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The hermitian operators on some Banach spaces

by
EARL BERKSON* and AHMED SOUROTUR (Urbana, IIL).

Abstract. The hermitian operators on certain types of Banach spaces are des=
cribed. It is shown that the hermitian operators on an IP-direct sum (1 < p < o0, p # 2)
of a sequence of Banach spaces are precisely the direct sums of hermitian operators
on the summand spaces. The spaces AC[0, 1], C*[0, 1], Lip [0, 1], and lipa, 0< a< 1,
admit only trivial hermitian operators, i.e., real multiples of the identity operator.
It is further shown that the set of hermitian operators on the dual space of a C*-algebra
4 1is the closure in the strong operator topology of the set of all adjoints of hermitian
operatiors on A. -

1. Introduction. Let X be a Banach space (we use complex scalars
throughout), and let T be a bounded linear operator mapping X into X.
T is said to be hermitian if and only if |lexp (itT)|| = 1 for all real ¢. For the
background and basic features of the notion of hermitian operator, due
to G. Lumer and I. Vidav, the reader is referred to [3]. Let #(X) denote
the algebra of bounded operators on X, and let 5 (X) be the set of her-
mitian operators on X. In this paper we characterize # (X) for some
special spaces X-specifically, for 17-direct sums of Banach spaces (§2),
for the spaces A40[0,1], C*[0,1], Lip[0, 1], and lipa, 0 < a<1 (§3),
and for the dual space of a 0*-algebra (§ 4). It turng out that all the spaces
considered in §3 admit only trivial bounded hermitian operators, i. e.,
real multiples of the identity operator I.

2. Direct sums. Denote by X* the dual space of the arbitrary Banach
space X. For we X, let & (x) be the set {#*e X*: ||| = 1, 2* () = =]}
For 7' in #(X) it is well-known [3, p. 84] that T e #(X) if and only if
@* T is veal whenever z< X and e (). We ghall make frequent. use
of this fact..

In what follows, the IP-direct sum (1< p < o0) of a sequence {X,}
of Banach spaces will be the space of all sequences v = {z,} in [] X, such

e

that 3 |lo,[? < oo, with |z = (Y |#,/")®. The -I"-direct sum will be
n n )
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denoted by @®,X,. We denote by .#({X,}) the space of all sequences
@ = {#,} in J[X, such that {||u,[} is bounded, with || = sup|2,|.
n L]

(2.1) TerorEM. Let {X,} be a finite or infinite sequence of Banach
spaces, and let X = @,X,, 1<p<< oo, p 5= 2. Then an operator T in
B(X) is hermitian if and only if for each n T(X,) < X, and the restriction
T\X,, belongs to 2 (X,). The same result holds if {X,} is a finile sequence and
X is taken to be M ({X,}).

Proof. We observe at the outset that if 7' in £(X) is a direct sum
of hermitian operators on the spaces X, , then it is easy to see that for
each real ¢, exp (¢7) is an isometry, and hence T'e #(X).

Suppose first that p > 1, and let ¢ be the index conjugate to p.
Identify X* with @,X} under the natural isometry. Let us note that
(the case p = 2 included) for each mom-zero vector # = {w,} in X & (z)
consists of all sequences {z,}e@®, X, such that e (||la,)l/lel)*~"F (x,)
for each n. It is easy to see that such a sequence belongs to & () (we
shall not need the converse of this fact for the proof of the theorem, but
we include it for the sake of completeness). Suppose #* = {}} belongs
to & (#). Then we have

ol = a* () = Y ahi@a) < 3 ekl ol < [9*] ol = il

Clearly, for each n, ay(2,) = ||loy| |2, and «}(z,) = 0 if and only if ||
= [j@,]l = 0. Moreover, by virtue of [15, p. 17], there is a constant a > 0
such that fjo}l? = a|a,)® for all #. « must be ll2|~?, and it follows that
bl = (el )y~

Next we show that if Te o#(X), then 7 has the required form. For
each 4,j let Ty = (P,T)|X;, where P, is the 4'-coordinate projection
of X onto X;. For fixed %, let # = {#,} be an arbitrary vector such that
%y = 0for n %k, and m, # 0. Then o* = {a}}¢ & () it and only if o, = 0
for n # & and @< & (@) Thus, as o, runs through & (@), @ Ty, 0, = o* To
is real. Hence Tyye o (X;). Next, let %, m be distinct indices, and lot
@ = {®,} be a vector in X with @, an arbitrary non-zero vector in Xy 0
an arbitrary non-zero vector in X,,, and @, = 0 for n = %, m, For arbitrary
Yre & (@) and Yy, e & (3,,) define o* = (&} (in & (2)) by @ = 0 for n = k, m,
and @, = (o, /llell)* g3 for # = k, m. We have:

* * *
(2~2) @ To = a’lchkmk""mmem@m+szlmmm+w:szhmla-

The left-hand side of (2.2) and the first two summands on the right being
real, we conclude that

(2.3) el Y2 Tt 0l =9, T ) s veal.
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Keeping =, fixed, replace &, in (2.3) by 2w, (note that & (2a,) = & (w)).
This gives :

(2‘4’) (21a~1 H%Hp—lf'/z Tkmwm"!"2 ”mm“p—] y:szkmk) is real.

By subtracting twice the expression in (2.3) from the expression in (2.4)
we see that 1,2, is real. Replace x,, by ix,, in the last conclusion and
get that y;T,,x, = 0. It follows easily that T, = 0.

Next, we consider the case p = 1. In this case X* = .#({X}}) (under
a natural isometry). We observe that if « = {#,} i8 a non-zero vector
in X, then &* = {2} is in () if and only if o} (w,) for @, # 0, and
llwnl <1 for @, = 0. Indeed, the “if” part of the assertion is obvious.
Conversely, if "¢ % (), then

ol = 3o (@) < Do (@)1 < 3 Il leall < ]

"It follows that for each n, @ (2,) = ||zh]| |2, = |l2,ll, and hence &}e % (x,)

if @, 0. A

Now if Tes'(X), with T; as above, the same argument as before
shows that every T, is hermitian. Let m, & be distinet indices, and let
o = {®,} be a non-zero vector in X with #, = 0 for n # k. For arbitrary
¥y in & () and ¥, in the unit ball of X},, define * = {}} (in ¥ (#)) by
setting @y = 0 for n = k, m, and &, = 4 for n = k&, m. 2" Ta = y3 Tyt +
+ Y L0, Hence ), T, @, is real. As before, T, = 0.

Finally, suppose {X,} is a finite sequence and X = .#({X,}). In this
case X* = @, X;. Note that an operator on a Banach space is hermitian
if and only if its adjoint is hermitian. Thus, in the case at hand, given an
operator T e 5 (X), the proof of the theorem is easily concluded by applying
the foregoing for the case p = 1 to the operator 7™ on X*.

Remarks. (i) It is known that if X is one of the sequence spaces
P, 1< p< oo, p 2, then 5 (X) consists of the mulgiplication operators
induced by bounded sequences of real numbers ([13], [14]). Bxcept for
the case p = co, Theorem (2.1) generalizes this known fact. (ii) The
description of #°(X) in the statement of Theorem (2.1) is known to hold
for a certain type of Banach space X which is required to be the direct
sum of a sequence of Hilbert spaces and to satisfy some additional condi-
tions [9, Theorem (2.6)]. ;

‘We shall touch briefly on the situation when X is thé I-direct sum
of a sequence {X,} of Banach spaces. The conclusion of Theorem (2.1)
is, of course, no longer valid.for p = 2 if each X, is a Hilbert space. In
this conmection, the following theorem. is available.

(2.5) TarEorEM. Let Y be o Banach space, and let X be the 1 :direct
sum, X = Y@X. Let T be the element of #(X) whose mairiw (relative to the
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given direct swm decomposition of X) is (g ‘5) Then T'e #(X) if and only
if Y is a Hilbert space.

Proof; The “if” part of the assertion is obvious. Conversely, suppose
Te#(X). We note that for each ordered pair {(y,;y,> of elements of
Y, T<Ys, ys> = <Y, 2. For each ye ¥, let #(y) be the set [y]<”(y).
Since Te #(X), it is easy to see that {y} (¥.)+vs (¥1)} is real for u,, ¥,
in ¥, 4} in € (yy), ¥5 in € (y,). In particular, if f, and f, are in % (y,), then
(fi—F2)(y,) is real for all 4, in Y. Thus each % (y) for ye ¥ is a singleton.
Let ¢, denote the unique element of € (y), and observe that for 4 & complex
number and y in ¥, ¢ = Ap, (where the bar denotes complex conjuga-
tion). On the Cartesian product ¥ x ¥ define the function. [ , ] by
setting [, ¥]1= g, (2) ([ , ]is & “semiinner-product” for ¥ [3, § 9]). Clearly,
[, ]is left linear, and, for all ¥ in ¥, [y, ¥] = |ly||> To complete the proot
it suffices to show that [ , ] is conjugate commutative. For y, z¢ ¥,
we showed above that {[z, y]+ [v, 2]} is real. Replacing 2 by ¢z in this
last expression gives the conclusion that ¢ {[#, y]— [y, ]} is real. It follows

readily that [y, 2] = [2, y].

3. Certain concrete spaces with omly trivial hermitian operators.
In this section we shall be concerned with the following Banach spaces:

(i) 00, 1], the space of -bontinuously differentiable complex-
valued funetions on [0, 1] with [If] = ||flle -+ [Iflle,

(ii) Lip[0, 1], the space of all complex-valued functiong on [0, 1]
satisfying a Lipschitz condition of order 1 with ||f|| = ||fll. -+ esssup|f’,

(iti) AC[0, 1], the space of absolutely continuous funections on [0, 1]
with [Ifll = [flleo + If Il

(iv) lipe, 0 < o<1, the space of all complex-valued functions f
on the real line R of period 1 such that sup If(@+Rh)—f(@)| = o(|h]"),
as h—+ 0, with

17l = BﬂP{If

LA

@)y B F (Y +h) — (@)}

In the foregoing, esssup and |||, are, of courso,. taken with respect to
Lebesgue meagure. ‘

(3.1) THEOREM. If X is one of the spaces C*[0, 1], Lip [0, 1], ACT0, 17,
or lipa (0 <'a < 1), then #(X) = {rI:reR}.

Proof. Let Ade o#°(X). Then {expitd}, te R is a one-paramoter
group of isometries of X onto X, continuous with respect to the uniform
operator topology. Let T, = expztA for te B. We consider first the case
where X is one of the spaces C*[0, 1], Lip [0, 1], AC[0, 1]. By [10 Theorems
2.5, 3.3, and 4.1] for each teR, T, has the fofm (T,f)() = = Wf (m (@),
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we [0,1], where J, is a unimodular complex constant, and 7, (- ) is a monotone
one-to-one absolutely continuous mapping of [0, 1] onto itself (if X is
00, 1] or Lip[0,1], then =, () is, in fact, identically # or identically
1—2). Let ¢, (vesp., ¢i) be the element of X defined for each ze [0, 1]
by @o(z) =1 (resp., ¢, () = x). We observe that T,p, has the constant
value 4, and that v = 74, T,p,. Thus 4 and v; are uniquely determined
by Ty, and 4 and 7, as functions of ¢, are continuous mappings of B into
the set of unimodular complex numbers and X, respectively. From the
uniqueness of representation for the operators of the group {I}}, te R,
we have ,,; = A4, for all s, e B. Thus {4} is & one-parameter continu-
ous group of unimodular complex numbers, and hence there is a real
constant 7 such that A, = ™ for all te R. It suffices for the proof to
assiime that 4, = 1 for all te B, and show that 4 must be 0 (since the
result could then be applied to the group {6 T}, te R). If X is O'[0, 1]
or Lip[0, 1], then, as noted earlier, each 7, belongs to the doubleton set
{p1s (1 —@q)}. Since hm]]r, @4 = 0 (by the continuity of ¢ -+ 7, a8 & map

_ from R into X), there is a real neighborhood N of 0 such that v = ¢

ar
(and hence T, =I) for all teN. Thus 4 = »E—‘ =0. I X is
=0

ACT0,1], then each continuously differentiable f on [0, 1] belongs to X,

il
and, for each fixed 2 in [0, 1], ﬂ%@)_}, exists and is equal to (24f)(w).
t=0
In particular, taking f = ¢, Wwe get TZli =(1.4 @;)(®), for z< [0, 1].
§=0

Application of the chain rule now gives for all continuously differentiable
£, and all @ in [0, 1], f' () [(-A¢,) (@)] = (¢ Af)(%). If 49, were not the zero
function, then this last equa,tion would give the absurd conclusion that
for every continuously differentiable function f on [0, 1], there is a set
of positive Lebesgue measure at each point of which f*' ex1sts It follows
readily that 4 = 0.

Suppose now that X = lipa. [4, Theorem 4.1] states that a linear
isometry U of lipa onto itself has the form
(3.2) (Uf) () = Af(a+ox) for all we R, felipa,
where A, a, o are constants such that 1 is complex of modulus one, ac R,
and ¢is 1 or —1. Tt follows from this fact (applied to T},) and the equation
T, = (T},)* that each T, can be represented in the form (3.2) with o equal
to 1. Let us choose such a representation for each T, denoting the constants
which occur by 4 and a,. Define the sequence {g,}n-, < lipa by

9n (1) = exp(2mint), for te B.
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Since for each te¢ R, T,g, has the congtant value 1, it is clear that 2, is
uniquely determined by ¢, and that (ag a funetion of ) 4, is a continuous
character of the additive group of R. As before, it suffices for the proof
to assume that 4, =1 for all te B and show that 4 = 0. We remark
in passing that it was necessary to choose (as we have done) a definite
value of g, for each te B, since it follows from the periodicity of the functions
in lipa that ¢, could not be uniguely determined by ¢ and (3.2). Without

loss of generality we let @, be 0. In view of the fact that idg, = ﬂiyﬂ

H
we have: at

to=0

(3.3)

L dexp (2mina)
idg, = [_._..__I.)_(bﬁ...__’._

]gn, ne=0,1,2...
[

Define the complex comstant f by setting 2wif = -—"r—"

=0

Then it follows from (3.3) (for = = 1) that for each t<R, T,g,
= [exp (2nipt)]g., and consequently a,— B¢ is an integer. Thus without
loss of generality we can take a, = 8¢ for each t< R. Now (3.3) gives i4dy,
= 2minfg,, n =0,1,2,... Since 4 is bounded, § must be 0. Hence
for all te B, @, = 0 and T, = I. This concludes the proof.

4. Hermitian operators on the dual space of a (*-algebra. Throughout
this section a C*-algebra o will be a Banach *-algebra with identity such
that [|o*]| = [laf® for all e 2. A W*-algebra will be a (*-algebra which
is (linearly isometric to) the dual space of a Banach space. It will be con-
venient henceforth to denote dual spaces and adjoints of operators on
Banach spaces by prime superscripts.,

In the scholium which follows we record a known result in a form
convenient for our purposes.

(4.1) Somorrum (A. M. Sinclair). If X is a W*-algebra, then 5 (X)
consists of all operators T'e B (X) for which there emist self-adjoint elements
wand v of X such that Tw = un+ xv for all ve X.

Proof. By [12], Remark 3.5 and [6], Theorem 1, p. 811.

If A is a O*-algebra, and U its universal representation, then il is
well-known that A", the second dual space of 4, can be identified with
the closure in the weak operator topology of U(4) so ag to make U the
canonical embedding of 4 in 4’ [7, 12.1.3-(iv)]. We shall make free use
of this fact; in particular, we shall regard A" as a W*-algebra in the sense
of this identification. (4.1) allows us to deduce as a corollary an wnpub-
lished result of G. Lumer, which we state next for later convenience.

(4.2) CorOLLARY (G. Lumer). Let A be a commutative C*-algebra,

and let L be the regular representation of A (i.e., Lo = aw for a, we A)
Then #(4) = {L,: ac 4,0 = a*}.

icm
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Proof. If Te s (4), then T"e # (A"). Since U(4) is commutative,
A’ is also commutative. By (4.1) there is a self-adjoint element ce 4"
such that T"'x = cw for all we A”'. Thus ¢=T"(U1) = U(T1)e U(4), by
a standard property of second adjoint operators. Thus 5 (4) < {L,:
ae A, a = a*}. The reverse inclusion is easy.

(4.3) TamorEM. Let of be a O*-algebra. Then # (s£') is the closure in
the strong operator topology of {T': Te (L)}

Proof. Since for any Banach gpace X, #(X) is closed in the strong
operator topology of #(X), and a convex subset of #(X) has the same
clogure in the weak operator topology as in the strong operator topology
[1, Lemma 38.3], it suffices for the proof of the theorem to show that if
Te#(sA'), then there is a net {T,} = # () such that 2(Ty) =lime(T,y) for

¥

all ze &'" and all ye o#’. We note first that by (4.1) there are self-adjoint
elements u, v of &#'' such that T'z = uz +2v for all ze "' By Goldstine’s
theorem [8, V.4.5], there are (bounded) nets {u,},cr, {0},er in & such
that {U(u,)} (vesp., {U (v,)}) converges to u (resp., v) in the weak -topology
of «£". (We remark that o', being a W*-algebra, has a unique weak"-
topology [11, .p. 30].) Since the involution of &' is weak"-continuous
[11, Theorem 1.7.8], we can, without loss of generality, take w, and v,
to be self-adjoint in 7 for all y. Moreover, multiplication in &' is wealk™-
continuous in each variable separately [11, Theorem 1.7.8], and so for
all ze " and all ye o,

(4.4) (T'2)(y) =Lm [T (w,)2+2U(v,)1(9)-
y.

Denote by A (resp., P) the left (resp., right) regular representation of
oy 1. e., A% (resp., P,») is aw (resp., va) for all a,we /. Then for all
a, ve o, (A)"U(x) (vesp., (P,)' U(w)) is equal to - U(a)U(x) (resp.,
U(2)U(a)). Since mufliplication in ' is weak*-continuous in ‘each
variable separately, and U(«/) is weak™-dense in o', it is obvious that,
on all of &', (4,)" (resp., (P,)") is left (resp., right) multiplication by
U(a). Combining this last observation with (4.4) completes the proof.

Remark. We know of no Banach space X such that s (X’) is nop
the closure in the strong operator topology of {I":Te #(X)}.

Let © be a compact Hausdorff space, and let C(L) (resp., B(2))
be the algebra of all complex-valued continuous (resp., bounded Borel)
functions on £. With the usual involution and with the norm of f given
by sup{|f(#)|: ze £}, C(Q) and B(2) are C*-algebras. By the Riesz repre- -
sentation theorem: [0(2)]" = M (L), the space of all regular Borel measures
on 2. For each feB(Q) define Sye (M (L)) by Sp(u) = (f)fd/,a, for all

e M(Q). It is easy to see that S, is an isometric algebra isomorphism

»
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of B(R) into #(M (2)), that S;is hermitian if and only if f is real-valued,
and that for each ge 0(2), 8, = (L,)" (in the notation of (4.2)). In terms
of the foregoing notabion (4.3) has the following corollary.

(4.5) COROLLARY. # (M (£)) is the closure in the strong operator topology
of {8;: fe C(R) and f is real-valued}.

Proof. By (4.2) and (4.3).

(4.6) Remarks. If o is a O*-algebra, then it follows from. (4.1) that
each Teo# (") is weak*-continnous on s/, and hence is the adjoint
of a (necessarily hermitian) operator on &’'. Thus the map which assigns
Q' to Q is one-to-one from # (&f') onto H# (s2''). It follows from this remark
and (4.2) that #(M(Q)) is a commutative subring of #(M(£)). This
lagt fact is also clear from (4.5).

BExampre. We show that (M ([0, 1])) is strictly larger than {S,:
ge B([0,1]), g real-valued}. Indeed, the cardinal number of the latter
set is ¢, the power of the continuom. We shall demonstrate that the set
of idempotent elements in (M ([0, 1])) has cardinal number at leagt 2°.
By virtue of (4.2) and the first part of (4.6) this amounts to showing that
the maximal ideal space 2, of C[0,1]" has at least 2° open-closed sets.
Identity C[0,1]" with 0(2,). For each e [0, 1], let A, be “the homomor-
phism. of C[0,1] onto the complex field given by h,(f) = f(2). Since
U(0[0,1]) is weak™-dense in C(£,), it is easy to see that evaluation at
h, i3 a weak*-continnous homomorphism of 0(£,) onto the complex
field. Thus there is a one-to-one map x> p, of [0, 1] into 2, such, that
unit mass at p, is a normal measure on Q, [5, Corollary, p. 171]. Thus
by [5, Proposition 3] the singleton set {p,} is open-closed. For each subset
a of [0, 17 let I"(a) be the closure in 2, of {,: ze a}. It is easy to see, since
Q, is stonian, that I'(a) is open-closed in 2,. Also, it is now easy to see
that I'(+) is ome-to-one.

Remark. In [2, (3.3)] there was defined for an -arbitrary Bam,ch
space X a notion of orthogonality (relative to a suitable family of idempo-
tent elements of #°(X)). Let 2 be, as above, a compact Hausdorif space,
and for each Borel set y in 2, let 70,, be the characteristic function. of y,
and put E(y) = 8, Leti & be {H(y): y is a Borel set in £}, Then (in the
notation of [2, §3] ) it is stmlghtforward to see that for any two meayures

&y vin M(Q), u and v are mutnally singular if and only if 4 | g» in M ().
‘We omit the details.
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