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Concrete subspaces of nuclear Fréchet spaces
by
ED DUBINSKY* (Potsdam, N. Y.)

Abstract. Subspaces of arbitrary nuclear Fréchet spaces are studied. It is shown
that every nuclear Fréchet space (other than ) contains a subspace which is iso-
morphic to a space of type D, and also a subspace which contains no subspaces iso-
morphic to power series spaces. It is also shown that any two nuclear Fréchet spaces
(other than ) have a subspace in common. From this itfollows that for any class of
nuclear Fréchet spaces, either every nuclear Fréchet space (other than ) contains
a subspace from the class or every nuclear Fréchet space has a subspace which contains
no member of the clags. For the class of all subspaces of a nuclear Fréchet space (other
than ) the first alternative holds whereas the second alternative holds for any eount--
able class.

The methods involve the construction of certain block basic sequences and also
an application of the theory of ILy(b, r) spaces.

In the study of nuclear Fréchet spaces, certain concrete examples
appear to play a fundamental role. From the point of view of function
spaces, analytic functions, differentiable functions, -distributions and
partial differential equations are standard objects in analysis that have
generated interest in nuclear spaces. If we consider spaces with bases,
then very deep results have been obtained by M. M. Dragilev, B. 8. Mi-
tiagin and others by restricting attention to certain classes of spaces.
such as power series spaces and spaces of type D, or D, (see, for example,
[3], [4] and [7]).

It iy natural to ask  questions like: “What congrete objects does
a general nuclear Fréchet space contain?” In the case of Banach spaces
(still a rich source of questions, if not answers, for the study of nuclear
Fréchet spaces) the question takes the form of the general conjecture (*)
that every infinite dimensional Banach space contains a subspace iso-
morphic to ¢, or some I,. (See [6] for some recent progress and bibliography
on this problem.)

In this paper we investigate the possibility of finding a power series

* This research was partially supported by the National Science Foundation.
(Y) The conjecture has recently been proved in the negative by Tzirel’zon,
Funetional Analysis and its Applications 8.2 (1974), pp. 57-60 (Russian).-
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space, & space of type D, or a space of type D, as a subspace of an arhi-
trary nuclear Fréchef space. Contrary to the situation with Banach spaces,
the solutions to such problems, while not completely trivial are possible.

To describe our results in intuitive terms we can say that D,-spaces
are rather comnmon whereas Dj-spaces and power series spaces are Tare,
ag subspaces of arbitrary nuclear Fréchet spaces. Moreover, it is found
that any two nuclear Fréchet spaces (other than. w) have a subspace in
common. This result has several interesting consequences.

To present our results in. detail it is necessary to recall some definitions.
By a nuclear Fréchet space we shall mean. inter alia an infinite dimensional
locally convex topological (real or complex) vector space. The simplest
example of such a space is the countable product of one dimensional
spaces with the product topology. We shall call it w and exclude it from
‘most of our considerations. By a subspace we shall always mean an infinite
dimengional closed subs%?ce. When we say that B contains I we shall
mean that F is isomorphic to a subspace of H.

A sequence (,) in a nuclear Fréchet gpace B is a. basis if each we B
has a representation » =} ¢,u, where the scalars ¢, aire uniquely deter-
mined by @. A sequence (z,) is a basic sequence if it is a basis for the sub-
space it generates. Corresponding to a basis (2,) in B we have representing
matrices (ay) obtained by choosing a fundamental sequence of seminorms
(I Il) for B and writing aﬁ = |l@,l,. Because of the nuclearity, we can
always choose the seminorms so that the matrix satisfies

0< el <al™  for all », % and 2—,&1< oo

a’ﬂ,

n=1

for all %.

{The ratio in the sum iz taken to be 0 if a¥*' = 0.) Oonversely if we have
a matrix @ = (af) satisfying these conditions it determines a nuclear
Fréchet space K(a) = {& = (&,): p,(&) = (&, 8]l < oo} with topology

-determined by the seminorms p,. Here |- llp is the I,-norm of the sequence -

and p is any number with 1 < p < oo. Tt is not hard to see that K (a)
is isomorphic to . The following condition is obviously sufficient for
K (0) to be isomorphic (indeed equal) to K (b).

VEEj, 1> of <0l <al, for allm.

A representing matrix is requler if

Y] ke
P, U1
~T > T for all m, &
To+1 ) s 0.
an‘7 a’nil

{We have used the strict inequality here for technical convenience. Tt is
not hard to see that this is equivalent to the more standard definition [4].)
A Dasis is regular if it has a regular representing maitrix.
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A nuclear Fréchet space with a basis is of type D, if the basis has
a regular representing matrix (af) which satisfies:

a, =1 for all #» and VEHj > (ak)2 < af for all n.
It is of type D, if it has a regular representing matrix (af) which satisfies:
limaf =1 for all n and VE®j§ »a? < (al)? for all n.

%

It is 'well known [4] that these two types are independent of the choice

of basis and are mutually exclusive.
A nuclear Fréchet space with a basis is a power series space of infinite
. E o\
(fimite) type if the basis has a representing matrix af = &™ ((m) )
where (a,) is & hondecreasing sequence of nonnegative numbers satisfying

logn logn
sup—2” < oo (lim —2" — ).

n @y, n an,

Again the definitions are independent of the choice of basis. A power’
series space of infinite (finite) type is obviously a space of type D (D,).
‘We shall write 4 (a) (4,(a)) to indicate a power series space of infinite
(finite) type. )

The symbol N will denote the sequence of positive integers. If (s;)
is a sequence of numbers then the symbol

k-1

Hsj = 8;85 ... Sp_1,

J=1
is clear if & > 1. If k¥ = 1 we interpret this symbol to be 1.

LmMmMmA. Bvery nuclear Fréchet space which is not isomorphic to
contains a subspace with a regular basis.

Proof. Using results of C. Bessaga and A. Pelezynski ([1], [2]) we
san find a subspace B whieh has a basis (#,) and admits a continuous
norm. Thus, by the nuclearity, we can find a sequence of norms (J|-||;)
defining the topology of I and satisfying

. 2,
lim ” n “Ic
w “wn”h-(-l

Using a diagonal procedure we can find a subsequence (n;) of indices
such that

=0, k=1,2,..

fi2en, Il
> LT for

>
”"I’njulc»u Hmnj,H”Ic»H

@,
Il j=k k=1,2,..

2 — Studia Mathematica LIL3
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If B, is the subspace generated by (z,) and we define the norms |-|3 in
E, inductively on & by setting [/} = |z, fork =1,2 and fork =3, 4,...

Je--2 0
ol — — el a“m lonlls | N 18] 1, |
ol = ~———— } il > 71 1 -2
” n]c__l“/c—l }:JJ 7"""3 j=‘7u-jl
o0

for @ :.2 &),
J=1
then the sequence (||-[f) also defines the topology of B, and satisties
the condition of regularity for (@)

Remark. The argument in the above lemma can be extended
to show that any basis in a nuclear Fréchet space with a continunous
norm can be decomposed into an at most countable set of disjoint subse-
quences and a fundamental sequence of norms for the whole space can
be found which satisfies the condition of regularity for each subsequence
(ef. [5]).

TurEOREM 1. Ewvery nuclear Fréchet space which is not momorphu to
w eontains o subspace of type D,.

Proof. According to the lemma we may assume that our space has
a regular basis (#,) and is represented by a matrix (c¥) satistying:

v
oy
(1) O0<E<L it for all &, n and ( ) converges to 0 strictly mono-

bl
tonically in # for each k. n

Let (p,) be any strictly increasing sequence of indices with p, = 0
and lim(p, —p,.;) = co. Given a strictly increasing sequence of indices
(%), we will set bF = c,’,”n. We will show induectively that (»,) can be chosen
50 that

bk I. k-1 b/
e ] D1+ X
(2) pE+1 < T+ y k=1, Ppy—pu; n=1,2,

Py 1tk F=1 bp”,l-u

If n =1 we set », =1 and define »,, . -y ¥, ccording to the following
scheme given for n > 1. If % > 1 wo assume that »,,..., V., Dave been
defined so that (2) holds. We get iyt =V La.nd observe that (2)
follows from our convention and the "fact that a" < ¢+l Once P i1 509
Vpyyth-1y L <k <P, —p,; have been successtully dohnetl Wwo upp]y (1)
to obtain v, .. as the smallest mtegel ©> ¥, -1 Such that

J’n 1+
k+1 < pitL .

F=1 1’n 1+

This completes the construction of (7).
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We set @, =&, and observe that the matrix (b%) represents (@)
and it is regular. Set

k-1 gj+1
e 1 o
Dp_1+k T Tk

n bl’n—l“‘k F=1 bﬂn~1+7

for b =1,2, ..., PP ®#=1,2,...

and define the block basic sequence (y,) by
Pn
Yn = 2 Eiw“ n 21727
=Py .11
We will complete the proof by showing that the space ¥ generated by
(yn) is of type D1 The basis (¥,) is represented by the matbrix (a¥) where

af =&, b5, g =max{g: §b; = max EDEY, m,k=1,2,

I Ty Pp_1<i<iy
The main step in the proof is to show that, for all =,
(3) Q:ca=197z—1+k for B =1,2,...; Pp—Prn-

Fix # and suppose that 1 < k< p,—p,,. Clearly p, ;< < p, 50 we
may consider any ! %%k with 1 <1< pp—Pp1- .
If 1 <1<k then by the regularity of (bf) we obtain

bE =1 il

£ BE Pp—1tl Pt
1100141 = 71 7 -
bi’n-—l"’l j=1 bf"n.—l'H
b bﬂn 11—1
= Epn 1+EY Dy bl
Py-1tl Gy

E—~1 pitt k-1

% 13” 1+ ]Jn_1+J
= §pn_1+kbgzn_1+k
o1+

F=1 Fel pn 147

kE—1 ]+1 klb

1’n—17‘] ] Pyy—1+d
< fpn lllbﬂn 1+k pitl

Jel 1"’?1—1 J 5T TPpetd

&
= El’n— 1tk bf‘n—l'*' L

which shows that ¢f = p,_,+5%. .
IF k<1< P, —Ppy we obtain in a similar manner,

-1 i : -1 gl
, +1 D1+ 2
o % n—1 0 B
Eﬂn—1+’bﬂn~1+l = Eﬂn—ﬁkbﬂmﬁk pi+1 I [ < Epn~l.+’“ Bp—1tH?
jek  Pn—1tl gl a1t

which shows that ¢f < p,_,+% so (3) is established.
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Thus we have, for each n,

Lt XA

= £ Be - [
T SPpytk Uy ke ] [

. bl .
j=1 Ep-1ti

(4) o

for b =1,2,..., 09, ~Pn_1,
and therefore

k b/c
an Ly 1tk
= forall bk =1,2,...,0,—p,; 8 =1,2,...
n VYp1th

. I
Since () is regular and (p,) is increasing, it follows that given %, (—a-f%f)
n.
is decreasing in n for p,—p,_, >k, that is, since lim(p,—p,_,)= co,
for n sufficiently large. Hence we adjust the norms as we did in the lemma
8o that the matrix becomes regular and for each &, only finitely many of
the a; are changed. For k = 1, no &L need be changed.
Finally we observe that by our convention, a) = 1 and given & it
follows that for » sufficiently large,

E—1 .
341
bﬂn.—l'i-j
Ty2 1 1 J kel g I k1,00
(a")—~ = Jﬂjﬁﬂ_ b 19 - — A <1
aft! k bi-l—l X b i pl+1 bj - ==
" Bp—1ti =1 Py i Lge1tl G Byp—+d
J .
F=1 bﬁn_ﬁ'i

because of (3). This completes the proof.

Remark. V. P. Zaharjuta has shown [8] that every comtinuous
linear map from a D, space to a D, space is compact. Since embeddings
of nuclear Fréchet spaces cannot be compact, it follows from this and
Theorem. 1 that every nuclear Fréchet space contains a subspace which
contains mo subspace of type D, (we do not have to exclude w since all
its subspaces are again o and hence not D,).

Thus we see an important difference between spaces of type D,
and D, in that the former appear in every subspace of every nuclear
Fréchet space and the latter are excluded from at least one subspace
of every space. It seems reasonable to congider which of these two forms
of behavior are exhibited By other classes of nuclesr TFréchet spaces.
The next result answers the question. for power series spaces.

THEOREM 2. Hvery. nuclear Fréchet space contains o subspace which
contains mo power series spaces.

Proof. We begin with a nuclear Fréchet space . If B ig isomorphic
to o we are finished. If not, we can apply Theorem 1 to obtain a subspace
B, of type D,. By Zaharjuta’s theorem, F, contains no power geries space
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of finite type. If B; contains no power series space of infinite type, we
are finished. If it does, then it in fact contains a power series space of
infinite type, A.(a) with «, << a,., and

.0
lim —— = oo.

It-suffiees then to construet in A.(a) a subspace: ¥ which contains no
infinite typé power series space.

We make exactly the same construction as in the proof of Theorem
1, taking », = n. We do not get (2) but we do get (3) and hence (4). Thus
we obtain Y as the subspace generated by the basie sequence (y,) in
Ay (a), and (y,) is represented by (aj). Since by = ¢; = cf = k™", equation
(4) has the simpler form, -

. k-1 b1\t o _ &
= n j T gkt k1
j=1

for 5 =1,...,0,—Pp1; n=1,2,...

)“pn_l-Hc

At this point it is possible to prove directly that Y contains no sub-
space isomorphic to a power series space of infinite type, but the details
are rather cumbersome. V.P. Zaharjuta has suggested the following
simple argument based on the theory of L,(b, r) spaces, which we include
with his permission. :

We define

@ = (dy)

) a
where G = ¢ Pn—1t% Lk =1,2,...

Since lm>™ = oo, it follows that for each F,

n Oy
1 =k
. @ . a,
lim -—- = lim —k:z =0.
nsco by n—sco Oy
Indeed,
]c—l(j_|_1)“};n_1+j (k—1j+1 )“pn_1+k_1
s ” ] n 3 Py —1tk—1
ai; =1 J < j=1 J — o Pn—1
@& ¢ Pn—1+k ¢ Pn—1+k ¢Pn—1tk
n .
which goes to 0 as n goes to infinity; and
&Ic 6“pn_1+k e“pnwﬁ-k
[ <
@ EFL (j +1)"pn_1+1 \(k+2)aﬁn~1+k+l
7=1 J k

which also goes to 0 as # goes to infinity. Thus, we may conclude that
¥ is isomorphic to K (a).
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Next we define f: (0, co)—(0, c0) by
n--1
w\ e
f(w)_—_an(?) for n<logon<ntl (ap=1), n =1,2,...
and extend it to (—oo, o) by setting” f(—a) = —f(2). Now we can

-1

easily arrange our original choice of (a,) so that ( ) is an inereasing

Ay,
funetion. It then follows that f is an increasing odd function which iy
logarithmically convex on [0, o).

Next we check that f is rapidly increasing ([4], p. 77) for which it
suffices to show that for some z > 0 we have

f()

Tm i = 0o

00 f
Choosing v ='e and letting z = ", we obtain

L € e

100 f H ay,

]1“

Now if we set b = (b,) where b, =
= K (@) where @ = /@) g0

Pp—1F k) . 6"1’7;.«1*!— k

~! then, by definition, L (b, co)

gk = o = .
Thus, Y is isomorphic to L;(b, co).

. On the other hand, if we take g to be the identity function, it is well
known that any infinite type power series space A, () is isomorphic
to L,(B, o). Since f = ¢~'f is rapidly increasing, it follows ([8], Theorem,
3) that every continuous linear operator from L,(8, oo) to L;(b, co) is
compact. In particular, 4,(f) cannot be isomorphic to a subspace of ¥.

We turn now to the question of how different the sets of subspaces
of two nuclear Fréchet spaces can be. The mnext result, using methods
similar to what has preceeded, show that they must have something
in common.

TumoreM 3. If B and I are nuclear Fréchet spaces mot isomorphic
to w, then they contain a common subspace.

Proof. In view of the lemma we can assume that B and F have
regular bases represented by maitrices (cf) and () respectively which

satisfy
N

i Jo--1 : n :

0<e<<e™, lim——— = 0 monotonicall

T ’
n

(8)

=l

ok - ok i ;
0 < gt hmaTﬂ_T = 0 monotonically.
n n
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Let (p,) be any strictly increasing sequence of indices with p, = 0
and im(p, —Pn_,) = oo. If (v,) and (3,) are strictly increasing sequences
of indices we set

bE=df, Bi=t, mnk=1,2,..
n

n

We will now choose (»,) and (7,) so that for each =, )

b] +1 _‘ I bj+1 X
(6) I] In—-l -J pn—l‘” Ppats
’
”n-l’H G=1 bl‘n 1+i bﬁn,l—H
k= 17 cey Ppn—Pny-

For each n, we will construct », | +1,. oy Py, AOA Ty Ly ey By
We begin by %ettmg vy =1andy, .= ,+Hltora >1. Nutlee that
for any n, if ¥ = 1 then (6) holds because of ( ) and our convention. Now
suppose that v, i1y -y ¥, k-1 and ¥, 4150y Py, sk_e DAVE been
chosen so that (6 ) holds Wlth k replaced by k— 1<pn—pn 1- We shall
choose v, . and ¥, .y SO that (6) holds as written. The desired ine-
qualities can be written as:

=k
k=1 pj+1 [ k=2 Tji4+1 k41 k—1
b,l)n 1+ PPyt k-1 bﬁn 1+i o) b:nn 1+

[ e < S [ it e [

=1 Pn—1ti Yppo1+k—1 j=1 Pp—1+] —1tk Gy TBp—t

In the above statement, all quantities involving b and b have alveady
been chosen and for each quantity involving ¢ or ¢ the subscript is to be
selected. Obviously we can apply (5) to select, first», ., ,so that the
tirst inequality holds and then %, ., so that the second holds. This can
also be done so that (#,) and (»,) are both strictly inereasing.

Now we can proceed exactly as in Theorem 1 to construct subspaces
of F and F which have bases represented by the matrices (af) and (&)
respectively where for each » and k =1,...; p,—p,-; We have,

L

k-1l pitl k-l Tkl
ko By—1+Hi o Dp—1+7
Oy = b] H Uy, = 5]‘ .

j=1 . Pu-1td =1 Pp—1td

Since lim(p,—p,_;) = oo, it follows then from (6) that for each 7%,
ay < a5 < ot

for n sufficiently large. This implies that the two matrices determine

isomorphic nuclear Fréchet spaces and the proof is completed.
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Remark. In considering the classes of nuclear Fréchet spaces
D,, D, and power series spaces we have seen that in each case either every
nuclear Fréchet space other than o contains a member of the class (D,) or
every nuclear Fréchet space contains a subspace which contains no member
of the class (D, and power series spaces). It is an immediate consequence
of Theorem 3 that the dichotomy is always valid. It may be interesting
to consider other classes of nuclear Fréchet spaces and determine which
of the two alternatives hold. For example, it is again immediate from
‘Theorem 3 that the first alternative holds for the class of all subspaces of
a single space (other than w). On the other hand, our final result shows
that if a class is too small it will satisfy the second alternative.

PROPOSITION. If & is an at most countable collection of nuclear Fréchet
spaces not including o, then every nwuclear Fréchet space contains a subspace
which contains no member of &.

Proof. In view of the above remark, it suffices to construct a nuclear
Fréchet space which contains no member of &. If & = {E,}?,, then we
can apply Theorem 1 to obtain, for each 4, a D, space F; contained in ;.
For each 4 the space F; has a basis (wn(i))n ‘which. is represented by the
matrix (af(i)). Next we choose an increasing sequence of positive numbers
(t,) such that '

!, L
—— = oo for each %, and 2,1_< co.
Ty (9) = 1,

Let af = (', k,n =1,2,..., and let B be the Kothe sequence space

determined by the matrix (af). Then ¥ is a nuclear Fréchet space of type D,.

Moreover, if I (F;) is the sequence space determined by the basis (@, (4)),,

that is, K(F,) = {& =.(&,): > £,2,(i) converges in F;}, then it follows
n

from the Dragilev theory (see, e.g., [3] 1.10 or [4]) that F, is isomorphic
to a subspace of F if and only if K(F;) = F (as sets of sequences). If this
were true then it would follow that for each 4 and % there exists j and
M such that af < Mai(s) for all n. Choosing % = 1 gives a contradiction.
Hence B does not contain any F; so it cannot contain any H,.

ot
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