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that ¢, —¢, = (e @)y in a neighbourhood of K; (moreover, one may
suppose that y is defined on @). Now we can define ¢;,; = @iy — (@ D B) 1.
Thig completes our inductive argument.

With this sequence at hand, it is clear that ¢ = limg; exists and that
p = (a @)y, 8o that Theorem 1 is proved. Jrroo
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A multiplier theorem for Jacobi expansions

by
WILLIAM C. CONNETT and ALAN L. SCHWARTZ* (St. Louis, Mo.)

Abstract. Multiplier operators on Jacobi expansions of functions in L?, 1 < p < oo,
are studied by realizing these operators as a sequence of kernels of singular integral
type. It then follows from the Calderén—Zygmund Theory that such operators must
be of strong type (p, p) for 1 < p < « and weak type (1, 1).

1. Introduction. In this paper we utilize a theory developed in an
earlier paper [4] to prove new and interesting multiplier theorems for
Jacobi expansions. The basic idea is to represent the multiplier trans-
formation M as a limit of convolution operators with kernels that have .
the properties of singular integral kernels. It then follows from the Cal-
derén—Zygmund Theory that the operator M must be of strong type
(p, p) and weak type (1,1). This is a particular application of the idea
of “gpaces of homogeneous type” devised by Professors Coifman and
Weiss in [3]. An exact statement of the theorem is given in § 3.

The key to the representation of M is finding an approximate identity
with the desired properties. Here, as in the earlier paper, we use the
Poisson kernel. There are many technical difficulties in these calculations,
and many of the lemmas look quite different. One reason for this is the
lack of symmetry in the polynomial P{? () which introduces more cases
that must be handled. Another reason is the complicated expression for
the Poisson kernel.

Tt is well known that any multiplier theorem for Jacobi polynomials
will have important consequences in group theory. Whena = g = (n—1) 12,
we obtain a multiplier theorem for the zonal spherical harmonics on
the unit sphere X,. When o =(n—1)/2, § = 0, a multiplier theorem
follows for the zonal spherical functions on the complex n-dimensional
projective space. There are theorems of this sort for all of the compact
rank —1 symmetric spaces. See Muckenhoupt and Stein [6], p. 22, Bonami
and Clere [2], §7. .

We mention here two other applications of our multiplier theorem,
both of which will be developed elsewhere.

* Both authors were supported by AFOSR Grant No. 71-2047.
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The first application is to Hankel multipliers, that is, operators which
satisfy
(mf)"(y) = m(y)f )
where
feLP(z**+ du)
and

— [ 1) ), (o) 0 .

‘A multiplier theorem for these spaces can be proved using our theorem
and an asymptotic relation between Begsel functions and Jacobi poly-
nomials. (See the recent paper of Igari, On the multipliers of Hankel Trans-
forms, Tohdku Math. J. 24 (1972), pp. 201-206.)

The second application is to mean summability of Jacobi series.

Our theorem together with complex interpolation leads to results
of the following type. If 6 > a+%, the (0, §) means of feL” converge%
to f in p-norm, 1<<p< co.

2. Jacobi polynomials and the convolution structure. Let a > — 1
"and p > —1 and define Lt 5 = L¥ to be the collection of all f for which

I, = | f 1P dmg | < o
-1

where
A (2) = (1—2)*(1 + o) dw.

The Jacobi polynomials are the polynommls PP orthogonal with respect
to dmy,, and normalized so that

PeA(L) = (“+“) __Trndatl)
S\ In+1) La+1) "
They are also defined by the recurrence formula

2.1 2n{n+a+p)(2n+a+ f—2) P8P (2)

=(@n+et+p-1){2n+a+p)(2n+a+p—2) 'ﬁ“}f“"ﬂf ()~
—2(n4-a—1)(n+pg— 1(2n+a~|~ﬁ)1)"”)f ) %=2,.3,4,...,
Peh@)y =1, PHO(@) = §(a+p+2)w+(a—p).

- The indices a and g Wlll be omitted when there ig no danger of con-
fusion.

A detailed treatment of the Jacobi polynomialy can be found in
Szegd’s book [7]. In what follows, we generally adopt the notation of
Gasper [5]. We set

By (@) = PO (@)[Pe0 (1)
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and

:[ f [Rn(m)]"'dm(m)]_l - @n+a+p+1)In+a+p+1)(n+a+1) |

2 (n-p+1) ['(n+1) Ma+1) T(a+1)

. 80 by Stirling’s formula

by =~ On**T,
If feI', we define the Jacobi series of f by

@) ~ D" (n)h, By (@)

=0
where

) = f (@) By () dm ().

The convolution structure is based on the Work of Gasper [5]. Let
a and § satisty
azf>-1 and a+f> —1;

then there is a function K (%, ¥, #) such that

(2.2) RB(0)B, () = [ K(@,y,9)Ro(c)am(?)
gatisfying
(2:3) [ 1E(z,y,2)|dm(z) < K

for a constant K which depends only on e and 8. If § = —1/2 or a+ 42>
then K (, ¥, #) is non-negative and K has the value of unity. An 1mmedm1se
consequente of (2.2) and (2.3) is that if f and g are in L* then we can define

@) = [ [E(o,y,2)f(@)g(y)dm(@)dm(y)
from which it follows that
(fxg)"(n) =Ff"(n)g"(n)

Moreover, if 1< p,q,r < co sabisfy

11 1

— ———-—]—'— —'1

rop ¢
then

I *glly < K LIS1l llglly

it feI? and gelIf.
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‘We will make frequent use of a simple change of variables which is
valid because #, y, and z are to be confined to the interval [ —1,1]. 'We
define ¢, 6, and y in [0, /2] by sefting @ = c0s20, y = ¢082¢p, and
z = c082yp. The measure corresponding to m is defined by
du(8) = 2°HA+2gine+1 g cog?P+1 00,
and we write ’

G(0,9,y) = K(cos20, cos2p, cos2y),

and
a =gingsing, b = cospcosy, ¢ = cosd.
Gasper showed that G(0, ¢, p) = 0 if
¢e<b—a or o>a-+b,

hence )
G0,p,9) =0 unless [p—y|<0<qpty.
We let 6, be the unit mass concentrated at ¢ and we define a generalized
tranglation by writing
F#8,(0) = [F(9)G(0, 0, v)dp(y)
[---dpand [ ...dm denote integration over the inbervals [0, =/2] and

[—1, 1] respectively. 3 denotes summation as all repeated indices range

over N ={0,1, 2,...}. 0 represents a constant not necessarily the same
at each oceurrence. '

3. The main result. If {m,} is a sequence of constants, the multiplier
transformation M is defined by

Mf = 3'm,f"(n)h, R,

n=0

at least for polynomials. Our theorem gives conditions on the sequence
so that M can be extended to a continuous operator on L? (1< p < o)
and to a weak type operator on I! so that 4‘

(Mf)" (n) = m,f" (n)
when feL” (1< p < o) and in a distribution gense when p =1 .
We define [@] to he the greatest integer not exceeding @ and (>

= @ —[@], the fractional part of x; using this ‘notation, we state
THEOREM. Asswme

e>f> -1 and at+f> -1
and let & = [a+1]+1 and y =1 — {a+1>, and suppose
(a) m, = 0(1),

24
(b) %’ | 4m,|2h, = 0(4~D),
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then M is of strong type (p,p) for 1 < p < co and weak type (1, 1).

An interesting special case is m,=n'® with o> 0 which shows that
limm, need not exist for {m,} to be a multiplier.

The proof of the theorem is long and technical, so we outline it in
this section and defer the technical argument to the last two sections.

The main idea is to represent M as a limit of operators K, where

Kof =loxf  (fel?)

for a continuous function %, which will be defined below. The K, are
chogen so that at least for polynomials, f, K,f converges uniformly to
Mf and so that there are constants 0, (1< p < oo) independent of =
such that if 1<p< o0

(3.1) MEafll, < Cplifll,  (feL®)
and .
(3.2) m{6: |K,f(0)] = s} < Oylflas™  (fell).

The uniformity of the bounds makes it an elementary matter to show
that (3.1) and (3.2) hold with M in place of K, (the notion of conver-
gence in measure is used in the cage of (3.2)).

Equations (3.1) and (3.2) are established by first showing that
(0, ) = T, 6,(0) satisties a version of Hoérmander’s condition:

(3.3) [ Vea (8, )= Fon (8, @0)l dus(8) < €
‘where
B ={0:10—po| > 2|p— g}

and C is independent of #». Once (3.3) is established, methods of Coifman
and Weiss ([3], p. 88) can. be used to prove (3.1) and (3.2). Thus we need
only to define %k, and show that (3.3) holds under the assumption that
{m,} satisfies (2) and (b). ) .

The idea of the proof rests upon the use of an approximate identity,
in this case, the Poisson kernel

Wy(6,9) = Y (L—7)"hyR,(c0326)R, (co82g).
'We let W,(0) = W,(0, 0), then examination of the Jacobi series of the two
funetions shows that

W, (6,¢) = W,%8,(0), .
and W,(0) is a non-negative approximate identity (see Proposition 4.1
infra, and the discussion preceeding it).
Now
MW,(6) = Zm,,(l——r)"h,,R,,(eos%)
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is-a continuous function, so we define

a,(0) = [M(W,_; 1 =W, )Ix(W 1+ W, ) (6)

and

1 (0) = D a(0)-+my

4=0
then k, is a continuous funetion, and for any trigonometric polynomial f
MF(0) = lim b, % f(0)
kiksdse)

uniformly in 0.

It is shown in § 5 that 2 (1 —a) R, (@) is very nearly equal to 4*R, _,(»)

i1 (@) — 2R, (2) +RB,_; () (equation 5.3 infra) and thus if ¢, = f " (n)
then (Proposition 5.1, infra)
(3.4) Ja—af[f@)Pam(@) <K D' (4e,)h,.
We now let V, = W,—W,,; then if m, satisfies (a) and (b), (3.4) together
with an appropriate version of Parseval’s theorem, can be used to prove

(3.5) [ (1 —cos 6) | MV, [2du(6) = 0(*)

(see Lemma 5.1 of [4]). Then (3.5) can be used (as in Lemma 5.2 of [4])
to show that if 0< n< y there is a O such that

66 fuw a)[( )dﬂ( )< 0.

Now (3.6) together with the inequalities which state that if a
there are constant ¢, and ¢, such that

[17,00,00=~W.(60, gl du(0) < 2 p =gl

z 8= -1,

0 —a\"
fmie.n( =N am<o, w<o<y

{Proposition 4.2, infra) can be used to show as in Lemma 5.3 of [4], that

(3.1 f|ai*6‘,,(6)-ai*5¢0(0)|d,¢(0)<Olnin{[—ﬁm]ﬂ,l@fﬂ-}.
# Ll — ol

r
Finally (3.3) is proved by summing (3.7) as 1 takes the values 0,1,2,...,m

4. The Poisson kernel. In this section the Poisson kernel for Jacobi
polynomials is shown to be an approximate identity satistying the same
types of inequalities as are satistied by the Poisson kernel for the ultra-

spherical polynomialsg. We assume throughou’u ‘that a> > —~1 and
a+f> —L. :
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The Poisson kernel can be expressed as a hypergeometric function
(see [1], p. 102) and as a consequence is non-negative; its integral with
respect to du is unity since R, = 1; in particular, ||W,{;, = 1. This is enough
to prove the following

PROPOSITION 4.1.

(4.1) IWoxf —fllp—>0

To prove the proposition, let &> 0; then there is a polynomial @

guch that @ —fll, < ¢/3. Now W,x@ converges uniformly to @ so there
iy a number 7, such that if r < n,,

W@ —@Qll, < /3.

as r—>0 for 1< p<< co.

Finally if » < 7,
VW, f—Fllp S NW o f — W% @l + 11W,+Q —Qll, + 1€ —fllp

‘We also need the following proposition analogous to the corresponding
jmequalities in [4]. .
PROPOSITION 4.2. There are constants Cy and C, such that

€

C
@) [ 19,08, 0) =W (0, 901 8(0) < <Flo =l
and
(b) f‘W,.(ﬂ,qv)(w—‘m)"dy(e)gd,, , 0<gy<1.

The proof of the proposition is based on the following lemmas, and
is almost identical to the corresponding argument in [4], so we delete
it; however, the proofs of the lemmas are much more difficult than the
correspondmw proofs in [4], so we give them in some detail.

Luvya 4.1. There ewists a funciion W*( , @) which is a bound for
W,(0,¢) and which, in turn satisfies the following bounds

N Cr
(4.2) W0, )< T (0 —g)2jeerom ?
‘ - ‘ Cr
(4.3) : W30, ) <

(@b) 2 (0 —¢)2]
where ¢ can be taken to be a for 0< < 0, ¢ < /2, and in addition ¢ can
be given the value f if both 0 and (p ewceed —ru/ (Recall that ¢ = singsin 6
and b = cospeos 0.) e

LnMMA 4.2.

d
(4.4 l-« W8, — Wi (0,
(4.4) 5y e w)\ (0,0).
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Lemmas 4.1 and 4.2 are generalizations of results which were proved
for ultraspherical polynomials in [6] and [4] respectively. In [4] W) was
not introduced because when a = f§ the integrand of (4.5) (infra) does
not change sign.

Before proving the lemmag, we give the kernel in two closed forms,
both due to Watson. That author gives an expression for the kernel which
is equivalent to the following
(4.8) W.(6,9) /

w2

—p F
= in(l—p)Erran f ”5‘7;(k”ﬁ“A""B"’Z’”’)cos“'*ﬂweos(amﬂ)wdw,
[

‘where
ko= (842 411, = [k2—(a®+ b cos?w]® —4atb2cost w,
A = F2—(b2—a®cos*w +le2, B = I*— (a2 —b%) costar 4 215,
We assume without loss that 1/2 <t<<1 so that
E<3/2 and rA<<ki-1< 122,

Watson then performs a change of variables and transforms (4.5) into
(4.6) W,.(0,9)
—r CFa
T A )
where
E = k2—(a*+2aboosy+b?), F = B2 —(a+beosy)?,
G =k —(b+acosy)?,

and o is the acute angle, positive or negative satistying

P
cobw = —
Q
for
P =ksinyB® and  Q = keosy —(a-+boosy)(b + acosx).
The quantity estimated in Lemma 4.2 iy actually Wr(0, ¢) detined by
W: (6,9)

0
iy [eos(a— BB~ CHIIR(pjGre-plt) | sine+ gy

r g
T R[A(1 —r)JerEE f
0

o that we obviously have

Wi(0,90) < W8, ).

[eos (a — B) o —(=+A+12 (F/G)(a'mj sin“tPydy
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Proof of Lemma 4.1. We can write (4.6) as

(4.7 Wi, ¢) = n['4(1__:)](ﬂ+ﬂ+2)/z fE‘(“““)/Z(F/G)(“"ﬁ)/’ %
[
d -
X %cos(a——ﬂ)w—l—kcos(ahﬁ)w[— a+§}+1 .,_ﬁ% +
+ ﬂ;a] sin**fydy.

The estimation of the integral requires us to bound each term inside
the absolute value signs by C/E. For the first term we observe that

. W
-é-l—(:-cos(a——ﬁ)w = (ﬁ—a)sm(a—ﬂ)w—%,
oP 0Q
do Yo T _sing  H
ok Prr@r BE piige’

where H is defined by
H = {k?cos y —(a--bcos x)(b+acos y)} {B + %2} —2k2cos - B
= (@ +beosy)(b-+acosy) [a®+ 2abcos y +b2] — k2 [2ab + (a2 - b%) cos ]
= (a®+2abcos y -+ b*) (— Q) -+ %*[2ab(cos?y —1)]
and finally,
(4.8) , HH| < (a+4-D)*Q +k*(4absin?y)

since —n/2 < w < w/2 we also have

Isin (¢ — B) o] < [a—ﬁl[wl<—;—la-«~l3]/00’ow = g]a——ﬁlQlP
80 we obtain the bound
0 sing |H|-la—$§]-Q@  |a—pBQH]
’3@008 ﬂ) ( ]11/2 FI I__Q)g .P kE(P’H—Q’)
which. by (4.8) is ‘
(a-D)2Q* k’absinf“xQ)
lo—# '( *BQ* HPQ |

The first term is clearly bounded by OB, The bound for the second term
follows from the observation that

P = ksinygB"* > ksiny [2ab (1 —cos ) ¥
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and consequently N
habsin®y absiny Vab _ 1

TP S oH(ab)P(sing2) - B B’

We now examine the remaining three terms in the square brackets

on the right side of (4.7). The first term is clearly bounded by OF~'. That
the second two terms have the same bound, follows from the observation

that
Fe=F and Gx=D.
Now to obtain the first estimate of the imtegral we introduce the
following definition,
A =t (p—0)
then
B 2= 0[A4-aby?].
This estimate follows directly from the definition. For example, if ¢ > 1/2
(4.9) B = (k2—1)+[1— (s 2abcosy --b2)]
= (k2 —1)+ (L — (@ +b)%) +2ab (1~ cosy)
= (k2—1) + sin?(p — 0) +4absin?(y/2) = 0(4 -+ aby?).
Finally, we return to (4.7) and using the above estimates obtain
that Wr(6; @) is less than or equal to

Fol AN e L T
{4.10) O""f E(a+ﬂ+1)/z' G e
0

4 1 1 \le-m2 4
< Orf T (_,.) - sin®t By dy
0

. e g §7i
i )
sin®*o ¢ d G
= COr A <or LI e
B J (4 abz?)

Now to obt?in the two estimates we make the change of variables
% = (ab/4)"?y and obtain
(Afapjerison TN g

{4.11 ;
( ) 07' Aa+3/2 . (-1 ,.‘, ug)wa/z

dau.

‘This last integral is bounded by

m(ab/4)Y2 :
[ wdu = C(abd)ett+De,

0
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Tf this is substituted in (4.11) we obtain the first estimate of the Lemma
4.1 with ¢ = a.
To obtain the second estimate we observe
b (b2 —a?)sin?y
¢t
and
(412) G = (k*—1) 41— (a+Db)2] +2ab (1 —cos g) + a*(1 — cos?y)

= C(ab + a?) y?
80

r_o
@ > ab

Inserting this in (4.10) we obtain, instead of (4.11)

n(ab/’A)lli atp

, (A ab)otp+0 o
(a-t-f+-3)/2 (a—p)2 2\(@+B+3)2
4 (ab) J G+

dau.

The integral iy bounded irrespective of the upper limit, so the second
egtimate of the lemma follows with ¢ = o.

To complete the proof we assume ¢ and 6 exceed /4 so that a > 1/2.
Under this assumption F[H and y%/G are bounded because of (4.9) and
(4.12) respectively, so the integral in (4.10) is bounded by

T P Tt
< [ B\ (=) 1 2 \(a=hR P
v ({2 I 2 .
COr J ( 1,;) TR (G) 2Py < O f zerraE W
o ]

(4 [ab)Er+ i a4y u2t

< Cr g du,
A-+3)E ay@araE
Y| p (1 +wu?)

The integral iy bounded wniformly by a constant and by (ab/d)RF+rE,
The two bounds ecan then be used to obtain the rest of Lemma 4.1.

Proof of Lemma 4.2. To prove this result, we begin with Watson’s
first expression (4.8) for the kernel and obtain

0 .
b W.(0, ¢)

n./ 2

r K 0 Tt B4 — R/ A r2~ y
= (L T j U (K70 A B2 008" weos (o~ f) wd
1 ; .
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where
OR/[0g
add ok~ BOB|0k 0Z |0k a+pg+1
B=—Fg "3 *72z I
and
8 = adA [0p " BOB[Op  0Z[dp
T4 B 27z
It will suffice to show
¢
U< -

uniformly in all variables, for then we would Have

9 .
"5“ Wr(ei 9’) ‘
P .
2
C r
< r (1 —r)erArn f

o

T (ketPi4—2 B—FZ-12) cog(a~— f) | cos* P wdw.

With Watson’s change of variables, this last expression is bounded by
O o
Zw*o
r r( ,‘77)

which yields the desired result.
In order to proceed with the argument, we shall first obtain some
bounds for the quantities 4, B, and Z. Since

b+a = cos(p-F 6),
we can write

Z=2.7_

‘where

(4.13) Z, = I —cos?(p - 6)costo

50 !

(4.14) Z, = (K—1) - sin%(¢ 4 0) cos?w +sint e,
and

(4.15) Z, =z Or|sin(p-0)|coso.

We also note that

A = I?—cos(p— 6)cos(p -+ 6)costm 4 22,
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80
(4.15) Az (B*—1) + § [sin*(p + 6) + sin(p — 6) Jcos?w + 22,
and. 8o
(4.17) 4 > rsin(p+ 6)cos w +r|sin (p — 6)] cos w + 212,

The lagt two inequalities also hold with B in place of A.
‘We shall first estimate 8. The last term of — 8 is

1 07 1 0z, 1 07Z_ 1
E_Z—W = 57, —“@_ EE?W < —r-[cos(<p+0)+cos(qz—0)]cosw;
thus
1 0Z 2
4.18 _— 2,
(4.18) 2Z Op | 1

To deal with the first term of —S8 we note

1 04
A o
costw -, . 1 0z
= ‘ 1 [sin(p -+ 0) cos (p — 0) +sin(p — 0) cos (¢ + 0)]+m—1/7 wi
20080 1 0z
< - =22,
%52 foose §)+reos(¢+e)|]+l2z W]
Thus
1 E < 6
Adp | 7

The last inequality follows from (4.17) and (4.18). The second term of
—8 can be dealt with in the same manner, so we finally obtain

<2
7

We now estimate the term R™'0R/dp. We write R as

(419) B = a[aA/ak .1..] -]ﬂﬁ[f?_@.li E_] +i[_?_z_/_a’°_ __2_]

A Tk B k|2l z %

1
= all, '1”191313"{“"2—1‘)‘2’

80
)

'R_a@RA lga'RB
R op

(4.20 — b O
20) B9 TR op 2B 99
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The quantities R, Ry and R, are non-negative. In fact
2
R, = v [k + (b2 — a?) cos2 ] [R? — (D% — a?) cos? ],

Now a simple computation shows thatb
1R, —Ey
-~ T [eos(p+ 6) —cos(p — 0)]*cos?w
B A7
similarly 3R, — Ry > 0; thus, because e 2 f> —1 and a8 > —1 we
see that for some constant € ’
(4.21) " R»CR,, R»0R,, and R3>OR,.

Now, of the two factors of R, at least one must exceed unity; exactly
which one does depends on the sign of a®—b?; but, if we assume for the
moment that b*—a? > 0, then

Ry > Z7 k2 — (b2 —a)cos?w] =Z7{(k*—1) + [1 — (b2 — a?)]cos’ » +sin*w},
s0

[%3 4 cos (@ + 0) cos (¢ — ) cos?w] 2= 0;

Ry, = Z7{(%2 —1) + §sin2(p -+ 0) cos? o +- ;sin?(p — 0) cos? w - sintw};

the same inequality holds if % —a?<< 0.
Referring to (4.14) we see at once that

1
(4.22) R, > -gz-l [Z,+Z_ ]2 27",

We now estimate lagt term of (4.20). It is bounded by Rz"[0R,/0¢|.
1 0%

Z ok
oR, 1 {z »2z 0z 62}

dp 22| Opdk  Op Ok

Differentiation of R, = —% yields

(4.23)
Since Z =Z,Z_,

(/4

0z ,
(4.24) - =2K(Z, +2.], 5, = lsin(2g —2 0)7, +5in(2¢ +26) Z_. Jeos? o,

and
(4.25) 027 o [5inL (%0 — 26 . .

‘ il o [sin (29 — 20) --8in(2¢ + 26) Jeos* .
A simple computation finally shows

OR, 2%

dg A

[sin(2¢ — 26) 2%, + 8in(2¢ +26) 7% Jcos?w;

icm
A multiplier theorem for Jacobi empansions 257

thus using (4.22) we -obtain the following bound for R;'[0R,/d¢|:

d4keos?w

‘|- e

sin(p—0 i ‘
< sxﬂeos“w[‘*(g-—l cos(p—0)+ “2EED oo (p10),
7 Z,
0, from (4.15)
, 1|or,| €
4.26 =l < —
(4.26) Ry 0y |S7

We now consider the first term of (4.20); it is easy to see that

oR 1
'"“E)'(f' = :‘1—;(1'1-!—1’2—1'3)
‘where )
T = I — o8 (p -+ 0) cos (¢ — 0) cos?w + 2242 02z  0Z 0Z
v 47" [ dp0k  Op 0k]’
1 02z
Ty = [I%—cos(p- 0)cos(p— 0)008%11217%0_70—’
and.
b 1 0z *
T, = 2%sin2pcos?e + 522 — + = (sin2pcos*w) 4~ —.
op 2 ok

The balance of the proof consists of estimates of the quantities
T;/RA® (j =1,2,3).

We recall (4.19) where R is represented in terms of the guantities E,,
Ry, and R,. The R’s are non-negative; in fact,

W (b—at) | PR, k(b2 —a?)

(4.27) Ba= kA ;ﬁy 24 kA
By symmetry we obtain

. I — (b2 —a?)

B i EB
Since ab leagt one of k2. (b*—a?) exceeds unity, it follows from (4.21)
thai

R™'< Omin(4, B),
80

(4.28) (RAY)™ < 047
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From (4.21) and (4.23) ’ ‘We have thus shown that there is a constant ¢ such that
Ty _pn [kz——cos,(qp-l—())cos(tpz—~ B)nosﬁw+2z”2]‘%%1_i£ . 1B, _0
EA® 44 ? Rj dp ~r’
ZM A+Z 1 0R, )
< i i : -R—Z— . "é?f : a similar result holds for the second term of (4.20).
so, for some constant C, (4.26) implies 5. Difference calculations. From the recursion relation (2.1) we obtain
’ ‘ the following formula:
T Y]
<% (8.1) AP} = (By+ Ouo) PP — Dy PR,
‘where
From (4.28) and (4.25) it follows that
r, ¢ oz 4, =2n-+1)(n+atp+l)ntatp), B, = @ntatfil)(a—p),
2
Tar S 12 Gk 0, = (n+a+B+1)(2n+a+p+2)(2n+atp),
— Okcos?e SiIl((p-—O) OOS(QD—O) sin(<p+9) GOS(¢+0) -Dn — 2('rb—l—a)(n+/3)(2n+a+ﬁ+2).
) z2 Z:{z Zﬂz Z12 ? .
whence from (4.14) and (4.15) Now if we multiply equation (3.1) by h,/P&(1) we obtain
T, C h,  P@A(1)
YT S B % 2 A Sal
B4* ' ® (g B

Finally, we deal individually with the three terms of Ty /(R.A?). First,

B, +0,0)h, By (@ D( < () PR
writing 2p = (¢ +0) -+ (p—0) and applying (4.28), we find = (Ba+ On0) b B (@) = Dn PeR1)y  h,_, ) VR

Notice that

¢
2\—1 5 2 igi — i — P " n+ B+
(RA2)™12F |sin2¢p] cos? 0 < — |sin(p +0)cos (p —0) +cos (p +0)sin (¢ —0)|cos? @ h, ffx’ (1) @1+ a-+B+1)( 1

= =
2005(p—6)  2008(p+0) ¢ PEAD)  hpps | @ntatBrd)ntatprl) "
(o} + cosw < —.
) r r r and
Next since (RA2)™ < (A~ < 0217, h, PPA@) 1
: (@B =
1k 0z _[0 0z _0 Py s Qn1
RA: 2" 8y "7 0p ¥ ‘ 80
b ‘ 3 - 1 ) AﬂQﬂ Bﬂ Dn R
¥ (4.18). And for the last term, we observe that by (4.24) why By (@) = —¢ 7z,,+1R,,+1(w)~thRn(m)+v0-—Q———l 1 (@)
n n nvn—
0z
= 26[Z, +Z. 1< A, This allows us to compute the following formula:
80 uging (RA)™ < 047 (8.3) 2(@—1)h By (®) = plys1 Byys () — by b By (@) + 64 hin 1 By (@)
1 . . . .
(RAZ)‘1—2- (sin2pcos®w) 2197 9% < O(sin2pcostw) 2 < g with
r _2“1"@",\,1 b _ 2B, o~ 3 o = 2D, ~1
by the first estimate. : Wm="0, T "7, T T QO

5 — Studia Mathematica LIL3
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which is clearly agymptotic to a second differehce formula, 4 ? (hy B,y ().
In particular, in order to obtain this difference we assume that f(«)
is a polynomial and

~ 2 o by By ()
and calculate
(5'4) 2 (” ~‘1)‘)‘.("17) ~ Zdn(a'n h/n —|-1Rn+1 - bu han + On h‘n-—l Rn—-l)

= Z (1 Oy — by A A g1 O B By
with

dn—l @py— dﬂ bn + dn+10n+1
=4 dn + (an—l _1)dn—1 + (2 - bn) dn, + (cwl-l ""1) an *

It is another simple caleulation to show that

P T s . M (a7
=t (@ntat+p+1)  (@ntat+p)@ntatpl)’
Oy —1 = (1+2a) + (o> F)

@nt+atp+1) - (2nFat+BH1)(20+aFB+2)

Therefore the coefficients in (5.4) become equal to

" 1+42a _
(8:8) Ad,+ @rnratiil) [dsr— ]+
+(a2—B? { T - +
(2fn+a—{—ﬁ+l)(2n+a+ﬂ+2) T @ntatB+2)(@n+atp)

.
+ (2n+a+ﬁ)(2n+a+ﬂ+1)}'

‘We obgerve that each of these terms has the form of a difference divided
by a polynomial in n. We estimate these terms using the same techniques
a8 in the paper [4]. The above caleculation can be uged to obtain

PrOPOSITION B.1. Suppose k is an integer, f(@)eL?, and f ~ 3 ¢, h, R,
then there is a constant O, independent of f such that

Ja—aff(@Fdm(a) < 0 Y (4ie,)h,.

The proof of this fact is so similar to the proof of the cotresponding
fact in [4], that we omit it.
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