

STUDIA MATHEMATICA, T. LII. (1975)

Another note on Kalton's theorems

by

L. DREWNOWSKI (Poznań)

Abstract. The purpose of this paper is to give new proofs for the two Orlicz-Pettis type theorems, due to Kalton ([3], [4]), which are formulated below.

Let G be an abelian group, $N = \{1, 2, ...\}$, $\mathscr{P} = \mathscr{P}(N) = \{A : A \subset N\}$ and $m : \mathscr{P} \to G$ an additive set function.

If m is countably additive (resp. exhaustive) when G is endowed with a Hausdorff group topology τ , we shall say that m is a τ -measure (resp. τ -exhaustive, i.e. $mA_n^{\tau} \to 0$ for every infinite sequence of disjoint sets $A_n \subset N$). A subset A of (G, τ) will be called transseparable (trans for translation) if for every neighbourhood V of 0 in (G, τ) there exists a countable subset B of G such that $A \subset B + V$. (It can be assumed that $B \subset A$.) It can easily be shown that (G, τ) is transseparable iff it is isomorphic with a subgroup of the product $\prod_{i \in I} G_i$ of metrizable separable groups G_i ($i \in I$). Thus, in particular, if X is any locally convex topological

vector space, then $(X, \sigma(X, X'))$ is transseparable. Throughout α and β denote two Hausdorff group topologies on G. We shall write $\alpha \vdash \beta$ (resp. $\alpha \vdash_s \beta$) if β has a base of α -closed (resp. sequentially α -closed) neighbourhoods of 0. Though $\alpha \vdash \beta$ does not imply $\alpha \subset \beta$, α can always be replaced by a Hausdorff group topology γ such that $\gamma \subset \alpha$, $\gamma \subset \beta$ and $\gamma \vdash \beta$ (e.g., the group topology $\gamma = \inf\{\alpha, \beta\}$).

THEOREM 1. Suppose $\alpha \vdash_s \beta$ and m is an α -measure. Then if the range $m[\mathscr{P}]$ of m is β -transseparable, m is also a β -measure. (The converse is trivial.)

THEOREM 2. Suppose $a \vdash \beta$ and m is a-exhaustive. Then if $m[\mathscr{P}]$ is β -transseparable, m is also β -exhaustive.

(The above formulations slightly differ from the original results of Kalton.) A short proof of Theorem 1, based on the Baire category theorem, can be found in [2]. Below we give a still more direct proof. Our proof of Theorem 2 reduces it to Theorem 1; the method we use was inspired in part by Labuda's paper [5].

Note on Kalton's theorems

It is not clear to the author if exhaustivity of m implies transseparability of its range or if $\alpha \vdash \beta$ in Theorem 2 may be replaced by $\alpha \vdash \beta$.

Proof of Theorem 1. It suffices to show that m is β -exhaustive. (For, this implies that if a sequence $(A_n) \subset \mathcal{P}$ is disjoint then the series $\sum mA_n$ is β -Cauchy, and since it α -converges to $m(\bigcup A_n)$, it has the same limit in β .)

Suppose m is not β -exhaustive. Then we can find a disjoint sequence (E_n) and a symmetric sequentially α -closed β -neighbourhood V of 0 in G such that $mE_n \notin V$ for $n \in N$. Without loss of generality we can assume that $E_n = \{n\}$. Thus

$$(1) m\{n\} \notin V, n \in N.$$

We claim that for each n there exists k(n) > n such that

(2)
$$m\{n\}+mA-mB\notin V$$
 if $A,B\subset N$ and $\inf(A\cup B)\geqslant k(n)$.

In fact, otherwise for some n_0 there exist sequences (A_i) , (B_i) such that

$$\inf(A_i \cup B_i) \to \infty$$
 and $m\{n_0\} + mA_i - mB_i \in V$, $i \in N$.

But $mA_i \stackrel{\alpha}{\to} 0$, $mB_i \stackrel{\alpha}{\to} 0$, so $m\{n_0\} \in V$, for V is sequentially α -closed. This is a contradiction with (1).

Now define $q_1=1,\ q_{i+1}=k(q_i)$ for $i\in N,$ and set $Q=\{q_1,\ q_2,\ \ldots\}.$ We claim that

(3) if
$$A, B \subset Q$$
 and $A \neq B$, then $mA - mB \notin V$.

In fact, let $q=\inf((A \setminus B) \cup (B \setminus A))$ and consider, for instance, the case when $q \in B \setminus A$. Then

$$mA-mB=-\left[m\{q\}+m\big((B\diagdown A)\diagdown\{q\}\big)-m(A\diagdown B)\right]\notin -V=V$$
 by (2), for

$$\inf[(A \setminus B) \cup ((B \setminus A) \setminus \{q\})] \geqslant k(q)$$
.

Now, as $\mathscr{P}(Q)$ is uncountable, (3) implies that $m[\mathscr{P}]$ is not β -transseparable. This is a contradiction with the assumption.

We shall need the following

LEMMA. If $\alpha \vdash \beta$ and (G, β) is metrizable and separable, then there exists a metrizable group topology γ on G such that $\gamma \subset \alpha$ and $\gamma \vdash \beta$.

Proof. Let $(V_n)_{n\in\mathbb{N}}$ be a base at 0 in (G,β) consisting of α -closed sets such that

$$V_{n+1} - V_{n+1} \subset V_n$$
, $n \in N$

and let \mathscr{A} be a base at 0 in (G, α) .

For each $n \in \mathbb{N}$ and $U \in \mathscr{A}$ set

$$G(n, U) = \{x \in G: (x + U) \cap V_n = \emptyset\}.$$

Then

(4)
$$G(n, U) \subset \operatorname{Int}_{s} G(n+1, U).$$

In fact, if $x \in G(n, U)$ then $x + V_{n+1} \subset G(n+1, U)$. As V_n is α -closed,

$$G \setminus V_n = \bigcup_{U \in \mathscr{A}} G(n, U)$$

and therefore from (4) and the Lindelöf property of (G,β) we deduce the existence of a sequence $(U_k^n)_{k\in N}\subset \mathscr{A}$ such that

(5)
$$G \setminus V_n \subset \bigcup_{k=1}^{\infty} G(n+1, U_k^n).$$

Now we can easily define a countable family $\mathscr{U} \subset \mathscr{A}$ which is a base at 0 for some group topology γ on G and contains all the sets U_k^n $(k, n \in N)$. Evidently $\gamma \subset \alpha$.

If $w \notin V_n$, then we deduce from (5) the existence of $U \in \mathcal{U}$ such that $(w+U) \cap V_{n+1} = \emptyset$. It follows that $V_{n+1} \subset \operatorname{cl}_{\gamma} V_{n+1} \subset V_n$ and that γ is Hausdorff. Hence γ is metrizable and $\gamma \vdash \beta$.

Proof of Theorem 2. We can assume that (G,β) is transseparable. First consider the case when β is metrizable; then (G,β) is separable. Let γ be a topology whose existence is asserted in our lemma. Since m is a-exhaustive and $\gamma \in a$, m is also γ -exhaustive. Let (E_n) be a disjoint sequence in $\mathscr P$. Then, by Proposition 1 in [1], we can find an infinite subsequence (F_n) of (E_n) such that m restricted to the σ -ring $\mathscr F$ generated by (F_n) is a γ -measure. Now $\gamma \vdash \beta$ and Theorem 1 imply that $m \mid \mathscr F$ is a β -measure, so $mF_n \xrightarrow{\beta} 0$. It follows easily that $mE_n \xrightarrow{\beta} 0$. Thus m is β -exhaustive.

In the general case we proceed as follows. Let V_0 be any α -closed β -neighbourhood of 0. Then we can define inductively a sequence $(V_n)_{n \in \mathbb{N}}$ of symmetric α -closed β -neighbourhoods of 0 such that

$$V_n + V_n \subset V_{n-1}, \quad n \in \mathbb{N}.$$

Let β' be the group topology on G for which (V_n) is a base at 0.

The subgroup $H = \bigcap_n V_n$ of G is α - and β -closed, so the quotient topologies \hat{a} and $\hat{\beta}$ on $\hat{G} = G/H$ corresponding to α and β are Hausdorff. Evidently $(\hat{G}, \hat{\beta})$ is metrizable and separable. Let h be the quotient

mapping of G onto \hat{G} . Then the sets $\hat{V}_n = h(V_n)$ $(n \in N)$ form a base at 0 for \hat{G} . We claim that $\hat{G} \vdash \hat{G}$.

It suffices to verify that

(6)
$$\operatorname{cl}_{\hat{a}} \hat{V}_{n} \subset \hat{V}_{n-1}, \quad n \in \mathbb{N}.$$

Suppose $\hat{x}=h(x)\notin \hat{V}_{n-1}$. Then $x\notin V_{n-1}$, and since V_{n-1} is a-closed, there is an α -neighbourhood U of x such that $U\cap V_{n-1}=\varnothing$. Then $\hat{U}=h(U)$ is an $\hat{\alpha}$ -neighbourhood of \hat{x} and $\hat{U}\cap \hat{V}_n=\varnothing$. (Otherwise we can find $u\in U$ and $v\in V_n$ such that $u-v\in H$, and then $u=(u-v)+v\in H+V_n\subset V_n+V_n=0$, so that $U\cap V_{n-1}\ne\varnothing$.)

Since $h: (G, \alpha) \to (\hat{G}, \hat{\alpha})$ is continuous, the additive set function $\hat{m} = h \circ m : \mathscr{D} \to \hat{G}$ is $\hat{\alpha}$ -exhaustive. By the first part of the proof \hat{m} is also $\hat{\beta}$ -exhaustive. Thus if a sequence $(E_n) \subset \mathscr{D}$ is disjoint, there is n_0 such that $\hat{m}E_n \in \hat{V}_1$ for $n \geqslant n_0$. It follows that $mE_n \in H + V_1 \subset V_0$ for $n \geqslant n_0$, and we conclude that m is β -exhaustive.

COROLLARY. If $\alpha \subset \beta$ and (G, β) is separable and metrizable by a complete metric, then

- (a) if m is an a-measure, it is also a β -measure,
- (b if m is a-exhaustive, it is also β -exhaustive.

Part (a) of this corollary belongs to Kalton [3]; part (b) has been proved by Kalton [4] and independently by Labuda [5]. Part (a) was shown in [2] to be a simple consequence of Theorem 1 and a closed graph theorem for groups, and in exactly the same way part (b) can be derived from Theorem 2. Labuda [5] proved in a very clever manner that (a) implies (b). Let us note that when (b) is proved, the metrizable case in the proof of Theorem 2 can be reduced to (b) (assume $\alpha \subset \beta$, then complete (G, β) and (G, α) , and apply (b)); then the lemma we have established before proving Theorem 2 is not needed. This lemma may be however of some independent interest.

Remark. From that proof of Theorem 1, which is given in [2], it is immediately seen that instead of $\alpha \vdash_s \beta$ one can suppose that β has a base at 0 consisting of sets V such that V is the countable union of sequentially α -closed sets.

References

[2] - On the Orlicz-Pettis type theorems of Kalton, ibid. 21 (1973), pp. 515-518.

- [3] N. J. Kalton, Subseries convergence in topological groups and vector spaces, Israel J. Math. 10 (1971), pp. 402-412.
- [4] Topologies on Riesz groups and application to measure theory, Proc. London Math. Soc. (3), 28 (1974), pp. 253-273.
- [5] I. Labuda, A generalization of Kalton's theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), pp. 509-510.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY, 61-712 POZNAŃ (INSTYTUT MATEMATYKI, UNIWERSYTET im. A. MICKIEWICZA, POZNAŃ)

Received October 18, 1973 (746)

L. Drewnowski, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym theorems, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), pp. 725-731.