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Abstract. This paper is an outgrowth of the works of Bessaga and Pelezyrigki
2] and Semadeni [9] concerning the isomorphie classification of spaces of continuous
functions defined on spaces of ordinal numbers.

For each ordinal number «, let ¢ denote the supremum-normed Banach space
of eontinwous complex-valued functions defined on the space of ordinal numbers not
exceeding a. Lebt o and Q denote the first infinite ordinal number and the first uncount-
able ordinal number respectively. Bessaga and Pelezyrfiski obtained a complete iso-
morphie classification of the spaces C% for a less than Q while Semadeni obtained the
corresponding result for uncountable ordinal numbers a less than 2-w. In this paper,
the isomorphic classification of the spaces 0% is obtained for all a less than Q¢ In
addition, some partial isomorphic classifications of the spaces C% are obtained for
arbitrarily large ordinal numbers of certain types.

0. Introduction. We begin by establishing some notation. For each
ordinal number a, I'(a) will denote the topological space of the non-zero
ordinal numbers not exceeding «, equipped with the interval topology
(cf. [3], page 57). The smallest ordinal number and the smallest uncount-
able ordinal number will be denoted by » and 2 respectively. In order
to facilitate the statement of results, Greek letters will always denote
ordinal numbers throughout this paper unless otherwise specified: Any
facts concerning ordinal numbers, not proved in this paper, can be found
in. Chapter XTIV of [11]. Arithmetic properties of ordinal numbers obtained
from this source will be used without specific reference.

Let X be a Banach space (real or complex). Following Bessaga and
Pelezynski [2], we define X“to he the Banach space of continuous X-valued
funetions defined on I'(a), equipped with the supremum norm. X7 will
denote the closed subspace of funetions in X* which vanish at a.

¢} will denote either the field of real numbers or the field of complex
numbers. Ag customary, for any compact Hausdorff space S, O(8) will
denote the supremum-normed Banach space of continuous C-valued
functions defined on S. Thus C* = O (I'(a)) for each ordinal number a.

If X and Y are Banach spaces, then X ig said to be isomorphic (iso-
metrie) to Y, written X ~ ¥, (X ~ ¥) provided there is a one-one,
bounded, (norm-preserving) linear operator from X onto Y.
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The primary purpose of this paper is -to find conditions on the ordinal
numbers « and § which ensure that 0° is isomoirphic to C%. In [2], Bessaga
and Pelezynski gave a complete solution to this problem for countable
ordinal numbers with the following:

Suppose © < a<p< Q. Then C°~C" if and only if f< o®.

In Section 1 of this paper, we apply some of the techniques of Bessaga
and Pelezynriski to uncountable ordinal numbers. Their methods are com-
bined with some of the technigues arising in the proof of Miljutin’s Theorem
[6], which states that C(S) is isomorphiec to O(7T) for all uncountable
comimet metric spaces § and I (ef. [10], page 379 or [7], page 41). The
following partial extension of the Bessaga—Pelezyriski result to uncount-
able ordinal numbers is thereby obtained:

Suppose o < < a and B has the same cardinality as a. In addition,
suppose af < y. Then, €7 ~ C if and only if y < a® = (af)® (Theo-
rem 1.10). .

In Section 2, the results of Section 1 are combined with an isomor-
phism invariant obtained by Semadeni in [9] to yield the complete iso-
morphic classification of the spaces 0 for Q < a < £°. This classification
is due to Semadeni for Q< a< 2 w:

Suppose 1 < n<< w. Then 0" ~ C*if and onlyif Q-n< a< & (n+1).

This should be compared with the following results which weé obtain
in the second section:

(1) ¢*® ~C* if and only if Q- w < a< & (Corollary 2.8).

(2) 0" ~(C® if and only it 2°<a< £° (Corollary 2.9).

Theorems on isomorphic classification involving arbitrarily large
ordinal numbers of certain types are also given in Section 2.

Before beginning Section 1, we need to introduce a few more con-
ventions and definitions. We recall that a subspace ¥ of the Banach space
X is said to be complemented if there is a bounded linear operator P from
X onto Y satisfying P? = P. A Banach space Z is said to be a factor of
X provided Z is isomorphic to a complemented subspace of X.

For Banach spaces X and ¥, X x ¥ will denote the Banach gpace
obtained by defining operations coordinate-wise on the Cartesian product
of X with ¥,’and normed by taking the maximum of the norms of the
coordinates. We recall the following relation between factor spaces and.
Cartesian products of Banach spaces: If Y is a factor of X, then there
is a Banach space Z such that X is isomorphic to ¥ x Z.

For each ordinal number a, 4(a) will denote the set consisting of
all non-zero numbers not exceeding a. For a Banach space X, X4 will
denote the supremum-normed Banach space of X-valued functions f de-
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fined on 4(e) and having the following property: for each positive real
number ¢, the set {i: lecA(a) and If(AMI > &} is finite; equivalently, if
4(a) is equipped with the discrete topology, X can be considered as
the space of continuous X-valued funetions on A () which vanish at oo.
In particular, X4 is isometric to X2.

Finally, in order to simplify statements of theorems , X and Y will
always denote Banach spaces in the sequel. ‘

1. We will need the following easily proved lemmas.

Levmvg 1.1. If a > o, then X5 ~ X°

Proof. For a proof see page 55 of [2].

LemmA 1.2. Suppose X is a factor of ¥ and ¥ is a factor of X. If
X~ X, then X ~ Y. )

Proof. A proof can be obtained by a trivial adaptation of an argu-
ment appearing on page 41 of [7].

If a < B, then X“ can be isometrically embedded as a complemented
subspace of X? by extending functions in X° to be zero outside of I'(a).
Hence, the following corollary is an immediate consequence of the pre- .
ceding lemma.

COROLLARY 1.3. Suppose a < § and (X%* ~ X* ~ X% If a<y <8,
then X° ~ X,

The following lemma together with its proof is derived from an

argument used by Bessaga and Pelezynski ([2], page bB5) in the case of
countable ordinal numbers.

Lmywa 1.4. If of >0, then X ~ X§ x (X2)4P,
Proof. We first consider the case = w. Set

" ¥ = {feX3: f is constant on ‘the interval (ad, a(A+1)] for 0 < A< B}

and
Z = {feX: flal) = 0 for 1< A< B}

Then Xi ~ ¥ x Z (ef. [2], page 55). Since ¥ is clearly isometric to X7,
it remains only to show that Z is isomorphic to (X3H*®, for the case
f 2 0. Now for each S belonging to Z and ¢ > 0, the set {A: sup |f ()l = ¢}
w<y=<o(A41
ig easily seen to be finite (cf. [2], page 56). Consequently, Z (is i)somorphic
1o the space {ge(X3)“@: ¢(8) = 0} which in turn is isomorphic .to (X2)4®
since f > w.
It remains to consider the case f< 0. If f< w and a< w, then
X3~ X s X (X o X (X940, Tf f< w and a > o, then

X e X X% o XX~ XX XEXXOK ... XX ~ X8 x (X2)4P)
N— L N——
B -1 8
by Lemma 1.1.
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The following trivial result will prove to be quite useful when used
in conjunction with Lemma 1.2.
LeMMA 1.5. If a > o, then (X4 ~ X4,

- Proof. By Lemma 1.1, it suffices to show (Xl"“’)"(“’). ~ ,X’-‘(ﬂ),
This is immediate since 4(a) can be written as a countably infinite union
of disjoint sets 4, each having the same cardinality as A(a)‘w

‘We note that a trivial extension of the proof of the preceding lemma
yields the following stronger result: If a > w and 1;he'0'rlmlina.1i1331f (rf} g
is less than or equal to the cardinality of @, then X4 ~ (XA(9)4M,

COROLLARY 1.6. If o <A< a, then X ~(X44M,

Proof. By Lemmas 1.1 and 1.4, we have X% ~ X ~ XJ x (X)),
Sot ¥ = XF x (X%)"®), Then X x (X3P is a factor of ¥, and ¥ is a factor
of X x (X)4® which is isomorphic to (X5)*? (since # is infinite). A]p-’
plications of Lemmas 1.5 and 1.2 yield ¥ ~ (X3)“%. Hence, X/
~ (XHMO)  (XP by Lemma 1.1. ‘

COROLLARY 1.7. If a > w and a®< < a®, then X% ~ XI.

Proof. Since lime® = «®, it suffices by Corollary 1.3 to show that

n<w

x< ~ (X and X ~ X" for 2<n< o Using Corollary 1.6 and
Lemma 1.5, we have

Xa2 ~ (Xu).d(n) ~ [(Xu)d(zt)]w ~ (Xa2)w

as desired. Now, suppose X® ~ X for some natural number n = 2.
Then by Corollary 1.6 and the remark following Lemma 1.5, we have

Xan+1 - XM (Xaﬂ)A(a) ~ (Xa2)d(u) ~ [(Xa)a(a)]zl(a) ~ (Xu)zl(a) ~ XaZ.

By induction, X ~ X* for each natural number # =
TeEOREM 1.8. Suppose w < f < a and § has the same cardinality os .
If afp<y< a® then X ~ X7.
" Proof. By Corollary 1.3, Lemma 1.5, and Corollary L.7, it suffices
to show that X* ~ X°. This is an immediate consequence of Corollary
1.6 since « and f§ have the same cardinality:

X ( XU)A(ﬂ) ~ xu)zl(u) —~ m’l'

The following theorem due to Bessaga and Pelezynhski ([2), page
59) can be used to obtain a partial converse of the preceding result in
the case of X = (.,

THEOREM 1.9, If 0* ~ O, then f < a®.

THEOREM 1.10. Suppose o < B< o and f has the same cardinality
as a. Also, suppose y = af. Then CF ~ 0% if and only if y < a®.
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Proof. The “only if” part of the statement follows from Theorem
1.9 sinee (" ~ ¢ thereby implies ? < (af)” < (a?)® = a*® = a®. The “if”
part is Theorem 1.8, '

A more general version of Theorem 1.10 can be obtained with the
aid of the following definition.

DERINITION. An infinite ordinal number o is called decomposable it
and only if there exist ordinal numbers ¢ and A such that 1< o, 4 and
o have the wsame cardinality, and oA < o< o° ’

The following result is an uneountable analog of Theorem 1 of [2]
which dealt with countable ordinal numbers.

CororrAry 1.11. Suppose a is decomposable and o < . Then C“ ~ CF
if and only if B < o

Proof. Suppose < a®. Choose ¢ and satisfying the conditions
of the above definition with respect to a. Since o< o® and lim = ¢”,

n<w
there exists a natural number # satisfying o < o™ So, o” < (a”)<“’ = g"®
= 0" < a” and consequently B < o”. Henece i< a < B < o®and O* ~ C**
~ C" by Theorem 1.10.
The converse iy & specialization of Theorem 1.9.

- 2. We begin by introducing some notation and definitions. Let A
be a subset of a topological space 8. The first derived set of A is the set
AW consisting of the accumulation points of 4. For any ordinal number
a>1, AY, the a-th derived set of 4 is defined as follows: A® — (APHW jf
a = f4-1; and A = () A® if 2 is a Lmit ordinal number. § is said

Aela
to be dispersed provided S is empty for some ; equivalently 8 is dis-
persod if § has no non-empty perfect subsets (ef. [10], page 147 or [4],
page 261).

Let 8 be a dispersed compact Hausdorff space. Then there is a unique
ordinal number o such that §9 is non-empty and finite [1]. Suppose
8 containg éxactly n elements. The ordered pair (a,n) is called the
characteristic system of 8 and o is ealled the characteristic of S.

The following result due to Baker [1] gives a characterization of
spaces of ordinal numbers among compact Hausdortf spaces.

Tivaorem 2.1, Let 8 be a compact Hausdorff space. Then S is homeo-
morphic to 1'(a) for some ordinal number o if and only if the following con-
ditions are satisfied:

(1) 8 s dispersed. .

(2) For each s in 8, there is a decreasing sequence (possibly tramsfinite)
of closed-open sets (U Dy, Which form a neighborhood base at s. Moreover,
Jor cach timit ordinal number < y,, the set () UNU, contains at most
one point. i
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If the compact Hausdorff space 8 satisfies conditions (1) and (2) and
has characteristic system (o, n), then 8 is homeomorphic to I'(w” n).

Tn what follows, the preceding theorem will be applied to closed
" subspaces 8 of I'(a) for some a. It is a routine matter to verify that such
spaces satisfy the conditions of the theorem.

We recall that an ordinal number o is said to have an immediate
predecessor provided the equation o = f+1 has a solution. If o is the
limit of a sequence of distinct ordinal numbers, then o« iy gaid to be oo-
-final with ». These notions occur in the following result which was obtained.

for countable ordinal numbers by Bessaga and Pelezyhski ([2], page 55).

Lmvua 2.2. If either (1) o has on immediate predecessor, or (2) o i
co-final with o, then X ~ (XY for every Bamach space X.

Proof. By Lemma 1.1, it suffices to show X¢“~ (X7, Set §
= I'(0®). We will construct a countable sequence <8,> of subsets of 8
having the following properties:

(j) 8 = ﬂ ‘Sm

Ign<o
(ii) Tt B,e8, for L< n < o, then limp, = o,
n<w

(iii) 8, N8, = {«*} for m #n,

(iv) 8, is homeomorphie to 8 for 1< n < . )

The homeomorphism from 8, onto 8 obtained from (iv) will neces-
sarily fix o for each n. Using this decomposition of 8, it is then an. easy
matter to eonstruct an isometry from X¢* onto (X2%)? (cf. [2], page 55).
In order to obtain the desired decomposition of S, we consider two cases
separately depending on whether o has an immediate predecessor or
a is co-final with .

Case I: ¢ has an immediate predecessor. Let o = 1. Partition
the set of non-negative integers into countably many infinite mutually
disjoint sets 4,, A,,... For each natural number n, set

8, ={4: o’ i< A< o+ (i+1) for some ied,} U {@.

Each S, is then the union of the singleton set {»“} and the countable
union of mutually disjoint elosed-open subsets of S.
The sequence {8, satisfies (i) and (ii) since

A1 t

lime®4 = o o = w = ",

i<o
If y % 0" and yeS, N8, for some m s n, then there exist non-
negative integers j <k such that o j <y <o (j+1) and o <y
< o (k+1) by (i) and the disjointness of the 4,,. Hence, v’ % < o+ (j +1)
which forees k< j+1, contradicting the assumption on j and k. Conse-
quently, §,, N8, ={w"} for m £ n and (iii) is verified.
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. It remains to show that the sequence {(8,> satisfies (iv). Let m be

2 fixed natural number. Then S\§,, = |J (8, N{o) from (i) and (iii)
- HnFEM

and 8, {w"} is open for each n. Hence, S,, is a closed subset of the compact

Hausdorff dispersed space § = I'(w®) ([10], Corollary 8.6.7), and it is
easy to verify that §,, satisfies all the conditions of Theorem 2.1 as was
mentioned prior to the statement of this lemma. Consequently, to show
that 8, 15 homeomorphic to §, we need only show that the characteristio
gystem of 8, is (a, 1).

To determine the characteristic system of 8,, we will need the fol-
lowing algebraic descriptions of the fth and ath derived sets of §:

?

8D ={of-m: 0<n<w} and 8@ = {9

([10], Theorem 8.6.6).

We will first show that S¥ is infinite. Tt will then follow that @
=800 = @ “since S is compact. Suppose jed,,. Then w’-(j-1) is
contained in & closed-open set (relative to §) which is eontained in ,,.
Consequently, o (j+1)eS8® for each j belonging to the infinite set 4. .
Hence, 8 iy infinite and "

@ # (8P = 8% < 89 = (0%},

Thus, 8§ = {«} and the characteristic system of &, is (a,1). Finally,
‘we note that any homeomorphism from S, onto §-must earry o® into
ibself since 8§ = {v*} = §@ from above (cf. [8], Lemma 1).

Cage II: o is co-final with . Let <a,> be an increasing sequence
of non-zero ordinal numbers which converges to a. Set a, = 0. Choose
2 sequence (4,> of subsets of non-negative integers as in Case I. Assume
without loss of generality that 0e4,. Define a sequence <{S,> of subsets
of § ag follows:

By = {A: 0% < A< 0%+ for some ted,} U {1, %}
and

8, = {4 0% < A< o%+l for some ted,} U {w} for 2<n< w.

A in Case I, each 8, is the union of the singletion set {»“} and the countable
union of mutually disjoint closed-open subsets of 8 (except for §, which

is only trivially different from the other §,).

To verify that the sequemce {S,) satisfies the properties (i)-(iv),
we proceed essentially as in Case L Tirst, (S, satisfies (i) and (ii) since
lime, = o implies lim v = o Next, if ¢y # «® and ye8, N §, for some
i< 1<w ’

m 4 n, then there exivt non-negative integers j << & such that % <y

s 0V and % <y g %L from (i) and the disjointness of the 4,,. Thus,

4 - Studla Mathematica LII.3
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o < 0%+1 which forces & < j-+1 since {a,> is an increasing sequence.
This contradiction establishes (iii).

To show that the sequence (8, satisfies (iv), we meed only show
that each S, is a eclosed subset of S having characteristic (a, 1), as in
Cage I. Let m be a fixed mnatural number. To show that §,, is closed in
8, simply use (ii) and (iii) as in Case I. Now, suppose je.d,,. From Theorem
8.6.6 of [10] already cited in Case I, it follows that w%-+1eS@+Y, Since
w%+1 iy contained in a closed-open get (relative to S) which is contained
in 8, it is easy to show that w¥+1eS(+0, Hence, S+ s @ for each
jed,,. Since sup {a;,,: jed,} =a and (8P, is a decreasing se-
quence (possibly transfinite) of sets, it follows that S :£ @ for each
A< a. Hence 8 = M 89 s @ since’ 8Y is compact for each A< a.

A<
It then follows that 8@ = {&*} since 8% = 8 = {0"}. Consequently,
the characteristic system of §,, is (a, 1) as desired.

As an application of the preceding lemma, we will prove the “if” part
of the following theorem due to Bessaga and Pelezyniski [2]. Our proof
appears to differ somewhat from their proof.

THEOREM 2.3 (Bessaga and Pelezynhski) Suppose o < o< f< 2.
Then, C* ~OF if and only if < a®.

Proof. If “~ (¥, then § < o® as has already been noted in Theorem
1.9. Conversely, suppose o < a < f < o® < 2. Choose an ordinal number
v 80 that o < a << @'*'. Then, 0" < 0 < (0" ™)® K (0"2)® = @9 = oF'®
80 that o = («*)°. Consequently, o’ <'a< f<< (w?)®. Hence, to show
0% ~ (%, it suffices by Corollary 1.3 and Theorem 1.8 to show C°' ~ (%@,
Since y, being countable, either has an immediate predecessor or is eo-
final with w, the existence of the desired isomorphism is an easy conse-
quence of Lemma 2.2 together with Lemma 1.1 and Corollary 1.6:

Om’)’ ~ (C«a')’)w ~ (Om?)d(w) ~ Om?'w.

The preceding result was used by Bessaga and Pelozyiski to obtain
an isomorphic clagsification of the spaces 0(8) for § a countable compact
metrie topological space. Since there appears to be a slight error (1) in
this classifieation ([2], Theorem 2) we will give a corrected veision. We
first note that a countable compact metric space § is 0-dimensional ([47,
page 286) and dispersed (as can be easily shown via an easy application
of the Baire Category Theorem). Theorem 2.1 can then be used to con-
clude that § is homeomorphic to a space of ordinal numbers.

&) g]‘or a counter-example, consider the topological gpaces ¢ = I"(w®) and
@ = (0°%). Then 0(Q) ~ 0(@y) according to Theorem 2 of [2]: however, 0(Q) cannot
be isomorphic to 0(Q,) by Theorem 2.3. '
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ToworREM 2.4. Let 8 and T be countably infinite compact metric spaces
with characteristics « and B respectively. Suppose a < p. Then, C(8) ~ C(T)
if and only if f< a-w.

Proof. Suppose § and T have characteristic systems (a,m) and
(8, n) respectively. According to Theorem 2.1, § is homeomorphic to
I'(o*-m) and T is homeomorphic to I'(of-n). Since o< o’ m< (0%)®
and of < of-n< (0f)®, it follows from Theorem 2.3 that C(8) ~C(T)
it and only it 0°° ~ (“". Using Theorem 2.3 again, this is equivalent
t0 o < (0*)* = o™ which in turn is equivalent to < a®.

LEMMA 2.5, Suppose a is an uncountable ordinal nwmber such that
either (1) o has am immediate predecessor or (2) o 4s co-final with w. If o
< B < 0 Q, then X° ~ X .

Proof. Since lime® 4 = - @, it suffices to show X*° ~ X*"* for

A<
w< i< Q. by Lemma 2.2 and Covollary 1.3. So, suppose o <1< 2.
The exigtence of the desired isomorphism follows from Corolla..ry 1.6,
Lemma 1.1, and Lemma 2.2 which yield the following string of isomor-
phisms:
Xw"-l ~ (Xw“)/](l) ~ (Xw")d(w) ~ (Xm”)m ~ Xw"-

We will need the following result concerning an isomorphism invariant
obtained by Semadeni in [9] for certain spaces of continuous functions.

THEOREM 2.6, Suppose § = I'(Q-0) and T = I'(2-p). If C(8) ~ O(T),
then the cardinality of a is equal to the cardinality of B.

The following result proved in [9] is an easy consequence of Theorem
2.1 and Theorem 2.6. ;

COROLLARY 2.7 (SEMADENI). Suppose 1< n< w. Then, C* ~ C*™ if
and only if n<a< Q-(n-+1).

COROLTARY 2.8. 0% ~ 0% if and only if Q-0 <a< Q%

Proof. Since o = £, it follows that Q- = % @ = 0“**. Thus,
0% ~ %@ whenever 2 -0< a< (2 0) Q =& by Lemma 2.5.

Tor the converse, it suffices to show that C% is not isomorphic to
0% e, by Corollaries 1.3 and 2.7. By Theorem 2.6, ¢ = (0%? cannot
be isomorphic to 0.

COROLLARY 2.9. O ~ 0° if and only if 2*< a< £°.

Proof. This is an immediate consequence of the preceding Corol-
laries and Theorem 1.10.

We do not have a complete isomorphic classification of any of t}ne
Banach spaces C° for o > Q“ even though we have obtaiped several partial
results. The first stumbling block appears to be finding the angwer 1o
the following question:

L @41
Is 0% isomorphic to O ¢
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It will follow easily, from the proposition to be proved below, that
one of the following statements must be true: Either (1) ¢°° ~ 0 if
and only if °<a< 2°% or (2) 0°° ~ 0 if and only if 9°< a< Q.

Hence, an answer to the question raised above would yield the com-
plete isomorphic classification of the space 0°”. Indeed, it seems almost
certain that the ostensibly new techniques needed to settle this question
would lead to the complete isomorphic clagsification of the spaces (% for
2°<a< Q° Evidence for this assertion is provided by the following
somewhat complicated result.

PropostrioN 2.10. Suppose o has the same cardimality as Q, and
B = ™. Also, suppose a has am immediate predecessor or o is oo-fimal
with w. Then, either the first statement below is true or the last two statements
are both true:

@) C° ~ O if and only if B< y< B%

(2) OF ~ 0" if and only if f<y< -2,

(8) 0" ~ " if and only if B-Q< y<

Proof. Since § = m“’“, it iy not difficult using transfinite induction
to show that A° < 8 whenever A< g (cf. [6], page 33). Thus it OF ~ 7,
it follows that g < y from Theorem 1.9. To finish the proof, we consider
two cases depending on whether or not C° is isomorphic to (%9, It
0% ~0%?, then (1) is true by Lemma 2.5, Theorem 1.10, and the com-
ments at the beginning of this proof.

Tt ¢* is not isomorphic to ¢*?, then (2) holds as a consequence of
Corollary 1.3. Lemma 2.5, and the first pairt of this proof; statement
(8) is true by Corollary 1.3 and Theorem 1.10.
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