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Perturbations of Fredholm operators™®

by
ROBERT B. ISRAEL (Winnipeg)

Abstract. We consider the class of bounded linear operators between Banach
spaces which are admissible perturbations for the Fredholm operators (including
the unbounded ones). This class includes the strictly singular and strictly cosingular
operators. Various conditions are given under whieh it coincides with one of these
classes, or consists of all bounded linear operators between the two spaces.

Let X and ¥ be infinite-dimensional Banach spac’es. Let ©,(X; Y)
be the class of closed, densely-defined Fredholm. operators from X into
Y. The class F,(X, Y) of “admissible perturbations” for @, (X, Y) consists
of all bounded linear operators 4 such that 4 +T is Fredholm for all
Te d.(X, Y). In this paper we itlvestigate the problem of characterizing”
the class 7,(X, Y). ‘

If we restriet our attention to bounded Fredholm operators 7' another
class, which we call (X, Y), is obtained. Since the existence of a bounded
Fredholm operator from X to Y implies that one of X and Y is isomorphic
to a gubspace of finite codimension in the other, little generality is lost
in considering only F(X), i.e. (X, X). F(X) has been investigated in
(7], [8], [9], [12] and [13], mainly using Banach algebra techniques.
It is not difficult to show that if there exists a bounded Fredholm operator
from X to Y, Fy (X, Y) = F(X, Y). Gohberg, Markus and Fel'’dman
([2], Section 3, Prop. 3) state in effect that F,(X, ¥) = F (X, Y) for
any X and Y. However, a counterexample to this assertion can easily
be constructed in certain cases where no bounded Fredholm operator
from X to Y exists, so that F(X, ¥) includes all bounded operators
from X to Y.

The following notation will be used. All spaces X, ¥, Z will be infinite-
dimensional Banach spaces, and all operators will be linear. L(X, Y)
is the class of bounded operators from X into ¥, L,(X, ¥) the class of

* Much of this work was done in the Undergraduate Research Participation
Program atb Michigan State University in summer 1971, which was supported by
a National Science Foundation grant. I would like to thank Professors Richard
Beals and Felix E. Browder of the University of Chicago for their valuable advice,
and the referee for ealling Ju. I. Vladimirskii’s work to my attention.
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closed densely-defined operators from X into ¥, (X, Y) the class of
Fredholm operators in L(X, Y), and @,(X, ¥) the. clags of Fredholm
operators in L,(X, ¥). Thus F(X, ¥) consists of the admissible perturba-
tions for & (X, ¥), while F,(X, ¥) consists of the admissible perturbations
for @,(X,Y). K(X,Y) is the class of compact operators in L(X, Y).
The domain of an operator 4 will be denoted D(A4), the range R (4) and
the null space N(4).

Two classes of operators which are always admissible perturbations
for Fredholm operators are the strictly singular operators, denoted 8, (X, )
and the strictly cosingular operators §,(X, ¥). An operator de¢ L(X, Y),
iy strietly singular if every subspace of X for which the restriction of .4
hag a bounded inverse is finite-dimensional. 4 e L(X, Y) is strictly cosin-
gular if there is no infinite-dimensional Banach space Z and Se L(Y, Z)
such that S4. is surjective. See [11] for bagic properties of strictly cosin-
gular operators and relations between them and strictly singular operators.

A result of Kato ([6], Thm. 8, proved more simply in [3], Thm.
V.2.1) shows thab 8,(X, ¥) < F, (X, Y). Vladimirskil [15] shows that
members of §;(X,¥) are admissible perturl ations for the bounded
“semi-Fredholm” operators @_(X, ¥) (i.e. those with closed range of fi-
nite codimension in Y), and hence for the Fredholm operators. Essentially
the same proof works in the unbounded case, i.e. 8;(X, ¥)c F (X, Y).
We sketch the proof in Lemma 3. In general, equality need not hold in
these inclugions, even if X = ¥. Gohberg, Markus and Fel’dman [2],
using Kadec’s construction [5] of a subspace of L,(0, 1) isomorphic to
1, (for 1 < p < g < 2) note that there is a bounded linear operator ¥ on
X = L,(0, 1)@, which is not strietly singular but has a strictly singular
adjoint. Thus by [11], Prop. 3 and the reflexivity of X, V is strietly cosin-
gular but not strictly singular, while ¥* is strictly singular but not strictly
cosingular. Using V and V* we can produce an operator in L(XeX")
which is the sum of a strietly singular and a strietly cosingular operator
(hence is in F'(X® X*)), but is neither strictly singular nor strietly cosin-
gular.

We first prove some preliminary lemmas, and then some criteria
for 7, (X, Y) = L(X, Y).

Levma 1. Suppose Ae L(X,Y) and R(A+T) is closed for aoll
Ted,(X,Y). Then Ae F,(X, Y).

Proof. Let T« ®,(X, Y). . If A+ T had no index (ile. if M(A+T)
was infinite-dimensional and R(4 -+7T) had infinite codimension in ¥),
by Theorem V.2.6 of [3] there would be a compact operator K -with
R(A4A + T+ K) not closed. But since K(X, ¥) < F,(X, Y), T+ EKe DX, Y)
80 by hypothesis R(4 + T + K) must be closed. Thus 4 + T has an index;
similarly, for any sealar ¢, ¢4 +7 has an index. By the constancy of the
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index under small perturbations ([3], Theorem V.1.8), A+ T has the same
index as 7, and hence is Fredholm. '

Levva 2. Suppose Ae L(X, ¥) and for every Te D (X, X), R(4A+T)
is finite-dimensional. Then A< F,(X, ¥).

Proof. In Theorem 23 of [13] it is shown that if Se L(X) and
R(8) is not closed, there is Ke K(X) with RN(S—K) infinite-dimen-
sional. The same proof is valid for Se L(X,¥Y) and Ke¢E(X,Y).
Thus if A4 is as above and Te®.(X, ¥), N(A+T+K) is finite-
dimensional for all Ke K (X, ¥), so R(4+T) is closed. By Lemms 1,
AeF (X, Y).

Levua 3. 8;(X, ¥)c F,(X, Y).

Proof. Let Ae8,(X,Y) and Ted,(X, ¥). It suffices to show
R(A*+T) is closed, for then R(A+T) is closed ([3], Theorem IV.1.2)
and we can apply Lemma 1. Suppose R(A™ +T™) were not closed. Take
¥ =R(T)@M, M finite-dimensional, so ¥* = R(THoM*, and (A* +
+T*) (M- ND(TY) is not closed since N(T™) is finite-dimensional and
R(A"+T%) = (A" T%) (M+ 0 D(T™) +AM(JHTY)). As in [15] we obtain
biorthogonal sequences yp< M+ N D(T*), y,¢ ¥ such that |yl =1,
lyall < 27 (A" + T3l < 27", where ¢ = [(TT1) ™)™ Now de-

fining Be L(X, Y) by Ba= Y (& (4*+T%y%>y,, we find that B
Tis=1

is compact with norm at most 4c. Then Z = M*nR(T*+4*— B*)
= (M +R(T+A4—B))* is weak-*closed in Y* and infinite-dimensional
since each ypeZ. For y*<Z, [[A*y"|> |T*y*|—|B*y*| > cly*l, so A*
has a bounded inverse on Z. But this' contradicts the characterization
([15], Lemma 1b) of strietly cosingular operators: Ade 8,(X, ) itf 4*
does not have a bounded inverse on any weak-*closed infinite-dimensional
subspace of Y™

Lmyws 4. Let T'e ,(X, ¥). Then there is Se L(Y, X) such that for
some bounded finite-dimensional operators K,, K,, TS = I+ K, (defined
on all Y) and STz = (I+Ky)o for eD(T). (For bounded Fredholm
operators this is due to Yood [17].) :

Proof. Let P and ¢ be projections of X on N(T) and ¥ on R(T)
respectively. Note P and I —@ have finite rank. Let T,e L, (R(P), R(T))
be the restriction of 7' to M(P) N D(T). Then 7', hag a bounded inverse.

Let 8 =T,7'Qe¢ L(Y, X). Now R(8) € R(T,™") = D(T) and Tz
=T (I-Pje for zeD(T). So T8 = T,(I-P)T7Q =@ and 8Tw
= T;‘QTI(I~P)m = (I ~P)x for zeD(T).

In certain cases F. (X, Y) includes all of L(X, Y). This obviously
occurs if 8y(X, ¥) = L(X, ¥) or 8,(X,Y) = L(X, ¥). There are also
conditions on L(Y, X) which imply F (X, ¥) = L(X, ).
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TagormM 1. In any of the following cases, Fo(X,Y) =L(X, Y):

(a) 8(X, X) = LY, X),

(b) 8:(¥, X) = L(¥, X),

(e) XY is separable and X is ?zot separable.

Proof. For any Te @, (X, ¥) take 8 as in Lemma 4, and suppose
AeL(X, Y). In cages (a) or (b), 8¢ 8y(¥, X) or 8,(¥, X)and so A8e8,(Y)
or 8, (¥) respectively, so ASe F(¥). Then (4 +T)8 = A8 +I+K1e(1)(‘l_’),
and R(4 +T) eontains m((A +T)8), so ig closed and of finite codimension
in Y. By Lemma 1, Ae F,(X, ¥). In case (e), R(S) must be separable and
of finite codimension in X, which is impossible if X is not separable,
Thus in this case @,(X, ¥) is empty and so trivially (X, ¥) = L(X, ¥).

One of the most important facts about F(X) iy that it is a closed
jdeal in L(X). It is easy to show that F (X, Y) is a closed subspace of
L(X, ¥). The following two lemmas give & generalization of the multi-
plieative properties.

LevMA 5. Let Ae F (X, Y). Then for any Tie L(X) and Tye L(X),
T, A and AT, are both in F (X, Y).

Proof. Let ¢ be a nonzero scalar small enough so [¢Zy]] < 1, so that
I+eT, is an isomorphism of Y onto ¥. Sinee the properties defining
Fredholm operators arve preserved under isomorphisms, (I+eTp)A
e F,(X, Y). Then since F.(X, ¥) is a linear subspace of (X, Y) TI,4
= c"‘((IJrch)A—A) ¢ F (X, Y). Similarly for T, acting on the right.

LevMA 6. Let Ae F (X, ¥). If S,¢L(Z, X) and 8,T; is bounded
for some Tie @, (X, %), A8, e Fo(Z, X). If 8,e L(Y,Z) and for some T,
« Bo(Z, X)y Ty 8, is bounded with R(8s) € D(Ty), Sode F (X, Z).

Proof. Since 8,7, is bounded and D(8,T;) = D(T,) is dense in X,
we can extend 8,7, uniquely to a member of L(X), denoted §,T,. By
Temma 5; A8, T;« F (X, ¥). Let Uye D,(Z, ¥). Then by Theorem IV.2.7
of [3], UsT e ® (X, Y), its domain being contained in D(T). Thus
(ASy+ U)T, = AS,T1+ U, Ty e®,(X, ). Since R((48, -+ U)T,) = R(AS,+
+ U,), the latter is closed and of finite codimension in Y. By Lemma 1,
A8 ¢ F,(Z, X). T,8, is bounded and defined on all ¥, so Ty8,¢ L(Y)
and by Lemma 5, Ty8,4 e F (X, X). It Uye (X, Z), then Ty U, Do (X, T)
80 Ty(Up+8;4) = T, Uy +Ty8, 4 e 0,(X, Y). Therefore N(U,-+8;,4) is
finite-dimensional and by Lemma 2, 8,4 F (X, Z). )

Now we investigate certain conditions under which F. (X, Y)
= §8,(X, Y) or §;(X,Y). A number of cases are known where F(X)

= 8,(X): Piaffenberger [12] proves this for X subprojective, and Mil’man
[9] treats the cases I, and C(8) (for § metrie). Our basie tool in generalizing
these results to #,(X, Y) is the following lemma.
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LevMA 7. Suppose X and Y are infinite-dimensional Banach spaces,
with X separable and Y3 having a countable total subset. Then &,(X, ¥)
8 monemply.

Proof. In [4] Goldberg and Kruse construct an operator K« K (Y, X)
which is 1-1 and has dense range in X. Thus K e L,(X, ¥) is 1-1 onto ¥,
s0 K 'e @ (X, X).

LevmaA 8. Given any closed subspace M of infinite codimension in
a Banach space X, there is a closed subspace N of X such that M < N and
N/M and X|N are both infinite-dimensional.

-Proof. Let p: X - X/M be the quotient map. Choose biorthogonal
sequences wje X /M, z} « (X/M)* and let N, = 1{o};}. Then N, is closed
and x,; ¢ N, while @,; ;< N,. We can take N = p~'(¥,) and the conditions
will be satisfied.

A Banach space X is said to be subprojective if every infinite-dimen-
sional closed subspace of X contains an infinite-dimensional subspace
which is complemented in X. It is said to be superprojective if every closed
subspace of infinite codimension in X is contained in a complemented
subspace of infinite codimension in X. Some examples and properties
of these types of spaces are found in Whitley [16].

TaEOREM 2. Suppose X is separable and Y* has a countable total
subset.

(a) If Y is subprojective, F (X, Y) = 8,(X, ¥).
(b) If X s superprojective, F,(X,Y) = S (X, Y).

Proof. (a) Suppose AeL(X, Y) is not strictly singular, and let M
be a closed infinite-dimensional subspace of X such that 4], has a con-
tinnous inverse ¢ defined on A M. Let M, be an infinite-dimensional closed
subspace of infinite codimension in M. Let P be a projection of ¥ onto
a cloged infinite-dimensional subspace B of AM,. Then CF is a closed
infinite-dimensional subspace of M, which iy the range of the projection
CP4A of X. Thus we can take X = U®CE,Y = VoI, where U and V
are closed and infinite-dimensional sinee M /M, (and hence AM/AM,)
is infinite-dimensional. Note that U is separable and 7* has a countable
total subset, so there is T e @,(U, V). Now we define T' with domain
D(T)+CE by Tu+w)=Tu+dw Ifor wueD(T,),weCH. Then
Ted,(X, Y), but OF < N(T—4) is infinite-dimensional so, 7 —4 is
not Fredholm and A4 ¢ F, (X, Y). )

(b) Suppose AeL(X,Y) is not strictly = cosingular, so that for
some infinite-dimensional Banach space Z and he L(Y, Z), hd4 is sur-
jective. Let B (hAd) € M < X, where M is closed and X/M and M/J(hA)
are infinite-dimensional. Let P be a projection of X on a subspace U of
infinite codimension in X and containing M. Let @ =I—P and N = R(§),
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0 X = Ue®N. Define 8: Z-> X by 8z = Qu, where hAz = z. Since h4
is onto Z and M (h4) = R(Q), § is well-defined and bounded. Moreover,
" ShA = Q. Now AQSh is a projection and its range is R(AQ) = AN,
Qo AN is closed and ¥ = AN®V, where V = R(AQSh). Note that V
containg AM, which is infinite-dimensional since M/ (2A) is infinite-
dimensional. Now we can proceed as in part (a) to find Te< @,(X, T)
which agrees with 4 on N, so 4¢P (X, Y).

The method of Theorem 2(a) can be used to characterize I (X, Y)
for other types of Banach spaces, using more specialized properties. For
example, we can use the following well-known properties of the space ¢,
every closed infinite-dimensional subspace of ¢, containg a subspace
isomorphic to ¢, [1], and in any separable Banach space a subspace iso-
morphie to ¢, is complemented [14].

TEEOREM 3. If X is isomorphic to a subspace of ¢, and Y is separable,
then F, (X, ¥) = 8,(X, X). ’

Proof. If A L(X, Y¥) is not strictly singular, let M be a closed
infinite-dimensional subspace of X such that A is an isomorphism of M
on AM. Then we can take a cloged subspace N of infinite codimension
in M and isomorphic to ¢, so that N and AN are complemented in X
and Y respectively. Then we can proceed as in. Theorem 2 (a).

TurEorREM 4. Let 8 be a compact metric space (so C(8) is separable)
and let Y be separable. Then F,(0(S), X} = 8,(0(8), ¥).

Proof. Pelezyriski [11] shows that for A< L(C(8), ¥), 4 is strictly.

singular if and only if 4 has no bounded inverse on subspaces isomorphic
to ¢,. Thus if A is not strictly singular, there is a subspace M of C(8)
isomorphic to ¢, such that 4 is isomorphism of M on AM. We can assume
M and AM are of infinite codimension in C(8) and ¥ respectively, since
¢, containg a subspace of infinite codimension isomorphic to ¢,. Since
M and AM are complemented in C(8) and ¥ respectively (because these
are separable), we can again use the method of Theorem 2 (a).

CoroLLARY. Let 8 be a compact Hausdorff space, X a separable quotient
space of CO(8), and Y separable. Then every member of F (X, ¥) is weally
compact.

Proof. An operator is said to be wunconditionally converging [10]
if it maps weakly unconditionally convergent sequences to unconditionally
convergent sequences. Pelezyniski [11] shows that any bounded linear
operator that is mot unconditionally converging has a bounded inverse
on a subspace isomorphic to ¢,. Thus, by the method of Theorem 2 (a),
we have that if X and Y are separable, every member of # (X, Y) ig
unconditionally converging. Pelezynski [10] shows that the property
“V?” (every unconditionally converging operator with domain X i weakly
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compact) is possessed by C(8) and by any quotient space of a space with
the property.
THBOREM 5. Suppose Y is L,(m) for some positive measure m. If X
is separable and X" has a countable total subset, F,(X, ¥) = 8,(X, ¥).
Proof. Pelezynski ([11], Part II, Theorem 1) shows that for
Y = L;(m), Ae L(X, Y) is strictly cosingular if and only if there is no
commutative diagram

X =N, o

1 22
Ay

X,——1,

where p, and p, are projections, X; and ¥, are isomorphic to I, and
Ay = A| x ig an isomorphism onto ¥,. But if there is such a diagram it

. is clear by the method of Theorem 2(a) that 4 ¢ F (X, Y).

CororrLARY. If X 4s Li(m) for some positive measire m then F(X)
= 8(X) = 84 (X).

Proof. Suppose Ae¢L(X) is not strictly cosingular, so that there
is a commutative diagram as given in Theorem 5 (with X = ¥). Now
Py = A7'p, 4 ¢ F(X) sinee R(I — p,) has infinite codimension, so 4 ¢ F(X).
Thus F(X) = §8,(X). Also since L,(m) has the Dunford-Pettis property,
Pelezynigki’s results [11] show that 8,(X) = §y(X). . )

One other type of Banach space in which we have F(X) = §,(X)
is the class of “injeetive” Banach spaces. A Banach space X is injective
if for any Banach spaces ¥ < Z and any bounded linear operator §: ¥ — X,
there is an extension T'e« L(Z,; X) of §. )

THEOREM 6. If X is injective, F(X) = 8,(X).

Proof. If Ae L(X) is not strictly singular, the restriction of 4 to
a closed infinite-dimensional subspace M of X has a bounded inverse ¢
defined on AM. Since X is injective, ¢ can be extended to a bounded
linear operator B: X — X, so that BA is the identity on M. Thus
M = R(I—BA), s0o B4 ¢ F(X), and by Lemma 5, 4 ¢ F'(X).
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Beurling algebras on locally cempact
groups, tensor preducts, and multipliers

by
J. EDWARD KERLIN (Lexington, Ky.)

Abstract. Let &, H, and K be locally compaet groups and 0: K@ and y: K ~H
be continunous homomorphisms. A (6, p; y, g)-multiplier is a bounded linear trans-
formation T of L?(G) into L4(H) ruch that To Eg(z) = Lyo T for allz in K, where Ly
is the left translation by x operator. Via tensor product theory, a representation of
the Banach space of (8, p; v, g)-multipliers can be obtained by identifying the topo-
logical tensor product L?(F)@gl~?(H). A fundamental step in this analysis is the
representation of the tensor product IMG)@xL~'(H) as I'(GRQxH), where GRgH
is a locally compact homogeneous space (carrying a quasi-invariant measure) cano-
nically related to G'; H, K, 0 and y. More generally, it is shown here that (e

LYE)
(4

Ll( ) o LL-@ - H(G®xH), where w, %, and { are weight functions on &, H, and K
defmmg the Beurling algebras L}A’(G), L}l() and L%(K). The analysis is effected by
obtaining an extension of the isomorphism Ll (6)/JL (G, H) = Lt (G/H) of Reiter

(for closed mormal subgroups H of @) to permit arbitrary closed subgroups H of G.

If ¢ is a locally compact group, L?(G), for 1< p < oo, denotes the
usual Lebesgue space with respect to left Haar measure on G. For each
we @, L, denotes the left translation operator on L”(@) given by L,f(y)
= f(@™'y) for fe LI7(G) and ye@. Let G, H, and K be locally compact
groups, and let 0: K —@ and y: K — H be continuous group homomorph-
isms. Let 1<p,q¢< oo. A (0, p;y, q)-multiplier is a bounded linear
transformation I' from L7(@) into LYH) such that ToLa(z = LyoT
for all z¢ K. In this context the “multiplier problem” is to ehamacterlze
the space Homg(L”(@), L?(H)) of (6, p; v, ¢)-multipliers of L?(@) into
LA(H). When ¢ = H = K and .0 =y =idg, the identity map on &,
we recapture the classical multiplier problem of characterizing the bounded
linear transformations of L?(@) into IL#(@) which commute with left
translation by the elements of @. When 1. p < oo and 1< ¢ << oo, and
»—3 —}-E; = 1, the theory of tensor products of Banach modules introduced
by Rieffel in [12] shows that

(0.1) Homy (L7(@), I? (H)) = (I?(@®x (B,
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