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Another note on Kalton’s theorems
by

L. DREWNOWSKI (Poznai)

Abstract. The purpose of this pa?er ig to give new proofs for the two Orliez—
Pettis type theorems, due to Kalton ([31, [4]), which are formulated below.

Tet G be an abelian group, N ={1,2,...}, Z =2 (N) ={4: 4 c N}
and m: -G an additive set function.

If m is countably additive (resp. exhaustive) when G is endowed
with a Hausdorff group topology 7, we shall say that m is a T-measure
(vesp. 7-ewhaustive, i.e. mA, "0 for every infinite sequence of disjoint
gets 4, = N). A subset 4 of (&, ) will be called tramsseparable (trans
for translation) if for every meighbourhood V of 0 in (G, ) there exigts
a countable subset B of & such that 4 « B-+V. (It can be assumed
that B < 4.) It can easily be shown that (&, 7) is transseparable iff it
is-isomorphic with a subgroup of the product [] @, of metrizable separable

iel

groups G; (teI). Thus, in particular, if X is any locally convex topological
vector space, then (X, ¢(X, X')) is transseparable.

Throughout o and g denote two Hausdorff group topologies on G.
‘We shall write af—p (vesp. al—, B) if § has a base of a-closed (resp. se-
quentially a-closed) neighbourhoods of 0. Though ab 8 does not imply
a < B, wcan always be replaced by a Hausdorff group topology y such
that y = o, y = g and y— g (e.g., the group topology y = inf{a, }).

THEOREM 1. Suppose al—,f and m is an a-measure. Then if the range
m[P] of m is f-transseparable, ™ is also o P=measure. (The converse is
trivial.) . .

TamoRnM 2. Suppose al— f and m is a-exhaustive. Then if m[P] is
B-transseparable, m is also B-ewhaustive.

(The above formulations slightly differ from the original results of
Kalton.) A short proof of Theorem 1, based on the Baire category theorem,
can bo found in [2]. Below we give a still motre direct proof. Our proof
of Theorem 2 reduces it to Theorem. 1; the method we use was inspired
in part by Labuda’s paper [5]).


GUEST


234 L. Drewnowski

It is not clear to the author if exhaustivity of m implies transsep-
arability of its range or if al—~ # in Theorem 2 may be replaced by al—,p.

Proof of Theorem 1. It suffices to show that m iy f-exhaustive.
(For, this implies that if a sequence (4,) = £ is disjoint then the series
2 md, is p-Cauchy, and since it o-converges to m((J 4,), it has the
same limit in f.)

Suppose m is not f-exhaustive. Then we can find a digjoint sequence

(B,) and a symmetric sequentially o-closed g-neighbourhood V of 0 in -

@ such that mE, ¢V for ne N. Without loss of generality we can assume
that B, = {n}. Thus

(1) m{n}¢V, mneN.

We claim that for each n there existy %(n) > » such that

(2) m{n}-{—mA —mB¢V if A,Bc N and inf(4 u B) 2 70(%)
In fact, otherwise for some n, there exist sequences (4), (Bi) such

that .

inf(4, v B))->co _and - m{n,} +md;~mB;e V, ie¢N. "

But mA4,;-0, mB; >0, 80 m{n}e V, for V is gequentially a-closed. This
is a contradiction with (1).

Now define ¢, =1, ¢;,; = k(g;) for ie N, and set @ =
We claim that

{91) Gy -+ 1

3) if A,Bc@ and 4 s B, then mA—mBy¢ V.

In fact, let ¢ = inf((ANB) U (B\4)) and consider, for instance,
the case when ge B\ A. Then ‘

mA —mB = —[m{g}+m((B\A)\{g}) ~m(4A\B)|¢ -V =
. by (2), for ' S

inf[(ANB) u (BNAN{})] = ®(g)

Now, as #(Q) is uncountable, (3) implies that m [#] is mot f-trans-
separable. This iy a contradiction with the assumption.
‘We shall need the following

LeMyA. If al- B and (@, B) is metrizable and separable, then there
exisis @ metrizable group topology ¥ on G such thal y <o and yh-p.

Proof. Let (V,),.x be a bage at 0 in (@, p) consisting of a-closed

sets such that
1

VM_I——V,"HC Vo neN

and let & be a bage at 0 in (¢, a).
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exigtence of a gequence (UZ),.y c & such that
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For each ne N and Ue o set

G(n, U) = {w<: (0+T) O V, = O}.

Then
(4) G(n, U)  Int,G(n+1, U).

In fact, if weG(n, U) then o+ V, ., = G(n-1, U).
Ag V, is a-closed,
G\Vm = U G(n, U)

Uest
and therefore from (4) and the Lindelsf property of (@, B) we deduce the

1

(8) NV, U G(n+1, U}).

=1
Now we can easily define a eountable family # = s which i a base at
0 for some group topology ¥ on @ and contains all the sets U; (k,neN).
Evidently y < a.

If w¢V,, then we deduce from (5) the existence of Ue# such that
(@-+-U) NV, =@ It follows that V,,, = d y Vi1 = V,, and that y ig
Haugdorff. Hence y is metrizable and y [~ f.

Proof of Theorem 2. We can assume that (¢, g) is transseparable.

First consider the case when g is metrizable; then (&, g) is separable.
Let y be a topology whoge existence is asserted in our lemma. Sinee m is
a-exhaustive and ¥ = a, m i3 also y-exhaustive. Let (H,) be a disjoint
sequence in #. Then, by Proposition 1 in [1], we can find an infinite sub-
sequence (F,) of (#,) such that m restricted to the o-ring & generated
by (F,) is a y-measure. Now y - 8 and Theorem 1 imply that m|#is
a f-measure, so mB, L0, It follows easily that mE,~L>0. Thus e is B-
exhaustive.

In the general case we proceed as follows Let ¥V, be any a-closed
B-neighbourhood of 0. Then we can detine inductively a sequence (V,),.n
of symmetric a-closed f-neighbourhoods of 0 such that

Vot+Vue Vyy, nel.

Lot B be the group topology on G for which (V,) is a base at 0.
The subgroup H = ﬂ V, of @ is a- and f’-closed, so the quotient

topologies @ m(l f on G = G/H corresponding to a and g’ are Hausdorff.
Bvidently (G , B) is metrizable and separable, Let % be the quotient
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mapping of ¢ onto @ Then the sets ¥, = h(V,) (neN) form a bage
at 0 for ﬁ We claim that a - /3

It suffices to verify that
(6) clz ffnc I}n—u nelN,
Suppose & = h(x) ¢Vn_1 Then #¢V,_,, and since V,_, is a- oloqed, ‘there
is an a-peighbourhood U of ® such that U N V,_; = @. Then U= h(T)
is an a-neighbourhood of & and U AV, =@. (Otherwise we can find
weUandveV, such that w —veH, and then v = (4 —v)-+veH +V, = ¥,
+V,c Vg, 50 that U NV, ; =3.)

Since 4: (G, a)— (G a) is continuous, the additive set funcuon
m =hom: g’—>G is a-exhaustive. By the first part of the proof mn is
also f-exhaustive. Thus if a sequence (H,) < # iy disjoint, there is n, such
that B, e 7, for n > n,. It follows that mH,cH -+ Vy < V, for n = ng,
and we conclude that m is f-exhaustive.

COROLLARY. If a < f and (G, B) is separable and metrizable by a com-
plete metric, then

(a) if m is an a-measure, it 48 also a f- measwe,

b if m is a-ewhaustive, it is also B-ewhaustive.

Part (a) of this corollary belongs to Kalton [3]; part (b) has been
proved by Kalton [4] and independently by Labuda [5]. Part (a) was
shown in [2] to be a simple consequence of Theorem 1 and a closed graph
theorem for groups, and in exactly the same way part (b) can be derived
from Theorem 2. Labuda [5] proved in a very clever manner that (a)
implies (b). Let us note that when (b) is proved, the metrizable case in
the proof of Theorem 2 can be reduced to (b) (assume ¢ = f, then
complete (@, ) and (G, a), and apply (b)); then the lemma we have
established before proving Theorem 2 is not needed. This lemma may be
however of some independent interest.

Remark. From that proof of Theorem 1, which ig given in [2], it
is immediately seen that instead of a |-, one can suppose that § has
a bage at 0 consisting of sets V such that V is the countable union'of se-
quentially a-closed sets. "
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