88

(12]
[13]
[14]
[15]

[16]
[17]

(18] -

[19]
[20]
(21}
[22]

[23]

R. P. Raufman

— A Kronecker theorem in functional analysis, Collog. Math. (to appear).

A. N. Kolmogorov and V. M. Tihomirov, eentropy and e-capacity of sels
in function spaces, Uspehi 14 (86) (19569), pp. 3-86. Algo in AMS Traunsglations
17 (2) (1961), pp. 277364,

T. W. Kérner, Some results on Kronecker, Dirichlet, and Helson sels, Annales
Fourier (Grenoble) 20 (1970), pp. 219-324.

G. G. Lorentz, Lower bounds for the degree of appromimation, Trans. Amer.
Math. Soc. 97 (1960), pp. 25-34.

— Entropy and approwimation, Bull. Amer. Math. Soe. 72 (1866), pp. 903087

— Metric entropy, widths, and superposilions of funciions, Amer. Math. Monthly
69 (1962), pp. 469-489.

— Approwimation of Fumetions, Holt, Rinchart, and Winston 1966,

Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland 1972,
W. Rudin, Real and Oomplex Analysis, MoGraw-LIill 1966,

R. Salem, On singular monotonic functions whose spectrum has a givon Hausdorff
dimension, Ark, Mat. 1 (19561), pp. 353-365.

A. C. Vosburg, Metric entropy of certain classes of Lipsclile funclions, Proc.
Amer. Math. Soc. 17 (1966), pp. 665-669.

A. Zygmund, Trigonometric Series, I and II, Cambridge 19569 and 1968,

Received August 23, 1973 (715)

icm®

STUDIA MATHEMATICA, T. LIL. (1974)

An inequality for the disiribution of a sum
of certain Banach space valued random variables

by
J. KURLBS* (Madison, Wi.)

Abstract. We prove an inequality for the distribution of a sum of independent
Banach space valued random variables provided they take values in a space having
2 norm with a smooth second directional derivative and the random variables have
9+ & moments. This inequality is applied to obtain the central limit theorem and the
1aw of the iterated logarithm, and it is shown that these results apply to the L? spaces,
2 p< oo

1. Introduction. Throughout the paper B is & real separable Banach
space with norm || +||, and all measures on B are assumed to be defined
on the Borel subsets of B generated by the norm open sets. We denote
the topological dual of B by B*.

A measure x on B is called a mean zero Gaussian measure if every
continmous linear function f on' B has a mean zero Gaussian distribution
with variance [ [f(#)1%u(dw). The bilinear function 7' defined on B* by

B

T(fy9) = [ f(@)g@ndn) (f 9B
B

is called the covariamce function of w. It is well known that a mean zero
Gaugsian meagure on B is uniquely determined by its covariance function.
This % so beeause 7' uniquely determines u on the Borel subsets of B
generated by the weakly open sets, and since B is separable, the Borel
gets generated by the weakly open sets are the same as those generated’
by the norm. open sets.

However; & mean zero Gaussian measure x4 on B is also determined
by & unique subspace H, of B which has a Hilbert space structure. The
norm on H, will be denoted by |||, and it is ‘well known. that the B norm
i1l is ‘weaker than |-[|, on H,. In fact, ||-[| is & measurable norm on H,
in the sense of [7]. Since ||| is weaker than. ||, it follows that B* can be
linearly embedded (by the restriction map) into the dual of H,, call it

* Supported in part by NST Grant GP-18759.
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HY, and identifying H, with H} in the usual way wo have B* < H, < B.
Then, by the main result in [7], the measure p is the extension of the
canonical normal distribution on H, to B. We describe this relationship
by saying u is gemerated by H,. For details on these matters as well as
additional references see [7], [8].

Let X;,X,,... be independent B-valued random wvariables such
that for some §>0 .

(L.1) E%PEHXICH“”'”< ©o,
BE(X) =0 (k=1,2,..),
and having common covariance funetion
T(f,9) = Bf(X)g(Xs) (B=1,2,....).

Then, if T is the covariance function of a mean zero Gaussian measure u
on B, and the norm on B has a second directional derivative with certain,
smoothness properties, we have for ¢ > 0 and any § > 0 that

X, +... +X,
yn

where the bounding constant is uniform. in ¢ for ¢ > 28 and o > 0 determines
a Lipschitz condition on the second directional derivative of the norm.

This result is proved in Theorem 2.1 using a method that is due to
Trotter [13]. The application of Trotter’s method in this setting hinges
on the fact that the Gaussian measure x4 determines a generating Hilbert
space H, in B, and also on a number of nontrivial properties of Gaussian
measures on B.

In Theorem 8.1 and Theorem 3.2 we apply the inequality (1.2) to
obtain the central limit theorem and the law of the iterated logarithm.

(1.2) P(

> t) < (@t ] > 1= B) 4 O (i),

- Finally, in Section 4 we show that the I” spaces 2 < p < oo satisty

the smoothness condition we impose on the second divectional derivative
of the norm on B.

Previous results and further references regarding the central limit
theorem in the Banach space setting can Dbe found in [4] and [6]. The
law of the iterated logarithm for Hilbert space valued random variables
was proved in [10]; and for Gaussian random varviables with values in
an arbitrary Banach space in [11], [12].

2. The basic inequality. The norm |.|| on B is fwice directionally
differentiable on B—{0} if for =, ye B, w1ty 5 0, we have

a
(2.) T o +tyll = D (2 +ty) (y),

icm®
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where D: B— {0} B* iy measurable from the Borel subsets of B generated
by the norm topology to the Borel subgets of B* generated by the weak-
gtar topology, and

2

2) o tl= Dty (9, 9)

where D? is a bounded bilinear form on Bx B. We call D .the second
directional derivative of the norm, and without loss of gener‘a.h'ty we can
assumeo D is a symmetric bilinear form, That is, it 17 is a bilinear .fogm
which satisfies (2.2) then A.(y,#) == [T,(y, #)+Te(2, 9)1/2 als;).sa‘msﬁes
(2.2) and 4, is symmetric. Hence in all that follows we assume I is & sym-
metric bilinear form. Of course, if the norm. is actually twice Fréchet

. differentiable on B with second derivative at @ given by 4,, then it is

well known that 4, is a symmetric bilinear form on B x B, and i.n this
case D2 would be equal to A, since symmetrie bilinear formg are uniquely
determined on the diagonal of B X B.

If Di(y,y) is continuous in @ (# 7 0) and for all » >0 and @, he B
guch that |l = r and ||B|| < r/2, we have

(2.3) D24y B) —=Dig(hy W] < Oy [RIPFF*

for some fixed ¢ > 0 and some constant 0, then we say the second directional
derivative 48 Lip (a) away from zero. ] ) .

We now mention briefly a number of properties which D(w) an
D2 enjoy. For cxample, it is easily shown that D(Az) = (sgnz).l)(aa) for
all @, A % 0 and also that | D (@)]| = 1 for @ 5 0. Somewhat more involved,
but of no great difficulty, is the following lemma regarding the second
derivative. .

TEvmaA 2.1, If the norm ||-|| is twice directionally differentiable on B — {0}
with second derivative Dy, then:

) 1
(a) If A 0,0 0 then Dj, =—m-D;.
(b) D%(h, b) 3 0 for all w, heB.

Proof. For 4, » 5 0 and heB

DL 1) = lim D (Ao -+ th) (B) —D (A) (h)
A\ vy = Il-o«ﬂ " 1

(2.4)

- 1im_"} D (@ -+ £h/2)) (h]3) —D (22) (1] )]
i-+0

Asgnd [D(@-+1h/2) (h{2) — D (@) (h]A)]

lif DE(h, ).

== lim
{0

== || DL(R[Ay BjR) = -
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Hence Dj, =%~TD2 since a symmetric bilinear form is determined hy

its values on the diagonal of B x B. Now the non-negativity of D2 follows
because the existence of the second derivative of ||»+-th|| implies

g Jo A+ o —th 2ol

10 2

(2.5) D(h, 1) =

and since |2z < o+ 1A + e — k], we easily see that DZ(h, k)= 0.
THEOREM 2.1. Let B denote a real separable Bonach space with norm

11l Let || - || be twice directionally differentiable on B with the second directional

derivative D% being Lip(a) away from zero for some « > 0 and such that

sup ||IDY) < oo.
flzll =1

Let Xy, X,, ... be independent B-valued random variables such that for some
>0
(2.6) sup B[ X, < oo,

]

BX,=0 (k=1,2,..)
and having common covariance fumction

T(f,9) = B(f(X)g(Xa)) (fy9¢B").

Then, if T is the covariance function of a mean zéro Gaussian measure u
on B, it follows for 1> 0 and any g > 0 that

X, +... +X,
Vyn

where the bounding constant is uniform in t for + > 28.

Proof. I 0 <t p then (2.7) is obvious, so fix ¢ > § and define
a function f:(— oo, c0)—[0,1] such that f is monotone increasing,
Flu) =0 for w<<t—p, f(u) =1 for u =1, and f is Lipschitz continuous
(and hence in this case bounded) on (— oo, c0). Let g(w) == f(|l|),
Wy = (Xy + ... +X,) /ﬂ, and assume ¥y, ¥y, ... are independent
random variables each with Gaussian distribution u. To ho specific we
agsume the. sequences {X;} and {¥,} are defined on the probability space,
(Q, F, P). We also assume the Y,’s are independent of the X8 and that

Zy = (Yy + ... +T,) /l/q-o:. Then the distribution Z, induced on B is
u and .

(2.7) P(

> t) < (s ol] > 1= B) +0 (e,

(28)  P([W,| =0 = p(@: ol > )+ {P(IW,J| = 1) — s ] 3 1)}
< /"(m' “5(/‘“ = t_'ﬁ) 'I“E{g(wrn) - g(zm)} .
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Now
n
I(Wa)—=g(Zy ) = D Vs,
o1
where ‘ )
V. =g Kyt oo + X b Yppa - onv Y,,)_
(2.9) k=4 Vn
;X1 b ‘I"xlaml + YI::“I" ook Yn)
g Vn
= (U -+ XV n) =g (Ug -+ TV )
and

Uy = (X1 + oo+ X+ Tat oo ) Ve

Lot h(R) = g(Uy-+AX,/Vn) for — co< A< oco. Since g(z) = f(|lo])
and. f vanishes in & neighborhood of zero we have k(1) twice continuously
differentiable on (— oo, co). Hence by Taylor’s formula

"(z)—h" (0
_h2(0>+[h <r>2 (0)]
= g(U) +F (1T D (T (X V) +

+ 37" (N TIAD (T (X Y )} +

35 (1T D (K Vi, Xy V) 4T (U X)
(0< v 1),

(210) g(Uy+XpVn) = h(0)+N (0)+

where
@11)  27,(Ty, Xp) = (10 -+ e TVl (D (T V) (Xl B} +
+F U+ TXI;/VWI‘)D%A,j-vXk/l/;;(Xln/‘/”’l Xn/‘/") -
=" (I UDAD(Us) (Xkll/%)}“:
e F (VT D, (X Vg XV )
and v is a non-negative random. variable bounded by one.
A wimilar expression holds for g(Uy Yy V) f%XOBI)f: Y, replaffaes
X, and v is replaced by & random variable »* which is also non-negative
and bounded by one.
‘We will show below that

B (|0 D(U) (X)) = B(F (10 D (T (X)) = 0,
@12) B (UMD (U XY = B (T (T (F}),
B (1T Dy, (Xiy X)) = B(f' (1 Ull) Dy, (Y T)
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and hence by (2.9) and (2.10), we have
(2.13) |B(V) < BN Uiy Zi) BN Uiy Tl

Further, by showing both B, (U, Xp)| and B, (U, Xy)| are
O (n~{rmin@9)) e gep from (2.13) that

(2.14) |B{g(W,o)—g (Za)}| = O (n=minmoy

Combining (2.14) and (2.8) we get (2.7). Hencoe the theorem is proved
provided (2.12) holds and the above estimates of |H(J,(Uy, X;)| and
| B(J(Uy, ¥y)| are uniform in ¢ for ¢ > 24,

We first establish the equalities in (2.12). Since D: B - {0} - B*
is measurable from the Borel subsets of B to the Borel subsets of B*
generated by the weak-star topology we have f'(|U,)).D(U,) defined with
probahility one on £ (recall f* vanishes in a neighborhood of zero) and
it is measurable from §; (the minimal sigma algebra making U, moagurable
from 2 to B) to the weak-star Borel sets of B*. Turthermore, we actually
have D: B—{0}—+ 8 = {a*e B*: |[0*|p <1} and § is a compact metric
space in the weak-star topology. Now f, f', and f* are uniformly bounded
on (= oo, oo) 80 henceforth in the proof we let
(2.15) 0 = msgﬂw{\f(%)l + 1 @) - 1F ()}
(Tt is obvious that C can be taken uniform in ¢ for ¢ > 24.) Thus by standard
srguments there iy a sequence of B*-valued random variables {4,:n = 1}
each of which takes on only finitely many values and is measurable from
¥ to the weak-star Borel subsets of B* such that

ldple < C,
(2.16)
HiﬂAn =T D(Ty)

with probability one, where the convergence in (2.16) ig in the weal-star
sense. That is,

In,
A,(1) = j)j 2ty Vi
wa]

where f; ¢ 0-8 < B* and E; , ¢ .

@ Since I || X, < oo we have by the dominated convergence theorem
at

B(f'(1T) D(Ux) (X)) = Y B (4, (X))

In, In
=B ( 3y, (X)) = Tim 3P (B0 =0
Je=1

je=1

icm
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since g, is independent of f ,(X)). When X, is replaced by ¥ we get
the same result since Y iy independent of U, so the first equality in
(2.12) holds.

Using the fact that the covariance functions for X and ¥ are the
same, the above argumont can bo applied to show that the second equality
in (2.12) also holds. Tlere, of course, we ugoe the fact that (2.6) holds and
T2 == BV )|2 < oo (see [B]) when we apply the dominated convergence
theorem.

Now the bounded bilinear form D2 is non-negative by Lemma 2.1 (b)
and symmotric by assunption, and hence there is & non-negative operator
A,: B - B* guch that

Dy, 2) = (A,2)  (y,%e B).

1t I, is the Lilbert space in B which generates u on B (see [8] for details)
then we know the identity map ¢: H, - B is compact (see [7]). Identifying
HY with H,, we have B*< H) = H, < B and hence 4, restricted to the
Hilbert space H, i a non-negative compact symmetrie operator. Thus
the spectral theorem for corapact symmetric operators on H, implies
that for each ze H, < B

(2.17) Ag(@) = D) (@) o ¢ (@)} 65 (@),
7

where {e;(#):j 1} are orthonormal eigenvectors for A, corresponding
to the eigenvalues {A,(¢): ] > 1} all of which are non-negative. Note that
o;(w)e B* © H, == H, since Ay: B~ B

Let I,(2) = (4,2, #)"* for ze B. Then I, is a continuous gemi-norm
on B and for z¢ H, < B we have

(2.18) Ii(2) = 3 (@) (e (o))
' 4

In fact, we actually have (2.18) holding for all ze M = H, (the closure
of H, in B). Mo seo this note that for z¢ M and {y,} = H, such that 4, —#
we have by Iatou’s lemma that

(2.19) T(e) == LI (ya) = (@) (e, 0 (@)
! 7
To ghow oequaliby in (2.19) for ze M note that if we define

(2.20) llelly == (%" 2(0) (2, ej(w))ﬂ)"ﬂ,

then ||-|), is finite on M by (2.19) and
(2.21) llellfi < () << 14l 12l
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80 |||, is also a continuous semi-norm on M. Now [|&ll; = I, () for z¢ H,
so equality holds in (2.19) for ze M = H,. Since it is well known tham
the support of u iy M (see, for example, r8]) and u and the X,’s have
common. covariance operator 7' it follows easily that the support of each
X, is & subset of M. Hence with probability one we have

DA Xy Xy) = D) Iy (0) Xy 5 (@)
7

' (2.22)
DAYy ) = D) 4y(®)( Ty, 5(a)).

Now we can choose a sequence of M-valued random variables
{B,:n>1} such that each R, is finite-valued, {, measurable, and such
that

limR, = Uy,
m
where convergence is in the B norm.
"

To be specific assume B, = Zi’ (1) ¥, ,.» Where the H, ,’s are disjoint
=

and §, measurable. Then, by the dominated convergence theorern with
dominating function C- sup D2 [ — B) - LI Xl 4 | Yl 21, we have (since
Il o=

Di(y, ) is continuous in aww from zero) that

(223) B (1) DY, (X, o)) = By (IR, Di, (X, X,)

mllmZ‘f (llaey(ne

n =1

)P (By, ) BIDG ay (Xiey X))

by independence of the F,,’s and X

- hme (" ()P () (D ) (Y5 X))

Pex]

by the common covariance of X, and Yy, and the representations (2.22)

B (1T D ( Xy Yi)
by reversing the previous steps and U;, being independent of Y.
Hence the third equality in (2.12) holds,
We also point out that for # =4 0
BD;(Yy, Yy)) < oo

unphes 2 A () << oo 80 D2 is actually trace class on H,.

That is, by (2.22)

icm
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and that each A (w) 3 0 we have

Z’W

‘We now turn to the proof that

B( T (Ugy X)) =

(VI- Yh)) ~

(2 24) 0(n~(l.-l~miu(a,d)/z))
and that the bounding constant is uniform in ¢ for ¢z 2.
t '
Moty == mi‘n( ‘“j”/‘“*y ﬁ) and let B == {w: |[o] < y} and B = {o: |l > y}

throughout the remainder of the proof.
Tirst note that from (2.11) and (2.16) we have

e (1l V) 2 (U, Xy
< g (| K| V) [20 X fm 20 s DL o]

(2.25)

since f/ and f' vanish on (— oo, f].
T | Xl /¥ < » we have two cases to consider. They are

— 3
(a) | U+ 2 XV ] < - =F)s
— 3
(b) 1T+ XV || > G=B)-
Now case (a) is simple sinco [|Xyl/Va<y < t;ﬂ and (a) implies

JIo( Uy, Xp) = 0 since f* and f" vanish on (— oo, t—B1
Now l]X,,l]/l/n<'y and (b) implies ||Uki|>~———§— For w,yeB and
0< <l we have

(2.26)  2J, (@, Vny) = L1 (o +wl) =" (eI LD (@ +=) W) +
7 (el [(D (@ + 7)) = (D @) @))'] +
4 If (o -+ wyll) =S (1)1 Doy (9 ¥) +

+ £ (o)) [Dhey (95 9) — Dial9r 9)]-

‘We now will estimate the right»hemd gide of (2.26) under the assump-
B —p ‘

tions [yl < ¥ < i'-;—- and o) > =2

Let (' denote a positive constant which dominates the Lips’chitz
constants of both f and f', and recall ¢ from (2. 18). Note that ¢’ can
be made uniform in. ¢ gince ¢ > f. :
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Then we have
2D 1L e+ wyll) — £ (lal) T LD (@ + =) () P
< min (20, ¢’ [y1)) 2z Il I
(19 15 (o + wll) =" (lelD)] Doy (95 9)

< min(20, ¢ [yl) xz(lvl) - sup
k3t - )

(2.27)
1D - -

Further, since ||D(@)]] =1 for # % 0 we have

@28)  za(wIF (eDIl(D o +m) @) — (D@ W)
< 20111D (@ +7)(9) ~D (@) @) 2 Iy
= 20y f S —p

sinee o) 22, wi<y< 28, 0< o< '
<200yl sup 1D glP i)

s tleiz=2E
Finally, since D2 is Lip(a) away from zero we have for |l > ~:~2—£ ,
i ,
i< <22 that
(2:29)  2u(lyD1S (o) 1D 42y (45 ) — D5 (ys 9)I < O CrzpllyIF** 22 llyll)s

where O, i3 defined as in.(2.3).
COonsequently, by combining (2.27), (2.28), and (2.29), we have for
i— t—
lleell 2—25, I <y< —4—19—, 0< o<1, and 0<a<<1l a positive
constant 0" (which is uniform in ¢ for ¢ = 28) such that '

(2.30) (Y1) 12T, (@, Vay)| < 07 [y|+2560 1 (ly)).

Combining (2.25) and (2.30) we get from (2.6) that
B2d,(Uyy Xo)| = O(B(IX, [V nf+=0(0) = 0 (- (4mintati)),

_wh_ere. the bounding constant is uniform in ¢ for £ > 24. A similar estimate
is valid for |B(2J,(Uy, X)), so the theorem is proved.

3. 'Applications o.f the basic inequality. We will apply Theorem 2.1
to obtain the central limit theorem and the law of the iterated logarithm for
a sequence of B-valued random variables {X}.

icm
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Trmorem 3.1. Let B and. {X,} satisfy the conditions in Theorem 2.1,
and assume w18 & Gaussian measure on B with covariance function T. Then,
if wn denotes the measure induced on B by (X; + ... 4 X /l/ﬁ, we have
limp, = u in the sense of weak convergence.

Proof. For each fe B* lot p/(u}) denote the distribution of f on
(— o0, 00) with respeet to pu(u,). For any nonempty gubset 4 of B let
A = {w: [[o—A| < &}, where

lo—.All = inf o—y].
el

Tix ¢ 0. Now by standard finite-dimensional arguments, we have
for each feB* that pf ;> @/, where the convergence is in the sense of
wealk convergence. Hence by [1, Theorem 2.3] it suffices to prove there
exists o finite-dimensional subspace X of B such that

(3.1) i (B) > 1—¢.

Let H, denote the Hilbert space in B which generates 4 on B. Let
{o} be a complete orthonormal sequence in H, which lies in B* under
the usual embedding of B* in H,. Such a sequence exists since B* is
denge in H, (see [9] for details). We define

(3.2) (I =1,2,...),

N
Iy () = 20%(“’)0%

el

(@) = 0—ITyw = (I-Iy)(@),

where a;,(#) denotes the value of the linear functional corresponding to
o, at the point .

Now it is well known (see, for example, [9]) that @yw—>0 with.
u-probability one on B. Further, if MQN denotes the measure u induced
on B under the mapping @, then it is easy to see that u ¥ is a mean-zero
Gaussian measure on B with generating Eilbert space @yH, = {re H,:
o= 3 op(@) e} Applying Theorem 2.1 to the random variables

kN1
{QnXy, b3 1}, wo have by (2.7) with & = ¢, B = &[2 that

Qn Xy A oo +Qxn X,
Vi “2 )

(3.3) P (‘

' < ™ (@ ol > /2) +0 (w = OR).

Since Qo0 with u-probability one and. /f’” (A) = p(w: Quwe d) Wo
have an N, such that for N > N,

(3.4) 1N (@ lo > &/2) < s[4
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Thus we can choose #, such that n > n, implies

P( Quy X + - + O Ko
Va

Now for # < 1, Wwe can choose Ny such that
P( O s + o+ O X
Vn
Let B =1Ily,B, where N, = max (N, Ny). Then by (3.0) and (3.6) for
every n>1 )
tin () = py (@ [l — B < &) = 1—py (@2 o —T|| = &)
= 1— i (2 HQNO“‘” = e)x{k:kaug) (n)—
— i {@: HQNLwH =€) Xip o< gh (n)=L—e,
and the theorem is proved.
We now turn to the law of the iterated logarithm in this setting.
LLn denotes loglogn if #n> 3 and 1 for n =1, 2.

THEOREM 3.2. Let B and {X;} satisfy the conditions in Theorem 2.1,
and assume u 48 a Gaussian measure on B with covariance function T. If
K s the unit ball of the Hilbert space H , which generates u then

(3.5)

P e) < ef2-¢l2 = &.

(3.6)

;,»-a)<a.

X, +... X,
3.1 (1:11 VanLLn KH 0) ’
X+ ... +X, })
(38 ( ({ VenLLin K) L

where O({a,}) denotes the cluster set of the sequence {a,}.
Remark. It is known (see, for example, [11]) that K is a compact
subset of B thus (3.7) implies that with probability one the sequence

{;;Li} is conditionally compact in B.
V2nLLn

Proof. Let 8, =X, + ... +X, for »> 1. To prove (3.7) it sutfices
to show that for each rational & > 0 we have with probability one that
Sn/l/ZnLLM K* only finitely often. Fix & > 0 and let 4, = {S,,/V%LL%
¢ K. Let m, = [f"], where [ -] denotes the greatest integer function and
B> 1. Let

n
= {—=————=¢ K* for some n:n, < .
r [VZ%,.LL%,. ¢ 8 NiN. KN < 7"/,..1.1

Then limsup 4,, < limsupB,.
n T
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Now i ¥y, ..., ¥y are successive sums of independent B-valued
random. variables such that

sup P(| ¥y T > 2/2) = ¢< 1,
1< JaN
then by & standard argument we can show

N
1)( U {YJ d If‘}) ﬁ\ _i_«_ﬂlw._.l)(YN ¢ Ka/:!) .
Jeal

—
Hence R
., 1 AS’an.] -1 ]/ N S
D e 1> o2
(39) PBI<ggF (l ol A V2LIn, K" ),
where ‘
(3.10) d= sup P(I8y,, 21— 8l > beV2n,LLn) <}

. TP |
provided r is sufficiently large and f> 1. That is, iy —1—n<<N
then the supremum of the corresponding probability over these # is < 1/2
provided. 7 iy sufficiently large. On the other hand, by Theorem 2.1, there
is an NV such that (n,,,~1-—mn) > N implies the supremum of the eorre-
sponding probability over these n is also < 1/2 provided r is sufficiently
large. Hence (3.10) ig valid.

Now XK compact in B (and hence bounded) implies that for any
fixed & > 0 there exists a § > L sufficiently close Go one and a & > 0 such

that for all » sufficiently large

(8.11) ]/ by . B o K.

Mgy —

Choosing 6 > 0 and g > 1 so that (3.11) holds, we obtain from (3.9) that
for all r sufficiently large

Shpgy—
(8.12) P(B,) < 2P (ﬁ% ive LLn,K") .
(e R .

Let {{Ty: ¥ 1} and {Qy: N> 1} be defined as in (3.2). Then for
each N =1, 2,... we have .

Sy~ PN
(3.18) P( "f:llxé-»«szLLn,K”)

Mgy =™

) - 1 Byt 8

<P(IIN( o el ) ¢V2LLin, 11‘1\,(1{;)>+P( QN(WML»)” >—V2 LLw,),
‘/ﬂ’r-}-l"'l ]/%,.+1~1 2

where >0 is such that it K = {weH,:|lo—Kll, <y} then I‘INiKz

< IT, K°, The existence of such a p > 0 is obvious since Iy B is finite-

dimensional and hence the norms ||| and |||, are equivalent on Iy B

-8 ~— Studla Mathematlea LIT
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(y may depend on N but this will be no problem). Further,
(3.14) MK, = {wellyH,: o, <147}

Fix ¢>1 and choose A so that 21(8/2)2=ec. Since ||@yal— 0 with
u-probability one, we have by [5] that there exists an N, such that ¥ > N,
implies
(3.15) [ exp{alQuall® dp(@) < oo
B

For fixed N > N, and 1 we then obtain

(| Qwal =

for all sufficiently large .

Hence fix N = ¥,, ¢ > 1, and choose y > 0 ag in (3.13). Combining
(3.16), (3.14), and Theorem 2.1 to the random variables {IIyX,: % > 1}
and {QyX;: k& > 1}, we have by (3.13) that

(3.16) 36V21LLn,) < exp{—ocLLn,}

Sty
(3.17) P<__”Lt1_L
1/"'”r+1_

¢V2 LLn,K")

< pl@: [yall, > (14 yW2LLn, — 1)+
+p(@: |yl > $8V2LLn, —1) + O (n=0lw00)

Now it follows easily that there exigts a d > 1 such that
(318)  w(w: | yal,> (1+9)V2LLa,—1) <

for all large 7.
Combining (3.18), (3.17), and (3.16) we see

DP(B,)< w0,
T
Then P(limsup4,) = 0 and (3.7) holds.

exp{—dLL n,}

To prove (3.8) one can proceed exactly as in the second part of The-
orem 3.1 in [10] except that for (3.16) in [10] we need estimates of the
type used under the assumption of 2§ moments and not 3 moments.
Since the range space of the random variables in this inequality is finite
dimensional we can prove rather easily using the techmques of Theorem
2.1 of [10] that the error is O (n;"*®) where y > 0 is p = min(a, 8). This
estimate allows us to complete the proof.

We also mention that Strassen’s functional form of the law of the
iterated logarithm for B-valued variables can also be proved in this setting
using (2.7) and the techniques developed in [10] when B was a real separable
Hilbert space, but it will not be included here.
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4. Some spaces with smooth norm. I” denotes the real vector space
L7 (8, Z, m), where m is a sigma-finite positive measure on 8. Then L?
is a real geparable Banach space provided p>1 and if p > 2 we will
show the usual norm on I” iy twice directionally differentiable. We also
show that the second directional derivative is Lip(a) away from zero.
These results are suggested by those in [3], but do not seem to be immediate
corollaries of [3].

TumorEM 4.1. If p >
loll ={ [ le@)Pam@}*
8

2 and if for we I? (8, Z, m) we define

then the norm 1]l has two directional derivatives and the second derivative
is Lip (a) away from zero with o =1 if p =2 or p> 3 and a = p—2 for
2 < p < 3. Furthermore,

sup | DLl < 2(p—1).
|1zl}=1

Proof. It is easy to prove that the first and second directional deriva-
tive of the norm are given for [l tyj %0 by

[ o+ ty|P'sgn(z 4 ty)y dm

(4.1) umwu

I +tylP "
and
finstpgan _
@) grletul = -0 |
A ]m+7yll”"1$gn(w+ty)ydm}z]
lloo + ty P ’

where sgn(#) equals +1if >0, —1 if <0, 0 if » = 0, and iy inter-

preted as +1 in (4,1) and (4.2) if p =2, 4, 6,... We do not include the

details here as (4.1) and (4.2) are easily obtained directly, or by applying

the results in [3] which yield first and second Fréchet derivatives for [|-|.
In the notation of (2.1) and (2.2) we have for || # 0 that

: [ ls"sgn(@)y dm
D(2)(y) = I T R

1 [ P2 y2dm (f]wl”“lsgn(m)ydm)ﬂ]
-3 gt ol !
where sgn (z) is interpreted as above.

Using the fact that the dual of LP(2<{p < o0) I8 I* for p such
that 1/p+1/p’ =1 it follows that D: IL? — {0} - L* is continuous so
clearly D is measurable in the sense required. Furthermore, the computa-
tions involved in establishing the eontinuity of D are similar (but simpler)
than those showing D2 is Lip(«) away from zero so we only demonstrate
the Lip(e) property.

(4.3)

(4.4) Dy, y) =
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From (4.4) DZL(y, y) is easily seen to be continuous in # (2= 0), Now
for |lz| = r and ||k|| < /2, where 7 > 0 leb

I Jle+ 1P h2dm [ lel”~*h2dm
PP IR RS
(4:5) J_\ ([ lo+RP~ sgn (@ -+ h) b dm)? _ ([ le|”~* sgn (@) hdm)?
B e+ Rl o>~ ‘

. To prove the second directional derivative of the morm has the Lip (a)
property it is easily seen from (4.2) that it suffices to prove that there
exists a constant C, such that

(46) | RS
and

Oy
(4.7) 1< e,
where a =1ifp =2orp=3anda =p—-2for 2< p< 3.

Now
4. " P=2%9 __|m|P=2%2 '
48 < | [ Got e —jaetam |+
1
n— thd l
+U ok dm nm+hn” T el

< W‘—l [io+-mo=2 — o= 2 +

el
o+ 2P

+ |l B2~ — Jlalf? ).

To estimate (4.8) we use a lemma due to Banach and Saks [2] which
asserts that if ¢, b are any two real numbers and 1 < p < oo, then there
exists a constant M independent of a, b such thatb

[2]
(4.9) [la+b"—laf”| < M2+ 3 (F)]a~ [b],
=1
where [t] = greatest integer in i.
Using (4.9) with & = ¢+ k], b = ||z| — |2+ k|, we have

(4.10) [Jla*7* ~ Jjoo + B[P~ ]| = [{lo =+ B+ (el — llo -+ 1))~ ~ - BjP2|
[-1]

SMWP 4 DT 07 a4 =1 ).
J=1

- (411)
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Hence for ||z > r, ||h]]| < r/2 we have a constant M, such that
1
| ||" 7 — |l - RP Y << LR
oAy el e B < 3

Using (4.9) again we see that if p—2>1 there exists a constant
M’ such that
o—2]
(4.12) [|jo-+h7? lep | h2dm < M f{[h L 2 |al?~2~ [B[*+7} dm

_g]

< M{ImP+ 2 laif? =2 Inf+}
Thus if p—2>1, || >, [k <r/2 we have a constant M, such that

(4.13) |+ B[P~ — 0[P~ | h2dm < M [Jh]}S.

1
sl
If 0<p—2<1then
414)  [|lo4+1P=— a2 h2dm < [ [hPdm = [B]” = [|P+e,

where a = p—2, and if p =2 (4.14) iz zero. Combining (4.14), (4.13),
(4.11), and (4.8), we get a constant O, such that for [jz] > 7, [|h] < 7/2 we
have (4.6) holding.

Now

(4.18) I

m (f|w+h[”"lsgn(m+h)hdm)a_

— ([ lof*~*sgn (@) ham)’

+( [ tot = d’”)( |1m+;||2ﬂ‘1 N nmni”f‘)

o+ PP~ 0+l ]
h ll@ + B *

X [ f [+ k[P~ sgn (@ +h) — |2~ sgn(z)1hdm ‘ -+

[l ] }
s L L L

Proceeding as in. (4. 10) (4.11) we have for ||z|| = r, ||} < 7/2 a constant
N, such that
(4.16) e Mol — o B < B
fll]llew =+ Rl )
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Ifp—1 =1 (p =2) then
(417) [ [lo-+hP~"sgn(a-+h)—
and if p —1 > 1 then by the mean-value theorem applied to the function
fl@) = |#|?"'sgna’ we have
(418)  |la+b["*sgn(a+b)

<(p—1) sup |a+|"*b| <
0<gr<l

lol"~sgn (@) hdm = [ hedm = b2,

— la|"" sgn.(a)|
(p—1)[la-b["~*+|a—Db*][0].
Hence from (4.18) we obtain for p —1 > 1 that
(4.19) U [l +Al#~ sgn (@ + h) — |o[”~* sgn (@) ]hdml
<@-1[[ lo+rP*hdm+ [ lo—np=? nedm)
< (1) ||Bl2[llw + BF~* 4 o — BIIP*].

Combining (4.19), (4.17), (4.16), and (4.15) we see that for |jz] =
we have a constant 0, such that (4.6) and (4.7) hold.
Fmally, the estlmate sup |1 D) < 2(p—1) follows since

B <2

llzh=1

sup |Df|| = sup sup |Di(y,#)]
Il =1 flal)=1 (=<1

liel <1 )

. y+z y+z2 J[Y—2 y—=

= JUp SU Dz( )_ D
umufx uun£1 N2 7 o2 “\Tg T g
(=

< sup (2sup [Di(w, w)|) <

llzll=1 " Jhwll<1

2(p-—-1).

Hence the theorem is proved.
Using Theorem 4.1 we gee the L spaces (2 p << o) satisfy the
conditions used in sections 2 and 3. Thus the central limit theorem and
. the law of the iterated logarithm are valid in these spaces for sequences
of random variables of the type employed in Theorems 2.1, 8.1, and 3.2.
A central limit theorem in this setting was known previously due to [6],
but the law of the iterated logarithm for non-Gaussian random variables is
new when p > 2.
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