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Power series spaces /,(a) of finite type
and related nuclearities

by
M. 8. RAMANTUJAN (Ann Arbor, Mi.) and T. TERZIOGLU (Ankars)

Abstract. Associated with the space Ay(a). of the space of power series With

radiug of eonvergence &, the notion of Ak-nuclelmty is defined and the Ak-nuclea.uty
of smooth sequence spaces of the finite and infinite types are considered. The notion
of A (a)-nuclearity is formulated and distinction between Ay, (o) and 4 v (a)-nuclearities
is brought out; for a, = log(n+-1) these correspond to s-nuclearity and nuclearity.
A (a) 18 exhibited as a single generator of the variety of 4, (a)-nuclear spaces, when
a is stable.

Introduction. 'We consuler nuclear power series spaces A a) of the
finite type and make a detailed study of locally convex spaces which
are A,G a)-nuclear. SBection 1 of the paper contains various definitions
and preliminary results; in Section 2 /Ik(a)-nuclearity of Kothe spaces
and in particular, of the smooth .sequence spaces of the finite or infi-
Iiite type are considered; also the concepts of Ax(e) and of uniform
Ay (a)-nuclearity are defined and the inter-relation between these various
concepts are established. In Section 3 we prove some permanence prop-
erties for Ay(a)-nuclear spaces and obtain 4, (a) as a single generator
for the variety of Ay(a)-nuclear spaces whenever o is stable exponent
sequence.

1. Definitions and preliminary results. For terms not explicitly defined
here we refer to Kothe [4], Pietsch [7], Dubinsky and Ramanujan [2]
and Terziogln [11].

Let 17 and I bo Banach spaces, 1 a normal sequence space and A*
its Kotho-Qual. For a map TeZ (B, F), suppose there exists a repre-
sentation

o0
= 27’n<mia’n>yn7 Vae B
Rzl
T ig said to be A-nuclear (written, Te N,(H, ), it (y,) € 4, t,e B, Jlo,]| <1
and yye Iy (yy, b))e 2 for each be F'. T' is said to be pseudo-A-nuclear
or J-nudlear, (TeXN,), it (y)eldy, tye By lagl <1, ypeF and |y,l<1
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T is defined to be quasi-i-nudlear, (Te NQ), if there exist (y,)e i, a,¢ F,
lle, | < 1 such that for each z< H,

1ol < D) 1yal <w; @)l

‘We shall assume that the definition of a Kothe sequence space A(P)
with its natural locally convex topology is knowmn.

Throughout this paper o = (a,) is a sequence of reuls and 0: g,
S o <. < a,foo. Now for a as above and fixed real number & - 0,
define

A(a) = {o = (@,): D |z,|R™ < oo for each R <K}

and the space A(a) is considered as a Kothe space with its natural (Fréchet)
topology. We shall assume also that 4, (¢) is a nuclear space or equiv-
alently, 3R~ < oo for each R, 0 < R < 1. As is well known, the power
series spaces Az (a), 4;(a), 0 <k, I < oo, are isomorphic.

For a locally convex space (lLe.s.) B, we shall let % denote a basis
of absolutely convex sets with U, ¥ denoting typical members of U,
U® will denote the polar of U, EU will denote the completion of the nor-
med space E/pg'(0).

‘We reserve the symbol d,(-,-) for the Kolmogorov diameters and
A(B) for the diametral dimension of the l.c.§. B; for more details see
Pietsch [7] or Terzioglu [11].

Consider now a Kothe space A(P) with ifs generating Kothe set P.

The Kothe set P is called a power set of infinite type if it satisties the
following ¢additional) conditions:

(cod) for each ac P, 0.< a,< @,,;, Vn; and

(0.2) for each aeP, there exists a be P with ay < b, for each m.
The corresponding space A(P) is called a smooth sequence space of imfinite
type or a G -space. The nuclearity and related coneepts of such spaces
is diseussed in [2], [11], [12].

The Kothe set P is called a power set of finite type it

(1.1) for each acP, 0 < a,,, < a,, Vn; and :

(1.2) for each aeP, there exists a be P such that I/Zi,, % by, for each n.
In this case 2(P) is called a smooth sequence space of finite type or a G4-space.

‘We start with the following preliminary results. Let & and o be fixed
with &> 1 and 4, = 4,(a).

- Lmmma 1.1. Suppose B and F are Hilbert spaces and Te ¥ (R, F)-
The following conditions on T are equivalent:

(a) T is quasi-A-nudlear;

(b) T is of type Ay;

(e) T 4s /Ik-nu,clear;

Power series spaces 3

(a)" I is quasi-Az-nuclear;

(b)Y 1V is of type Ay;

(e) T' is flk-mmlewr.

Proof. First we recall (see for instance, Pietsch [7], 8.3.1) that for
a compact linear map T between Hilbert spaces H, F respectively with

* unit balls U and V, T has the representation

Tz = D' (@, e,

for suitable orthonormal sequences (¢,), (f,) in & and F respectively and
for a suitable non-increasing, non-negative sequence i, with limi, = 0;
also .
Iy = 8,(T(U), V) = 6,(T"(V°), U°) = an(T) = a,(T").

Now in view of a, (T) = a,(T"), it suffices to prove that (a)=(b) =(e)
=(a), of which the non-trivial part (a)=(b) is proved below.

‘We first observe that if (f,) is @ non-negative decreasing sequence
and (B,)e 4 then the sequence (y,)e A; where y, = 3 B,; this is easily

m=n

verified by using the nuclearity of A4;. If now T is quasi-A-nuclear, then
T2l < 3 Bal(m, w,)| where u,e B, Ju,|<1, B,}0 and fe 4. Then y,
0 .

as defined above, is alsoin A;. Let M,, = {we B: {x, u;) =0,% = 0,1, 2,...
ooy m—1}; if we M, then by the above inequality,

17l < ) B l(@, )] < 70 |-

Hence T(UnM,) < y,V; by taking polars we get T'(V°) < y, U° + My
(see [11]; p. 65); hence a, (T) = 8,(T"(V"), U%) < v, and so T is of type 4.
ProrosrrioN 1.2. On a l.c.s. B the following conditions are equivalent:
(a) VUe%, HVe%, V < U such that the canowical map E(V, U)
on By to By is quasi-Ay-nudear; v i
(b) VUe%, Ve, V < U such that K(V, U)e N 4 ;
(6) VUe, OV e, V < U such that (8,(V, U))e Ay;
(A) VUe%, Ve, V < U such that (5,(T°, V°))e dy;
(6) VUe, UVe, V < U such that for the canonical map K': B,
_’E;;oy K« Ny
() VUe, Ve, V < U such that K'e N9, .
The above proposition is easily proved by using Lemma 1.1 since
each of the above conditions implies that E is nuclear and therefore

there is a base %' of neighborhoods (U) such that EU and E’Uo are Hilbert
spaces.
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DrriNviTION 1.3. A Le.s. F is defined to be /I,G-nuclewr if it satisties
any of the six equivalent conditions of Proposition 1.2.

Clearly each ;l,c-nuclear space is nuclear. Referring now to conditions
(e) and (d) of Proposition 1.2 and the earlier results of the second author
[117] one easily obtains the following permanence properties.

ProrosizronN 1.4. Subspaces, quotient spaces by closed subspaces,
completions and natural biduals of a ;l,fnuclear space are all /f,fnuclear.

2. Kothe spaces and flk-nuclearity. Consider now a Kothe space
A(P) = E. A neighborhood bage # of absolutely convex sets is made
of sets {U,: aeP} where U, = {wei(P): p,(w) = 3 |w,la, < 1};. the
canonical map K (b, a): U,—U, can be identified with the diagonal map
D = (b,/a,) from I, to I,; as has heen shown by Kothe [6] the approxi-
mation numbers a,(D) of D are precisely the decreasing rearrangement
of (by,/a,) and singe 8,(D) < a,(D) and A, (a) is normal, one can now easily
establish the following Grothendieck—Pietsch-Kothe type criterion.

ProrosITION 2.1. A Kdthe space H{P) is zi,c-nuoleow if and only if
Jor each ae P there exists a be P with a < b and an injection o: N—N such
that o(N) = {n: a, # 0} and (aa(n)/ba(n))e/lk.

DEeFINITION 2.2. Following Kothe [6] we shall call a Kothe space
A(P) to be uniformly flk-mwlear if there exists a “universal permutation”
o such that for each ae P there exists a be P such that ¢ <b and (@oimy)
€ (b,,(")) Ay,

DrFINITION 2.3. A les. B is said to be Ay(a)-nuclear if it is ;Ik(a)-
nuclear for each &> 1.

We also recall that a l.c.s. B is 4 (a)-nuclear if for each U< % there
exists a Ve %, ¥V < U, so that E(V, U) is 4, (a)-nuclear, due essentially
to Spuhler [10], is that for each Ue% there exists a Ve# so that
0, (V, U)e A, (a).

Remarks 2.4. We emphasize at this stage the difference between
A (a)-nuclearity and Ay (a)-nuclearity of L.o.s. B. Since A (a) = Ay (a),
the above characterization of A, (a)-nuclearity says that for each Ue#
there exists a Ve%, V not dependent on k, so that 0,(V, U)e di(a) for
each k; on the other hand, an application of Proposition 1.2 gives that &
is Ay(a)-nuclear if and only if for each Ue % and each k there exists a V
= V(k)e% so that 8,(V, U)e Ay(a). Thus, clearly B is Ay (a)-nuclear
= B is Ay(a)-nuclear = F is flk(a)—nuclea,r, k> 1.

We shall point out the falsity of the reverse of the first implications
later in the paper and also obtain partial results on the reverse of the second
of the above implieations.

The case a, =log(n+1) is of special significance and motivates
much of the discussions in this paper; in this case A (a) = s, the space

icm
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of rapidly decreasing sequences and /. (a)-nuclearity is the so-called
strong nuclearity [6]; however, 4, (a) is not nuclear in this case; despite
this violation of our assumptions on A(e) (in general), the condition that
“given Ue and k>1, BVe%, V = V(k), so that 6,(V, U)e dx(a)”
is exactly- the condition that E is nuclear (see [11], p. 75) and roughly
speaking Ay(a)-nuclearity of le.s. in this case is ordinary nuclearity.

Omne might also consider the A,(a)-nuclearity of l.c.s. B for a fixed
%k = 1 or for each fixed % > 1; as is easily seen, there is no-difference hetween
Ay (a)-nuclearity and A;(a)-nuclearity for %, I < oo since each of the
spaces Ay, 4; is a diagonal transform of the other; also 4, (a)-nuclearity
is discussed in detail by Robinson [9]. Moreover, for %> 1 and fixed,
each zf,a(a)-nueleajr map is A, (e)-nuclear.

In the context of the above remarks we state below a proposition
‘whose proof we omit and one may supply & proof by comparing the result
with Proposition 8.6.2 in Pietsch [7] and taking into consideration the
remarks 2.4. .

ProPOSITION 2.5. If B is a Ax(a)-nuclear DF-space then B is A (a)-
nuclear. : )

PrOPOSITION 2.6. For a G,-space A(P) the following statements are
equivalent:

(a) A(P) is /fk—nuclewr;

(b) A(P) is uniformly Ag-nudear;

(e) for each be P there ewists an ae P with b < a and 1/ae Ay ;

(d) there ewists an ae P with 1/ae A;. )

Proof. (a)=(c¢): Recalling the discussion preceding Proposition 2.1
and using Proposition 1.2 we see that if (a) is true then for each be P
there is an a« P with b < @ such that 6,(U,, Uy)e A, (a). Let L, denote
the span of e, e, ..., ¢, (the standard unit vectors); then for me L, we
have ze A(P) and

. .
Palo) = Dbyt < 3 mu0).
Therefore (by/a,)(U,NL,) = Uy; then by a known theorem of Tikhomiroy
(see [7]) one has by/a, < 6,(U,, U,) and since A, is normal and 6,(U,, U;)
e Ay, it now follows (1/a)e A,.

(e)=(d) is trivial.

(d)=(b): Assuming (d), we have (L/a)e A;. Now for be P choose
de P so that ¢ < d and b < d. Then (1/d)e 4;,. Next choose ¢e P so that

-2 < ¢, Vn. Then since b,/c, < b,/d < 1/d, we get (b/e)e ;. Thus 1(P)

is uniformly /fk-nuclea,r.
The rest of the proof, viz. (b)=(a), is trivial.
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COROLLARY 2.7. The power series space A.(f) is /Ik(a)-%uolear >
(an/Bs) is bounded.

Proof. (=) If 4,(8) is 4,(a)-nuclear then by Proposition 2.6,
there exists a number §, 0 <8 <1, such that (§%)e A(e), and this
implies (a,/8,) € -

(=) I (a./B,)€lw, then there exists M > 1 such that a,< MB,,
Vn; also (¢,/8n) € lo =4 (B) is muclear; thus there exists a T > 1 so thab
> 1/T%" < oo; choose now S > kM T; then §>1 and

ko 1 [ KM\ 1 1)
Wg Z (T) < ZW < co and so (Sﬁ")e Az (a).

Now the result follows from Proposition 2.3.

PROPOSITION 2.8, For a Gy-space A(Q) the following statements are
equivalent:

(a) 1(Q) s /ik-nuclewr;

(b) A(Q) is uniformly /I,c-amoleam;

(¢) @ = Az(a). C

‘We omit the proof of the proposition with the remark that it is similar
to that of Proposition 2.3.

A, () is a G,-space (see, for ingtance, [11]); we now apply Proposition
2.8 to 4,(B) = A(Q). i

COROLLARY 2.9. 4,(B) is Aj(a)-nuclear < (a,/B,)eC,.

Proof. (=) If 4,(p) is /fk(a)muclea.r then by Proposition 2.8, (Rﬂ")
€ Ay (a) for each R <1 and this implies (a,/B,)—0.

(=) (a,/Bn)->0 implies, by Grothendieck—Pietsch criterion that
4,(p) is nuclear and so El/Tﬁ" < oo for each T > 1. Now given R>1
and given 8,1 < § <%, choose B',1 <R’ <R, and n, such that 8"/
< R’ for n > n, Then

3] R' b 1
< Z(_ﬁ) < co and so ('1'%) e Ay,

ny

S
Rfa
%o

and by Proposition 2.6 the proof is complete.

Remark 2.10. In both Corollaries 2.7 and 2.9 the condition on a,/8,
is ixidependent of the index % and so we have, in fact, that 4. (8) or 4, (8)
is 4 (a)-nuelear for some & > 1 if and only if it is Ay (a)-nuclear.

The next propotion extends the above remark.,

ProrosirIoN 2.11.

(i) If the Kothe space A(P) is umniformly _/I,Go(a)-nuclem" for some
ko> 1 then it is Ax(a)-nuclear.

icm
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(i) If the Gy-space A(Q) is ;lko(a)-nuclear for some ky> 1 then it is
A (a)-nuclear.

Proof. The proof of (i) follows from Proposition 2.1, Definition 2.2
and the fact that if a, be Ay (o) then a-b = (a,b,) € Ay (a).

Proof of (il). By part (i) and Proposition 2.8, @ = A;(a), for each
1>1 and so @ c A (a); then 1(Q) is A, (a)-nuclear by a known theorem
(1123, Theorem 3.2). '

The following proposition is a summary of the results of Corollaries
2.7, 2.9 and Remark 2.10 of this paper, Corollary 3.3 of [12], Proposi-
tions 3.3, 3.4 of Robinson [9] and the result of Dubinsky [1].

PROPOSITION 2.12.

@ % el Ao (B) s Ay(a)nudear
A o(B) 18 i(a)-nuclear
<A (B) 18 Ay(a)-nuclear;

(i) m—;- 6o =y (B) is Ax(a)nucear
=15 (B) 18 A (a)-nuclear
i (B) 18 Ao (a)-nuclear.

COROLLARY 2.13.

(i) dx(a) s Ax(a)-nuclear;

(i) A (a) 28 not A, (a)-nuclear.

The above corollary reveals that .1 (a)-nuclearity is a stronger
assertion that /Ay (a)-nuclearity.

Motivated by Proposition 2.11 we ask the question: Is there a locally
convex space B which is 4 (a)-nuclear for some & > 1 but is not Ax(a)-
nuclear? At this time we only have a partial answer to the above question.

PrOPOSITION 2.14. Suppose there exists a o, 0 < ¢ <2, such that
Oapsy < pa, for sufficiently large n. Then if B is ﬁ,,(a)-nuclear for some
k> 1 then it is Ady(a)-nuclear.

Proof. Without loss of generality we assume ¢, < oa, Vn. Clearly
it is sufficient to show that for each Ue % (E) there exists a We % (H)
sueh that (6, (W, U)je 4,9,(a). Given U, find V, W such that (8,(V, U)) e Ay

-~ and (8,(W, V))e A, Then for 1 <R <k,

© =
N8, (W, UYRE <2 3] 8y, (W, U) BEePansa
=0 n=0

since

00 (W, U) = 800 pa (W, U)  and R+l > Reon,
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Since

80 (W, T) < 5,(V, U) and ReO%m+1 < R,

we have
D6, (W, D)RMOn <2 316, (W, VIR 8,(V, UJR™ < oo.

<8,(W, T

This completes the proof.
Note. The condition ay,;
that («,) is stable, [2].
‘We consider next /ik(a)-nuclea,rity and duals of locally convex spaces.
We first prove )
PROPOSITION 2.18. The strong dual B, of o locally convex B is A (a)-
nuclear < for each bounded set A in I there ewists another, B, such that
A < B and {8,(4, B))e 4.

< 0,y 0 < @<2, for large n implies

Proof. («) Given Ue %(B;), find bounded set 4 in I such that
A" ¢ U and B such that 6,(4,B)e 4. Set V = Bc % (H;). Then
8,(U°, V°) < 8,(4%, B) < 4,(4, B). o

Now the proof follows from Propositiori 1.2.

(=) Given 4, choose U, Ve %(B;) so that A° = U and Hy, By are
pre-Hilbert spaces and the canonical map E‘A',,—>EA'U is /fk—nuclear. Then,
by Lemma 1.1, its adjoint map is also ;lk-nuclea.r and itg restriction to
Fyo, which is the canonical imbedding of Hyo in By, is quasi-4,-nuclear.
Since EUD and Epo are Hilbert spaces, this map is, by Lemma 1.1, A,, nu-
clear. Let now ¢ = U and B = V°. Then, by Lemma 1.1, 6,(C, B) An
where (1,) e 4 and B is the closure of B in EB, i.e., the unit ball of Hj.
Thus, for each &> 0, there exist Z,, Z,, ..., ZnsZ;IB such that

O < (At e)B+I{Zs, ..., Z,}

(as shown in [11]). Choose next @, ..., ¥,¢ By so that

g o~
;—Z,;) e~ B.
(w’l, 1,)521,

Then
O c (A, +28) BT {@1, ..., @, }.
If L = span{wy,...,%,} < Hp, then for each xe¢ ¢ there is a ye L mch
that pp(®—y) < 4,+2e. Hence € <= (4,+2¢)B+L so that 6,(C, B)
But 6,(4, B) < 6,(C, B), since 4 = C. Thus 6,(4, B)e 4,.

icm
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ProrosITION 2.16. If B or B, is Ax(a)-nuclear then for each bounded
set A <« B and each Ue%(BH), 6,(4, U)e A(a).

Proof. Suppose F in Ay-nuclear; then given k> 1, and Ue%,
find Ve  such that (6,(Vy, U))e 4. Since 6, (4, U) < 3y(4, V) 6,(V:, U);
we get (6,(4, U))e A;. This being true for each k> 1, we get the result
claimed.

If B, is Ay-nuclear a similar proof can be given wusing Proposition
2.15.

‘We conclude this section with the following result on the 4y-nuclearity
of the dual of a uniformly /Ik-nuc]ea.r Kothe space A(P). "

_ Prorosrrion 2.17. Suppose the Kdithe space A(P) is uniformly
Ay (a)-nuclear for some &k > 1; then its sirong dual [A(P)];, is a dense subspace
of a wwiformly A;(a)-nuclear space A(L), where 1 <1<<k; hence [A(P)],
is An(a)-nuclear.

Proof. Let L = {we A(P): w, > 0}. By Kothe’s lemma [5], [A(P)],
is a dense subspace of A(L). Since A(P) is uniformly /Ik—nuelear, there
exists a permutation o such that for each aeP there exists a beP and
(dn) € Az 50 that agpy < d,D,- Let ze L. Then

SUP I Ty oy < SUP TP @y SUP Dy Dy < 00

Henge if 3, = 1" g, then (yy) e L; 8150 Gy = Yo /1% Bt (1[I} ¢ Ay(a).
So A(L) is uniformly /;-nuclear and hence, by Proposition 2.11(i), is
Ax(a)-nuclear.

COROLLARY 2.18. Let A(P) be a barrelled, nuclear, Kithe space. Then
A(P) is uniformly jk-amaclewr if and only if [A(P)], is uniformly ./Ik-nuclem'.

Proof. Let L be as in the above proof. Since A(P) is barrelled and
nuclear, [A(P)], = A(L); since A(P) is reflexive, [A(L)], = A(P) and so
by the above proposition, [A(L)], is uniformly /Ik-nuelear if A(L) is so.

3. Universal Ay(a)-nuclear space. Let o = (a,) be & fixed exponent
sequence so that A(e) is a nuclear space (for each k). Proposition 1.4
gives us that subspaces, quotients and biduals of Ay-nuclear spaces
are algo dy-nuclear. We know also from [2] and [8] that ([A.(a)])
is a universal 4. (a)-nuclear space whenever (ay,/a,)e l, 0r equivalently
a is a stable exponent sequence and that A,(a) is not A, (a)-nuclear.
So we ask now what the model of a universal Ay(a)-nuclear space is.
Our main result in this section is that whenever o is a stable exponent
sequence, A, (a) is a single generator for the variety of Axy(a)-nuclear
spaces.

‘We start with the following lemma, ([2]), Theorem 2.10)
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LumMA 3.1. For the emponent sequence ay, sup (g, /ay) < 00 <> there
exists & bijection p: N—N x N such that for each ke N,

sup~——M)~ < 00.
m U,

‘We now refer the reader to [2] and particularly to the details of the
proofs of Lemma 2.7, Theorem 2.8 and Theorem 2.9. In the proof of the
proposition stated below we shall give part of its proof in as far it is dif-
ferent from that of Theorem 2.8 of [2] and leave the rest of the routine
details#

PROPOSITION 3.2, Suppose o is a stable exponent sequence, i.c.
SUP (Gg /) < o0. Then (i) closed subspaces, (ii) quotients by closed subspaces,
(iii) completions, (iv) natural biduals, (v) countable direct sums, and (vi)
arbitrary products, of Ax(a)-nuclear spaces are also Ax(a)-nuclear.

Proof. We shall now indicate a partial proof of (v) above.
Let By, ke N be Ay(a)-nuclear and B = @ E,. Congider in ¥ the

fundamental system of newhborhoods of the form U =TI (( Upie N)
where each U, is a barrelled neighborhood of 0 in I, and I' represents
the closed convex hull of the unioil. :

Now by the stability of (a,) and Lemma 3.1, we get ¢, >0, ke N,
such that ap—ig,m < ¢, for each %, meN. Let &, = [¢,]+1 and p,

= (k+1)%; let g = k% < py.

Let B> 1 be given; R is fixed; for each ke N and k> [R]-+1 we
can obtain from the hypothesis that each Ek is a Ay(a)-nuclear space,
a barrelled nelghborhood W, of 0 in By, e, () and sequences (85
in the unit ball of ((Ek)Wk] and (ym)m in the unit ball of: (Ek)Uk such that

the canonical map K,, (E,c)W,c (Ek)Uk can be represented by
K () = Z R AT

Now for each k< [R], ke N, get &, (ak, ), (yk) as above except that
00

Epe Aqk, q, = ([R1+1)%; if now Pg(w) denotes 2 lman“n, choose (i),
E=1,2, t, > 0 such that
1

5 for k>=[R]+1

Py, (48" <

1
PRck(tkf")<—2—,; for k< [R].

Now using the notation that for the bijection f: N-NxN, f(n)
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= (/31(”): ﬁz(n))i we get
00 o0 1
Ztﬂ1(n)]§ﬁ2 I R = Z Ztk & R 5 )
k=1 m=1

< S 3 idhimes
m=1

[R]
< D 4P pa() +

o0

o]
te D) |&h] ke

frams k=(E+1  m=1
&1 S

= DIt D) WPyl < o
= kTRI+1

Thus, we have shown tha,t (5p1(n)5 {;)e Ag(a). If we now construct,
for each &, V; =Wy, @ E o= abft, and V = I'((Vy), ke N) we can show
.8 of [2] that the canonical map I EV—>EU
is AR( a)-nuclear; therefore I is AR(a)~nuelea1 and since we can do this
for each B> 1, B is Ay(a)-nuclear.

‘We isolate the following corollary because of its significance in what
follows later.

COROLLARY 3.3. The arbitrary I-fold product [A,(a)]’ is An(a)-nu-
clear, whenever a is stable.

Our next result is in the direction of obtaining A, (a) as the single
generator for the variety of sy(a)-nuclear spaces whenever o is stable.
Tt is modelled after Komuras’s imbedding theorem for nueclear spaces [3].

PROPOSITION 3.4. Let a = (a,) be a stable exponent sequence and
Ay {a) be a nudear space. Suppose (A, (@) = A(F). Then B is isomorphie
to a subspace of [A(a)T for a suitable I.

Proof. Let k>1 be fixed. Since « is stable and (Am(a))" c A(H),
it follows that (kazk”)ne A(B). By hypothesis, clearly F is nuclear and so
there exists an absolutely convex closed neighborhood U in F such that
B is o Hilbert space; now by Proposition IV.1 of [11] there exists an

as in the proof of Theorem 2

. orthonormal basis (ef), of Hyo so that the set Ay,

b= {3 e 3ler )

is an equicontinuous subset of E'.

Order the set {ef: k,n =1,2, } into a sequence by using the
bijection f; N>NxN defmed by ;9 (k, n) = 28~1(2n—1); apply the
Gram-Schmidt process to this sequence fo obtain a new orthonormal
basis (6,) of Byo.
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Fix ke N; if m, ne N are such that 2fn <m, then {e,,es> =0
since 2%~1(2n—1) < m; expanding e,, in terms of (ef), we then have
= D (oms )65

nmj2k

Niten, et 2)-—1—< 1 .
Pl <( 2 e 0P s <
We get k®me, e 4.

Thus we have shown that there exists an orthonormal basis (e,)
of By such that {k*me,: m =1,2,...} is equicontinuous in E’, for
each fixed %.

Now let % = {U;: ie I} be a base of neighborhoods of B such that
each U; is a barrel and EUO is a Hilbert space. Choose an orthonormal
basis (e},) of EUD such that the sets
* . B, = {k*md,
are equicontinuous for each fixed % > 1; for each i< I, define the map
T;: B=dy(0) by Tiw = (&, 65,5)m; from (*) it follows that T,we A, (a)
and 7T, is continuous. Define next T': B—[A,(a)¥ by Tz = (Ty®).r.
Then T'is econtinuous and one-one.

‘We shall complete the proof by showing that 7': T (E)—~E is contin-
uous. Let ¥V = {y = (4)z¢ [4o(a)]’: supR™[yi| <1, jel is fixed and

n

for i #§, y'e A, (a) is arbitrary, where R is.chosen so that R > 1 and
SR < 1} Then V is a neighborhood of 0 in [4,(a)}’. If Tae V then
supR""l(w el>] < 1. If now we U}, then

u(o)| = | 2@ i <( 3 Keb wy))*( D) 1w, eol)™

L
P

80 that ze U; and VnT'(B) < Uy; so I~* is continuous.

COROLLARY 3.5. Suppose a is stable. Each Ay (a)-nuclear space H
is isomorphic to a subspace of [ A (a)]"

Proof. B is Ay(a)-nuclear

< for each k > 1, and each Ue%, there exists a V% such that
(‘Sn Vi U))e (@),

< for each K >1 and each Ue% there exists a V = Vyze % such
that R, (Vg, U)-—0,

<R*ne A(H) for each R> 1,

< [d(a)]* < 4(H).
Now apply Proposition 3.4.

em
Now, from the inequality

16 €m)!®

tm=1,2,..},

<1
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COROLLARY 3.6. (Komura-Komura [3]). Bach nucear space B is
isomorphic to o subspace of (s)f, s being the space of rapidly decreasing
sequences.

Proof. Note that s = 4,(a), a, = log(n+1). The proof now follows
from the fact that ¥ is nuclear < s* <= A(H), as shown in [11] (Prop.
II 4.7).

COROLLARY 3.7. Let a be stable. If the Fréchet space X is Ay(a)-nuclear
then By, is A (a)-nuclear. .

Proof. B is a Fréchet, AN(a)-nuclear space = I, is isomorphic to

a quotient space of the direct sum @ (Aeo(
A (a)-nuclear whenever a is stable. *=!

(a))y and this direct sum is
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