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STUDIA MATHEMATICA, T. LII. (1974)

On a problem of Pelczyfski:
Milutin spaces, Dugundji spaces and AR (0-dim)

by
RICHARD HAYDON* (Oxford, England)

Abstract. It is shown that the class of Dugundji spaces, introduced by Pel-
czynski in [5], coincides with the class of absolute extensors for compact zero-dimen-
sional spaces. It follows from this that every Dugundji space is a Milutin space.

1. Introduction. In [5], Pelezyfiski introduced the notions of Milutin
space and Dugundji space and posed the problem ([5], Problem 15):
Does the elass of all Milufin spaces coincide with the class of all Dugundji
gpaces 2 8. Z. Ditor (unpublished Ph. D. thesis, University of California,
Berkeley, 1968) and the present author (unpublished essay, University
of Cambridge, 1971) proved that a Milutin space of topological weight
ait most o, is necessarily a Dugundji space. It is the object of this article
to show that every Dugundji space is a Milutin space, without restriction
on topological weight. .

The method of proof used here is to show that every Dugundji space
is an absolute extensor for compact zero-dimensional spaces (AR (0-dim)).
Such spaces were first infroduced in this context by Ditor, who proved
that every ARE(0-dim) is a Milutin space ([1], Corollary 2). Theorem 1
in the present article includes a rather simpler proof of this result as well
as a proof that every AB(0-dim) is Dugundji.

ATl the topological spaces considered in what follows will be compact.
(and Hausdorff); I will denote the unit interval [0,1] < R and D the
two-point space {0, 1}. The identity function on § is written i5. I ¢: 8§ — T,
o: T — § are continuous mappings with gop = 1y, we say that g is aretrac-
tion and ¢ a coretraction. )

I follow the convention of [6] in identifying a cardinal number with
the corresponding initial ordinal (and thus avoid the ‘aleph’ notation).
The topological weight of the space § is the smallest cardinal = such that
there exists a base 4 for the topology of S with card £ = v; we can embed
§ in the product I4, with card 4 = .

* The research was carried out while the author was supported by a grant from
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C(8) denotes the space of all continuouns real-valued functions on 8,
equipped with the supremum norm. Ig is the function that is identically
1on 8. The dual ¢(S) is identified, as usual, with the space M (8) of all
regular signed Borel measures on 8. P(8) is the compact convex set of
probability measures on 8, {ue M (8): ||ul] = {p, Igs> = 1}, equipped with
the induced o(M(S), C(8)} topology. &y is the canonical embedding
8 —P(8).

If ¢ is a continuous mapping from 8 into T, ¢ will denote the induced
mapping P(8)— P(T), defined by (pu,f> = {u, fopd> (fe C(T)). In the
case that T is a compact convex space (by which I mean “a compact convex
subset of a locally convex space”), § will denote the composition of ¢
with the céntroid mapping P(T)->T ([6], 23.4.3). We can characterize
7 a8 the unique continuous affine mapping P(8)—+ 7 which satisfies

@ = Polg.

Recall that an operator w: C(8) — C(T) is called regular if u is positive

and u(Ig) = 17. I p: §—T is a homeomorphic embedding (resp. a continu-
ous surjection), a regular operator u:0(8)— O(T) is called a regular
ewtension operator, or T. e. 0. (resp. a regular averaging operator, or T. . 0.)
if u(flop = f for all fe C(8) (resp. if u(gop) = g for all ge C(T)).

By the integral representation. of 4.1 of [5], anr. e. 0. u for the embed-
ding ¢: § — T is determined by a continuous mapping ¢: T - P (§) which
satisfies a0 = ds. We find that 5: P(T) - P(S) is a retraction for the
embedding @: P(8) — P(T). Similarly, an r. a. o. for the surjection ¢: § — T'
corresponds to a continuous mapping A: T -»P(8) with poA = &p. This
Just says that, for each te T, A(f) is a probability measure supported by
@ 1 (#). In this case 7 is a coretraction for the surjection ¢:P(8)— P(T).

A space § is called a Dugundji space it every embedding ¢: S - T
admits an r.e.o0. It is enough that, for some index set 4, and some
embedding ¢: 8 — I4, ¢ should admit an r. e. 0. § is called a Milutin space
if there is a continuous surjection from some D# onto § that admits an
1. a. 0. Every product of compact metrizable spaces is both a Milutin space
and & Dugundji space ([5], 5.6 and 6.6). .

2. Absolute retracts, Dugundji spaces and AR (0-dim). Before getiing
down to the main theorems, I devote a little space to an alternative

approach to Dugundji spaces and indicate how similar considerations
lead us naturally to the AE (0-dim). Let us consider the general extengion

Diagram 1 7 \\g

y

icm

On a problem of Pelozyriski 25

problem where ¢ is an embedding, y is a continuous mapping and we
are trying to find 6 with ¢ = fop. It is well-known that the absolute
retracts (AR’s) are characterized either as those spaces X such that the
above problem can be solved for arbitrary S, T, ¢ and y, or as those §
such that it can be solved for arbitrary T, X, ¢ and ». (See, for instance,
Theorems 3.1 and 3.2 of [37].)

The extension problem in its most general form seems to be quite
intractable, and the problem of characterizing AR’s to be very difficult.
Certainly, anything resembling a complete description would probably
require techniques of algebraic topology as well as of analysis. In order
to obtain a problem allowing an analytical treatment, two approaches
suggest themselves, the starting point in each case being an extensmn
theorem involving metrizability. :

In the first place, we can restrict X to be a compact conver space
and characterize a class of spaces 8 by demanding that there should
always be a solution to the extension problem. The Borsuk-Dugundji
theorem. (see, for instance, [6], Theorem 21.1.4) tells us that every compact
metrizable space is such an 8. In fact, it is easy to see that these spaces
are exactly the Dugundji spaces. For if such a space § is embedded in 7'
by ¢, we need only take X = P(8), y = dg to obtain a map 0: T — P(8)
which will determine an r. e. o. for ¢. If, on the other hand, § is a Dugundji
space, embedded in T by ¢, and v is a continuous map from § into the
compact convex space X, there is ¢: T'— P(8) with sop= 6y and we can
take § = yoo. It is a triviality now to see that S is AR if and only if 8
is both a Dugundji space and a retract of some compact convex space.

The second approach involves imposing conditions on 7' and seeing
what class of spaces X we have characterized. Motivation for the choice
of condition is provided by the theorem of E. Michael ([4], Theorem 2)
that the extension problem can be solved for all metrizable X, provided
we restriet 7' to be zero-dimensional. The spaces X that we obtain are called
absolute extensors for zero-dimensional spaces, or AR (0-dim). The result

to be proved, namely that the class of all Dugundji spaces coincides with
the class of all AR (0-dim), shows that these two ways of generalizing

Diagram 2

P(S)

>

" from the nood extension properties of metrizable spaces give exactly

the same answer. The first step in the proof is the following theorem.
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TerorEM 1. If X 48 an AE(0-dim), then X is both a Milutin space
and o Dugundji space.

Proof. Embed X in some Z = I“. As in the proof of 5.6 of [5], there
is a continuous surjection ¢: D® - Z (for suitable B) which allows a regular
averaging operator. So there is 1:Z —P(DP) with gol= J;. Sinece X
is an AR (0-dim) and D? is zero-dimensional, there ig a map y: D - X
with ylp~! [X] = ¢lp” [X]. Tt follows that p|P(p~ [X]) = ¢|P (¢~ [X])
and thus that (pol))X = 8x (since A(») is supported by ¢~ '[X] for each
ve X).

We now see that the surjection y: D® — X allows a regular averaging
operator determined by A|X, so that X is a Milutin space. If we define
0: Z - P(X) by o = 9ol, then o|X = dx, o determines a regular extension
operator C(X) - € (%), and X is a Dugundji space.

3. A sufficient condition for X to be AF (0-dim). The proof of Theorem 2
will require & selection. theorem due to E. Michael. Let us recall that
a set-valued function @ from X into the set #Y of all subsets of Y ig
called lower semicontinuous if {we X: O(2)NTU G} is an open subset
of X whenever U is an open subset of ¥. A mapping ¢: X — Y is called
a selection for @ if ¢(x)e @ (») for all ze X.

Theorem. 2 of [4] states that if X is paracompact and zero-dimensional
and Y is a ecomplete metric space then every lower semicontinuous funection
from X into the closed, non—empty subsets of ¥ admits a continuous
selection.

Iintroduce one new piece of terminology. Let us say that a contlnuous
" map ¢: 8 — T has a metrizable kernel it there is a compact metrizable
space K and an embedding %: 8§ — T x K such that ¢ = II,ok, where I,
is the projection T'xXx K —T.

TaeorEM 2. Let X be a compact space that can be 'represented as the
inverse limit

Hm(X,, Pu placpes
h
of a well-ordered imverse system, indewed by the ordinals less than some v,
and satisfying:
(a) X, is metrizadle;

(b) for all Uimit ordinals y <, the natural mapping from X,
lll'ﬂ(Xa s Paplacp<y 8 & homeomorphism;

(¢) for all B <7, Pp5 441 5 an 0pen mappmg with o metrizable kernel.
Then X is an AB(0-dim).

Proof. Let ¢: 8T be an embedding with T zero-dimengional and
let y e a continuous map § — X. Let us define, by transfinite induction,
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a family (0,),., of continuous maps 7' X, satisfying
Ed

Po0ly =0, (a<<p<7)

‘a,nd
eaO(P = POy ((l < T)’

where p, denotes the canonical map X — X,,.

X, is metrizable, hence AE(0-dim), and so we can find 6,: T—-X,
with .09 = peoyp.

If, for some limit ordinal y < v, the 8, have already been defined
for a <y and form a consistent system, then 6, is already determined,
because of (b).

8o let us suppose that 8, has been defined for each «
need to define

< some fB. We

Opp1: T —Xpyy
with
024100 = Ppy10¥
and
Pp,p+10041 = 0.
Consider the set-valued mapping
0:T—+PX,,,
defined by
(t =g(s)ep[8]),
(te TN [S]).

C D) = {Ppav(s)}
D(t) = Pgp410,(%)

Certainly, each &(t) is a non-empty closed subset of X,,,. Moreover,

@ is lower semicontinuous. For if U is open in X, ,,
{1 T: DT 5 B} = ¢[(2p1209) " [T U (65 0,55 [UDN 0[S
= (07" Ppp:1 [UD\p [S\ (psr09) M LT

Since Pp,pe1 18 an open mapping and the other mappmgs are continuous,
this is an open subset of 7.

By hypothesis, there is a compact metrizable space K and an
embedding k: Xp,; —~ X, x K such that p,s,, =ILok The set-valued
mapping ¥: T -+ 2K, defined by W(t)=ILk[D ()] is lower semicontinu-
ous and each ¥(?) is a closed non-empty subset of K. So, by the theorem
of Michael quoted earlier, there iy a continuous selection A for ¥. We -
now need only to define 0,,, by 05,1 (f) = k™*(0,(2), A(2)).

4. Some preliminary results. The aim from now on will be to show
that Milutin and Dugundji spaces allow representations of the kind
considered in Theorem 2. We shall thus see, in passing, that the apparently
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artificial sufficient condition of that thecrem ig in fact also a necessary
condition. This section is devoted to some preliminary results that will
be heeded. First let us note the following fact about regular operators,
which I refer to ag a “module property”. Corollary 1 is an easy case of
a theorem of Tomiyama that is valid for arbitrary C*-algebras (Theorem
3.1 of [7)). . ‘

ProrosrrioN 1. Let ¢: 8§ —>Z and w: T ~Z be continuous mappings
and suppose that u is a regular operator C(8)-> O(T) that satisfies u(fop)
= (foy) (fe O(2)). Then. u((fop)-g) = (fow)-ulg) (fe 0(Z),g< 0(8)); i.e.
w is @ morphism of O(Z)-modules. g

Proof. Let fe0(Z), geC(8) and suppose toe T with (fow)(ty) = 0.
Then
: ~gll(Iflop) < (fop) -9 < gl (Iflog)

80 that

—lgll (If low) < u((fop)-g) < lgli(1floy)

and we deduce that w((fog)-g)(t) = 0.
If 1, is now an arbitrary point of T, we may replace f by f' =

[~ (foy) ()l and apply j:he above argument to obtain w({} o) g} (t) =0
or .

u{(fop)-g) (te) = (foy)(te)-u(g) (t)-

COROLLARY 1. Let w be a regqular averaging operator for the continuous
surjection @: 8 —T. Then

u(fop)-g) =f-ulg)  (feO(T), g¢O(8)).

COROLLARY 2, Let u be a regular extension operator for the embedding
6: 8—1T and let w: T —Z be such that

u(foyol) =fop  (feC(Z)).

Then .
’ u((foyo 0)-g) = (foy)-ulg) (f<0(Z),ge0(8)).
We shall need some lemmas on. open mappings.
Leyua 1. Suppose that the diagram

Wt Z -2 W

| A

W, 7, LW,

oommutes and that gop = uy, 0109y = ty. Then f m is an open mapp'mg,
s0isp.
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Proof. Let U be open in W. Then ng“f[U] is open in Z, and so
@ me [U] is open in W,. Bub ‘

pLU] < pi*mg ' [U] € @amg ™ [U] = pee™' [U] = p[U]-
LemMA 2. Let : 8 ST (resp. pr: 8, T) be an embedding that admits

a regular extension operator w (vesp. u;) and let 7, p be continuous surjections
such that the diagram .

ST

| 1

@
Slc——l»Tl

commutes. Suppose further that w(fop) = (ul(f))on: for all fe C(8,). Then
if 7 s an open mapping, so is P.

Proof. Let ¢ be the retraction of P(T) onto P(S) determined by u
and define o, similarly. Then the assumptions on u and w; imply that
the diagram

" P(8)SE P(T) 2> P(8)
Diagram 3 ‘ 1’;J % 51

P(8,) S P(T,) -2 P (8))

commutes. A result of Ditor and Eifler ([2], § 4) states that a continuous
surjection 0: X — ¥ is open if and only if §: P(X) — P (¥)is open. Combin-
ing this with Lemma 1, we see that $, and hence also p, is an open mapping.

5. The main theorem.
TemoreM 3. If X is a Dugundji space, then X is also an AR (0-dim).
Proof. Let v be the topological weight of X. Since any metrizable
space is AR (0-dim), we may agsume that v is uncountable. Take a set A
of cardinality = and embed X as a subspace of I, There is a regular
extension operator u: 0(X)—C (). For B < A denote by mp the projection
F - J7. T shall produce an increasing family 4 («) of subsets of 4, indexed
by the ordinals a < 7, and define X, to be the subspace m 4., [X] of e,
Por X X, will be 7, y|X and p,p: X, X, will be the restriction of
the projection J4P — F4), whenever a < f§< 7.
The gystem will have the properties:
(i) A(0) is countable; :
(ii) when y is a limit ordinal ﬁr, A(y) = U 4(0);
a<y

(i) for all a, 4 (a+1)\A(a) is countable;
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(iv) for all a and all fe O(X,), u(fop,) agrees with (fom ) on the
subspace X, x I[4N4@ of J4;

(v) for all o and all feO(X,,,), w(fop. )X x I 4) factors
through 7 y-

I assert that if these conditions hold so do (a), (b) and (¢) of Theo-
rem 2. (a) is evident from (i); (b) from (ii). Now consider Diagram. 4.

Xy e x A NG

Diagram 4

X,

@

It is immediate from (iii) that p,,,; has a metrizable kernel. From (v)
it follows that a regular extension operator '

oyt O(Xgp1) = O(X, x JAFINALD))

is defined by requiring thab (wey:(f))om ey = U (foPay;) on X, x F4NA@

forall fe0(X,,,). We deduce from (iv) that w,.,(fo P, a11) = fon (Fe O(X,)) -

and, since = is trivially open it follows from Lemma 2 that p,, .., is open.

The construction of the sets 4 (a) will be by transfinite induction.
As a start, let us set 4(0) =@, so that X, is a one-point space. Choose
a family (fy)s<. in C(X) which separates the points of X.

Suppose that the A (a) have been defined for all « not greater than
some B << v and that (ii), (iii), (iv), (v) are satisfied so far. Let & be the
first ordinal for which f, does not factor through Pg. Let us recall (cf.
7.3.13 of [6]) that if f is a continuous real-valued function on I there is
a countable subset € of A such that f factors through my. So there is a count-
able B(0) = A such that f, factors through 7zl X. For the same reason,
we can define B(n) induectively by requiring B(n+1) to he a countable
subset of A, containing B(n), and such that u(f) factors through .4y
whenever fe C'(X) and f factors through % | X. Letus now put B = () B(n).

Then T assert that u(f) factors through s whenever fis in ¢f (X) and
S factors through my|X. For, given any such fand & > 0, there i, by the
Stone-Weierstrass theorem, a finite ¢ < B and g that factors through
7ol X such that ||f —g|| < e. For suitable n, 0 < B(n) so that w(g) factors
through mp,,,) while [[u(f) —u(g)| < e. Thus u(f) can be approximated
with functions that factor through 7p and so does itself factor in the
same way.

" Now define 4 (8+1) = A(ﬂ)u§ and consider Diagram 5.

A regular extension operator

v: O(X) - 0(X, x FAN40)
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XcC

Xyx T4
Diagram 5 P ey

%

is defined by v(f) = u(f)|(X, x I, and, because of (iv) (with a = g),
we have v(fop;) = fom,p(fe C(X,)). Applying Corollary 2, we see that

) ’U((fol”ﬂ)'g) = (fOWA(ﬂ))"U(!I)
for all fe 0(X,) and ge O(X). Thus if fe C(X,) and ¢ factors through
gl X, v((fops)- g) factors through m ... But this is enough to show
that v(hopy,,) factors through 7 4., for all he O(X,,,), which is (v) for
a = f. This also shows that (iv) holds for a = g +1 since w(fopp)(Xppy X
x FANACHDy factors through oy, ) and can do so only as fon A1)

To finish the definition we must consider a limit ordinal y < v and
suppose that the 4 (a) have been constructed for a< y. We put A(y)
= (J 4(a) and only have to verify (iv). Any fe 0(X,) is a uniform. limit

a<y
of funetions gop,,, with ge 0(X,) and a < y. For each of thege, U (goPe,,0P,)
ragees with gop,,,0m ;) on X, x F>49, and hence on the subset X, x
X N0, 80 u(fop,) agrees with fom 4, on X x I4N40),

To complete the proof of Theorem 2, we only have to check that the
mapping p: X —lLm(X,,p,,) defined by the family (p,) is injective
(for it will then be a homeomorphism). This is immediate since each f;
factors through some p,, hence through p, and the f, were chosen so as
to form a separating family of funections. ’
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