate.

THEOREM 4.1. Let 1 and let <math>m be a positive integer. There exists a constant C independent of h such that for h > 0 and for all $u \in W_p^m$ we have

Proof. Let Au = T * u and $A_h u = T_h^n * u$ for $u \in S(\mathbb{R}^n)$. Then it follows from the definition of \hat{T}_h that

$$(4.4) \qquad (Au - A_h u)^{\hat{}} = (2\pi)^{n/2} (\hat{T} - \hat{T}_h) [1 - \chi_h(\xi)] \hat{u}.$$

The following identity is easily established.

where the sum is over all sets J and L of integers such that $J \cap L = \emptyset$, $L \neq \emptyset$, and $J \cup L = \{1, ..., n\}$. Since $L \neq \emptyset$, we may write $L = K \cup \{l\}$ with $l \notin K$. With $\chi_{h,j}$ the characteristic function of $\{\xi \colon -\pi < h\xi_j \leqslant \pi\}$ it follows from (4.5) that

$$(4.6) \quad [1 - \chi_h(\xi)] \hat{u} \\ = h^m \sum_{J,K,l} \left[\prod_{j \in J} \chi_{h,j}(\xi) \right] \left\{ \prod_{k \in K} [1 - \chi_{h,k}(\xi)] \right\} \left\{ [1 - \chi_{h,l}(\xi_l)] / (h\xi)^m \right\} (D_l^m u) \hat{.}$$

Since $\chi_{h,j}$ is a multiplier with norm independent of h, (4.3) follows from (4.4), (4.6), and Theorem 3.1.

COROLLARY 4.2. Let $1 and let m be a positive integer. There exists a constant C independent of h such that for <math>0 < h \le 1$, k = 0, 1, ..., m, and for all $u \in W_2^m$ we have

Proof. The case k=0 is Theorem 4.1. For k>0 it follows from (4.1) that it suffices to prove

$$(4.8) |Au - A_h u|_{p,k} \leq C ||A|| h^{m-k} |u|_{p,m}.$$

Now

$$[D_j^k(Au - A_h u)]^{\hat{}} = (2\pi)^{n/2}(\hat{T} - \hat{T}_h)[1 - \chi_h(\xi)]\xi_j^k\hat{u}.$$

We apply the expansion (4.5) again to $[1-\chi_h(\xi)]\xi_j^k\hat{u}$ and obtain in the sum terms of each of the forms $\chi_{h,j}(\xi)\xi_j^k\hat{u}$ and $[1-\chi_{h,j}(\xi)]\xi_j^k\hat{u}$. In the first case write

(4.10)
$$\chi_{h,j}(\xi) \, \xi_j^k = h^{-k} \chi_{h,j}(\xi) \, (h \, \xi_j)^k \varphi(h \, \xi_j)$$

where $\varphi \in C_0^{\infty}(\mathbb{R}^1)$ and $\varphi = 1$ on $[-\pi, \pi]$.

In the second case write

$$(4.11) \qquad [1 - \chi_{h,j}(\xi)] \, \xi_j^k \, \hat{u} = h^{m-k} \{ [1 - \chi_{h,j}(\xi)] / (h \, \xi_j)^{m-k} \} (D_j^m u) \, \hat{.}$$

Since $\chi_{k,j}(\xi_j)(h\xi)^k \varphi(h\xi_j)$ and $[1-\chi_{h,j}(\xi_j)]/(h\xi_j)^{m-k}$ are multipliers on R^1 with norms independent of h, (4.8) now follows easily from (4.9), (4.10), and (4.11).

The cases p=1 and $p=\infty$ are equivalent since $L_1^1=L_\infty^\infty=B$, the space of bounded measures on R^n . In general, A_h cannot be constructed using χ_h since $\chi_1 \notin M_1^1$. Choose $\varphi \in C_0^\infty(Q)$ such that $\varphi=1$ on Q_2 . Let $Au=\mu*u$ where $\mu \in B$. Define $\hat{\mu}_h$ as the function with period $2\pi/h$ such that $\hat{\mu}_h(\xi)=\varphi(h\xi)\hat{\mu}(\xi)$ for $\xi \in Q_h$. Then we have the following result.

THEOREM 4.3. For h>0 we have $\mu_h \in L^1_1$, and there is a constant C independent of h and μ such that

$$L_1^1(\mu_h) \leqslant CL_1^1(\mu)$$
.

Proof. The result follows immediately from Theorems 2.1 and 2.2 and the fact that dilation of \mathbb{R}^n preserves multipliers and their norms in M_p .

Define $A_h u = \mu_h * u$. Then we have the following error estimate. THEOREM 4.4 Let m be a positive integer and p = 1 or ∞ . There is a constant C independent of h such that for h > 0 and for all $u \in W_p^m$ we have

$$(4.12) \qquad \qquad \|Au - A_h u\|_p \leqslant C \|A\|h^m \sum^n \|D_j^m u\|_p.$$

Proof. Choose $f \in C_0^{\infty}(-\pi/2, \pi/2)$ such that f = 1 on $[-\pi/4, \pi/4]$. Define η by

$$\eta(\xi) = \prod_{j=1}^n f(\xi_j).$$

Then it follows from the definition of $\hat{\mu}_h$ that

$$(Au - A_h u)^{\hat{}} = (2\pi)^{n/2} (\hat{\mu} - \hat{\mu}_h) [1 - \eta (h\xi)] \hat{u}.$$

Now we apply (4.5) to $1-\eta(h\xi)$ and proceed as in the proof of Theorem 4.1. Using the fact that f and 1-f are Fourier transforms of bounded measures, we obtain (4.12).

COROLLARY 4.5. Let m be a positive integer and p=1 or ∞ . There is a constant C independent of h such that for $0 < h \leqslant 1, \ k=0, 1, \ldots, m,$ and for all $u \in W_n^m$ we have

$$\|Au - A_h u\|_{p,k} \leqslant C \|A\| h^{m-k} \sum_{|a|=m} \|D^a u\|_p.$$

Proof. The proof is similar to that of Corollary 4.2 except that here we must include all derivatives of order at most k in $||Au - A_h u||_{p,h}$, so the right-hand side of (4.13) must contain mixed derivatives of order m.

5. Approximation in Besov spaces. In this section we shall prove estimates for $||Au-A_hu||_p$ when u is in the Besov space $B_p^{s,q}$. The estimates involve the modified Besov spaces $B_p^{s,q}$ in a natural way. For the definitions and properties of these spaces, see [4] and the references given there. We summarize the results we need here.

Let $1 \le p \le \infty$, $1 \le q \le \infty$, and $0 < s < \infty$. For $u \in L^p(\mathbb{R}^n)$ and $0 < t < \infty$, define

$$\begin{split} \omega_p^1(t;u) &= \sup_{|y| < t} \|u(\cdot + y) - u\|_p, \\ \omega_p^2(t;u) &= \sup_{|y| < t} \|u(\cdot + y) - 2u + u(\cdot - y)\|_p. \end{split}$$

For $s=J+\sigma,\ 0<\sigma\leqslant 1$ and J a non-negative integer, the Besov space $B^{s,a}_p$ is defined by the norm

$$(5.1) \qquad \sum_{|a| \leqslant J} \|D^a u\|_p + \sum_{|a| = J} \left\{ \int_0^\infty \left[t^{-\sigma} \omega_p^1(t; D^a u) \right]^q \frac{dt}{t} \right\}^{1/q}, \quad 0 < \sigma < 1,$$

and for $\sigma=1,\ \omega_p^1$ is replaced by ω_p^2 . We make the usual change in (5.1) if $q=\infty$.

We shall use an equivalent definition of $B_p^{s,a}$ given in [4]. Let $\Phi \in C_0^{\infty}$ be positive on $E = \{\xi \colon 2^{-1} < |\xi| < 2\}$ and zero outside E, and

$$\sum_{k=-\infty}^{\infty} \Phi(2^{-k}\xi) = 1, \quad \xi \neq 0.$$

Write

(5.2)

$$egin{align} arPhi_k(\xi) &= arPhi(2^{-k}\,\xi), & k=0,\,\pm 1,\,\pm 2,\ldots, \ & arPhi(\xi) &= 1-\sum^\infty arPhi_k(\xi). \ \end{matrix}$$

Then $B^{s,q}_{p}$ may be defined as the Banach space corresponding to the norm

(5.3)
$$\|u\|_{B^{s,q}_{\mathcal{D}}} = \left\{ \sum_{k=0}^{\infty} \left[2^{sk} \|u_k\|_p \right]^{q} \right\}^{1/q},$$

(which is equivalent to the expression in (5.1))

with $\hat{u}_0 = (2\pi)^{n/2} \mathcal{Y} \hat{u}$; $\hat{u}_k = (2\pi)^{n/2} \mathcal{O}_k \hat{u}$, k = 1, 2, ... It is apparent from (5.3) that $B_{\sigma}^{s,q} \subset B_{\sigma}^{r,q}$ if 0 < r < s.

We shall also work with the modified Besov spaces $\dot{B}^{s,a}_{p}$ which are defined by the seminorm

(5.4)
$$\|u\|_{\dot{B}^{s,q}_{\mathcal{D}}} = \Big\{ \sum_{k=-\infty}^{\infty} [2^{sk} \|u_k\|_p]^q \Big\}^{1/q},$$

with $\hat{u}_k = (2\pi)^{n/2} \mathcal{O}_k \hat{u}$, k = 0, $\pm 1 \pm 2$, ... It is known that $\|u\|_{\dot{B}^{S,q}_{\mathcal{D}}}$ is equivalent to the second sum in (5.1) and that $\|u\|_{\dot{B}^{S,q}_{\mathcal{D}}}$ is equivalent to $\|u\|_{p} + \|u\|_{\dot{B}^{S,q}}$, that is, there are constants C_1 and C_2 such that

$$(5.5) C_1 \|u\|_{B^{s,q}_{\tilde{\mathcal{D}}}} \leqslant \|u\|_p + \|u\|_{\dot{B}^{s,q}_{\tilde{\mathcal{D}}}} \leqslant C_2 \|u\|_{B^{s,q}_{\tilde{\mathcal{D}}}}.$$

Let A be a translation invariant operator from L^p to L^p with norm $\|A\|$. For $1 let <math>A_h$ be the approximation constructed in Section 3, and for p = 1, ∞ , let A_h be the approximation constructed in Section 4. It is clear from (5.3) that for s > 0 and $1 \le q \le \infty$, A and A_h are bounded operators from $B_p^{s,q}$ to $B_p^{s,q}$ with norms no larger than their norms as operators from L^p to L^p . We have the following error estimates.

THEOREM 5.1. Let $1 \le p \le \infty$, $1 \le q \le \infty$, and s > 0. Then there is a constant C independent of h that for h > 0 and for all $u \in B_p^{s,q}$ we have

$$||Au - A_h u||_p \leqslant C ||A|| h^s ||u||_{\dot{B}^{8,q}_{\mathcal{D}}}.$$

Proof. We give the proof for $1 < q < \infty$. The cases q = 1, ∞ are similar. Write Au = T * u and $A_h u = T_h * u$. Then we have

$$(Au - A_h u)^{\hat{}} = (2\pi)^{n/2} (\hat{T} - \hat{T}_h) \hat{u}.$$

It follows from the definition of Φ_j that there is a constant $\varkappa>0$ such that

$$\sum_{j=j_0}^\infty arPhi_j(\xi) = 1, ~~ ext{ξ $ar{q}$}_h,$$

where j_0 is the integer part of $\log_2(\kappa/h)$. Hence

$$\|Au-A_hu\|_p\leqslant C\|A\|\sum_{j=j_0}^\infty\|(\varPhi_j\hat{u})\tilde{\ }\|_p.$$

Applying Hölder's inequality we obtain

$$\left\|Au-A_hu\right\|_p\leqslant C\left\|A\right\|\left\{\sum_{j=j_0}^{\infty}2^{-sjq'}\right\}^{\!1\!/\!q'}\left\|u\right\|_{\dot{B}_{\mathcal{D}}^{S,q}},$$

where 1/q+1/q'=1. An elementary estimate now yields the result

$$\|Au - A_h u\|_p \leqslant C \|A\| 4^s (2^{sq'} - 1)^{-1/q'} (h/\varkappa)^s \|u\|_{\dot{B}^{s,q}_{\eta}}.$$

and the proof is complete.

THEOREM 5.2. Let $1 \le p \le \infty$, $1 \le q \le \infty$, and 0 < r < s. There is a constant C independent of h that for h > 0 and for all $u \in B_p^{s,q}$ we have

$$\|Au - A_h u\|_{\dot{B}^{s,r}_{\mathcal{D}}} \leqslant C \|A\| h^{s-r} \|u\|_{\dot{B}^{s,q}_{\mathcal{D}}}.$$

Proof. Let j_0 be as in the proof of Theorem 5.1. Then

$$\begin{split} \|Au - A_h u\|_{\dot{B}^{r,q}_{p}} &\leqslant C \|A\| \Big\{ \sum_{j=j_{0}}^{\infty} \|2^{rj} \| (\varPhi_{j} \hat{u}) \tilde{u} \|_{p} \}^{a} \Big\}^{1/q} \\ &\leqslant C \|A\| 2^{-(s-r)j_{0}} \|u\|_{\dot{B}^{s,q}_{s,q}}. \end{split}$$

(5.7) now follows easily.

COROLLARY 5.3. Let $1 \le p \le \infty$, $1 \le q \le \infty$, and 0 < r < s. There is a constant C independent of h such that for $0 < h \le 1$ and for all $u \in B_p^{s,q}$ we have

$$||Au - A_h u||_{B_{p}^{r,q}} \le C ||A|| h^{s-r} ||u||_{\dot{B}_{p}^{s,q}}$$

Proof. This follows immediately from (5.5) and Theorems 5.1 and 5.2.

6. Approximation of singular integrals with variable kernels. We consider now $1 . Let <math>\beta > 0$ and $r = [\beta]$. We shall say that $f \in B_{\beta}$ provided

$$\sup\{|D^{\alpha}f(x)|:\ x\in R^n,\ |\alpha|\leqslant r\}<\infty.$$

and

$$\sup \{|y|^{-(\beta-r)}|D^{\alpha}f(x+y)-D^{\alpha}f(x)|: x \in \mathbb{R}^n, \ y \neq 0, \ |\alpha| = r\} < \infty.$$

We denote by $||f||_{B_{\beta}}$ the maximum of these quantities.

We consider an operator A defined by

$$Au(x) = a(x)u(x) + \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} k(x, x-y)u(y) dy$$

where $u \in S(\mathbb{R}^n)$ and k has the following properties. For each $x \in \mathbb{R}^n$, h(x,z) is C^∞ in z for $z \neq 0$, k(x,z) is positively homogeneous of degree -n in z, and k(x,z) has mean value zero on $\{z: |z| = 1\}$. Let $\hat{T}(x,\xi)$ denote the Fourier transform in the second variable of principal value k(x,z). Then

$$\sigma(A)(x,\xi) = a(x) + \hat{T}(x,\xi)$$

and call $\sigma(A)$ the symbol of A. We review the assumptions on $\sigma(A)$ and their consequences which may be found in [0]. We suppose that for each index α with $0 \le |\alpha| \le 2n$ and for each ξ with $|\xi| = 1$, the functions $D_{\xi}^{\alpha}\sigma(A)(x,\xi)$ are in B_{β} in x, and we say that A is an operator of type β . We define

$$||A||_{\beta} = \sup\{||D_{\xi}^{a}\sigma(A)(x,\xi)||_{B_{\delta}}: |\xi| = 1, \ 0 \leqslant |a| \leqslant 2n\}.$$

Then A may be extended to a bounded operator on W_p^M for $0 \le M \le r$ and there is a constant C depending on p and β such that if $u \in W_p^M$, then

$$||Au||_{p,M} \leq C ||A||_{\beta} ||u||_{p,M}.$$

This result was proved by establishing series representations for k(x,z) and $\sigma(A)(x,\xi)$ using spherical harmonics. Let $\{Y_{lm}\}$ be a complete orthonormal system of spherical harmonics in $L^2(\Sigma)$, where $\Sigma=\{\xi\colon |\xi|=1\}$. The positive integer m is the degree of Y_{lm} and the number of harmonics of degree m is $O(m^{n-2})$. The expansions are

(6.1)
$$k(x,z) = \sum_{l:m \ge 1} a_{lm}(x) Y_{lm}(z) |z|^{-n}$$

and

(6.2)
$$\sigma(A)(x, \xi) = a(x) + \sum_{l:m \ge 1} b_{lm}(x) Y_{lm}(\xi).$$

The coefficients in the expansions satisfy

$$(6.3) \quad \|a\|_{\beta} \leqslant C \|A\|_{\beta}, \quad \|b_{lm}\|_{\beta} \leqslant C m^{-2n} \|A\|_{\beta}, \quad \|a_{lm}\|_{\beta} \leqslant C m^{-3n/2} \|A\|_{\beta},$$

$$\text{and} \quad a_{lm} = \gamma_{m}^{-1} b_{lm} \quad \text{where} \quad |\gamma_{m}^{-1}| \leqslant C m^{n/2}.$$

Finally it is known that

$$|Y_{lm}| = O(m^{(n-2)/2})$$

Thus the series for $\sigma(A)$ converges uniformly and hence

(6.5)
$$Au(x) = a(x)u(x) + \sum_{l:m} a_{lm}(x)R_{lm}u(x)$$

where R_{lm} is the translation invariant singular integral operator with kernel $Y_{lm}(z)|z|^{-n}$. The operator norm of R_{lm} on L^p is bounded independent of m.

We define the approximation A_h as the operator with symbol

$$\sigma(A_h)(x,\,\xi)\,=\,a(x)+\hat{T}_h(x,\,\xi)$$

where for each x, $\hat{T}_h(x, \xi)$ has period $2\pi/h$ in ξ and $\hat{T}_h(x, \xi) = \hat{T}(x, \xi)$ for $\xi \in Q_h$. That is, for $u \in S(\mathbb{R}^n)$,

$$A_h u(x) = a(x)u(x) + \lceil T_h(x) * u \rceil(x)$$

where the distribution $T_h(x)$ has support on $h\mathbf{Z}^n$ and

$$T_h(x) = h^n (2\pi)^{-n/2} \sum_{\mu \in \mathbb{Z}^n} \int_{Q_h} \hat{T}_h(x, \, \xi) \, e^{-ih\langle \mu, \xi \rangle} \, d\xi \, \delta_{-h\mu}.$$

THEOREM 6.1. For h > 0 and $0 \le M \le r$, A_h may be extended to a bounded operator on W_p^M , and there exists a constant C independent of h such that for $u \in W_n^M$,

$$||A_h u||_{p,M} \leqslant C ||A||_{\beta} ||u||_{p,M}.$$

Proof. Since the series for $\sigma(A)$ converges uniformly, we have

(6.6)
$$A_{h}u(x) = a(x)u(x) + \sum_{l,m} a_{lm}(x)R_{lmh}u(x)$$

where R_{lmh} is the approximation to R_{lm} considered in Section 3. It is easy to see that for $M \leqslant r$, $u \in W_p^M$, and $f \in B_r$,

(6.7)
$$||fu||_{p,M} \leqslant C ||f||_r ||u||_{p,M}.$$

Now the result follows easily from (6.6), (6.7), and (6.3).

Now we prove an error estimate for $u \in W_p^M$.

THEOREM 6.2. Let $0 \leqslant K \leqslant M \leqslant r$. There exists a constant C such that for $u \in W_p^M$ and $0 < h \leqslant 1$,

$$||Au - A_h u||_{p,K} \le C ||A||_{\beta} h^{M-K} |u|_{p,M}$$

Proof. Since

$$Au-A_hu=\sum_{l,m}a_{lm}(x)(R_{lm}u-R_{lmh}u),$$

the result follows easily from (6.3) and Corollary 4.2.

Finally we consider the Besov space $B_p^{\beta,\infty}$ and show that A and A_h are bounded on $B_p^{\beta,\infty}$ and prove estimates for $Au-A_hu$, $u\in B_p^{\beta,\infty}$.

THEOREM 6.3. Let A be a operator of type β and A_h the approximation considered above. Then A and A_h are bounded on $B_p^{\ell,\infty}$ and there exist constants C_1 and C_2 such that for $u \in B_p^{\ell,\infty}$,

$$||Au||_{B_p^{\beta,\infty}} \leqslant C_1 ||A||_{\beta} ||u||_{B_p^{\beta,\infty}}$$

and for h > 0,

$$||A_h u||_{B_{\mathfrak{P}}^{\beta,\infty}} \leqslant C_2 ||A||_{\beta} ||u||_{B_{\mathfrak{P}}^{\beta,\infty}}.$$

Proof. We shall use the fact that if $f \in B_{\beta}$ and $u \in B_{p}^{\beta,\infty}$ then $fu \in B_{p}^{\beta,\infty}$ and there is a constant C independent of f and u such that

(6.8)
$$||fu||_{B_{x}^{\beta,\infty}} \leqslant C ||f||_{B_{\beta}} ||u||_{B_{n}^{\beta,\infty}}.$$

(6.8) follows easily from the definition of $B_p^{\theta,\infty}$, (6.7), and the following identities. Let $\tau_y u(x) = u(x+y)$ and let 1 denote the identity operator. Then

$$(\tau_y - 1)(fu)(x) = (\tau_y - 1)f(x)\tau_y u(x) + f(x)(\tau_y - 1)u(x)$$

and

$$(\tau_y - 2 + \tau_{-y})(fu)(x) = f(x)(\tau_y - 2 + \tau_{-y})u(x) + \tau_y u(x)(\tau_y - 1)f(x) - \tau_{-y}u(x)(1 - \tau_{-y})f(x).$$

The theorem is an immediate consequence of (6.5), (6.6), (6.8), and (6.3).

THEOREM 6.4. There is a constant C depending only on p, n, and β such that for $u \in \mathcal{B}_n^{\theta,\infty}$ and h > 0,

$$||Au - A_h u||_p \leqslant C ||A||_{\beta} h^{\beta} ||u||_{\dot{B}_p^{\beta,\infty}}.$$

Proof. The estimate follows from the expansion for $Au - A_hu$, (6.3), and Theorem 5.1.

THEOREM 6.5. Let $0 < \alpha \le \beta$. Then there is a constant C such that for $0 < h \le 1$ and $u \in B_p^{\beta,\infty}$,

$$\|Au - A_h u\|_{B_p^{\alpha,\infty}} \leqslant C \|A\|_{\beta} h^{\beta-\alpha} \|u\|_{\dot{B}_p^{\beta,\infty}}.$$

Proof. It is clear that for $0 < \alpha \le \beta$, $B_{\beta} \subset B_{\alpha}$ and $B_{p}^{\beta,\infty} \subset B_{p}^{\alpha,\infty}$. The estimate now follows easily from the expansion for $Au - A_{h}u$, (6.8), (6.3), and Corollary 5.3.

It is clear that the results of Section 4, 5, and 6 are also valid if the approximation A_h is constructed in the following way. Let η be a C_0^{∞} function which is one in a neighborhood of the origin and vanishes outside Q_1 . Define \hat{T}_h to be periodic with period $2\pi/h$ in ξ and $\hat{T}_h = \eta(\xi h)\hat{T}$, $\xi \in Q_h$. Then $A_h u = T_h * u$. The operator A_h is bounded as before and the estimates for $Au - A_h u$ are easily established.

References

- [0] A. P. Calderón, Integrales singulares y sus aplicaciones a equaciones diferenciales hiperbólicas, Cursos y seminarios de Mathemática, Fasc. 3, Univ. of Buenos Airos.
- [1] K. de Leeuw, On Lp multipliers, Annals of Math. (2) 81 (1965), pp. 364-379.

202

D. C. Shreve

- [2] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), pp. 93-140.
- [3] M. A. Jodeit, Jr., Restrictions and extensions of Fourier multipliers, Studia Math. 34 (1970), pp. 215-226.
- [4] J. Löfström, Besov spaces in theory of approximation, Annali di Mat. pura ed appl. (IV) 85 (1970), pp. 93-184.
- [5] D. C. Shreve, Approximation of translation invariant operators, Studia Math. 41 (1972), pp. 35-43.

Received December 11, 1973

(773)