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map 1 into 1, then it is very easy to see that &/ (K,,) is a direct limit of
(s (K,)) in the category /K. Our theorem is a much stronger statement:
o (K,) remains a direct limit in the larger category Ban,.

Remark 2. Compare our theorem with the following theorem of
Semadeni.

‘'THEOREM ([3], Theorem 1). Let (X, ¢;) be the inverse limit of the
inverse system (X, ¢f) of compact topological spaces. Then (?f (Xoo)y € (q0))
is the divect lémit in Ban, of the direct system (%(X;), ¥ (rp‘;’)).

This theorem was proved earlier by Pelezydski ([2], p. 14), in the
speeial case where all maps ¢f are surjections. Semadeni’s theorem can,
in faect, be obtained as & corollary of our theorem, but only with some
additional work; one passes from compact spaces X to the simplex P(X)
of Borel probability measures on X. One can identify ¢(X) with « (P (X)),
but one must show that if X, = inv lim X, then P(X,) = invlim P (X,).

If one wants to obtain Semadeni’s theorem by the methods of this
paper, the most natural way is to imitate the proof of our theorem directly.
The proof that A: O0%%(X,)~L is injective is similar: one wuses the
Weierstrass—Stone theorem to prove that | % () (’K(Xt)) is dense in ¥ (X,).
The proof that A is onto is somewhat simpler than in our case.

Rematrk 3. T am grateful to Professor Semadeni for bringing the
problem to my attention and for acquainting me with the ideas from
category theory.

Remark 4. I wish to thank the referee for providing me with some
references and for suggesting some improvements in style.
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Continuity of operators on Saks spaces
‘ by
IWO LABUDA (Poznan)

. Abstract. In [13] Orliez initiated the study of linear operators acting from so-
called Saks spaces. His original investigations concerned operators taking values
in Banach and Fréchet spaces. In this paper we extend the theory to the case of opera-
tors with values in locally convex and general topological vector spaces. Generally
the proofs presented here are more direct than the original ones of Orliez; some refine-
ments of his classical statements and some new results have been obtained.

§ 0. Introduction. In the present paper we intend to give some
generalizations of results contained in [13]. Since we will constantly refer
to this fundamental work, we decide to preserve as far as possible
its terminology, notation and conventions. There i, however, one important
exception to this prineciple — an additive ([13], 2.1) continuous operator
v from a Saks space X, into a topologieal vector space ¥ will be termed
explicitly “additive (X, Y)-continuous”, while Orlicz, according to the
old terminology of Banach- [1], calls » in that case (X,, ¥)-linear.
Moreover, in many situations the topology of ¥ is explicitly mentioned,
ie., ¥ =(Y, 1) for example; we will then say simply that »: X,—»Y is
T-continuous, or only that » is 7-continuous, when no ambiguity about .
X, and Y arises.

An operator v: X,~Y¥ will be said to be linear (cf. [13], 2.1) if for
arbitrary #,, z,¢ X, and arbitrary scalars a,, as, a;@;+ ay2,e X, implies

Y (Qy 8y - Ay ®g) = Ay ¥ (@) -+ @y (2,). Note that with this terminology it
is obvious that an additive (X,, ¥)-continuous opomtor = g linear (X, ¥)-
continuous operator.

Following Orlicz, & Saks space is defined as a cloged unit ball of a funda-
mental normed space (X, ||'[) on which another norm (in general non-
homogeneous!), || ||* say, defines the complete metric. It is clear, however,
that instead of the unit ball of (X, ||-{]), a bounded, closed, convex balanced
set of an arbitrary Hausdorff topological vectior space could be taken.

If this unit ball endowed with the metric induced by ||-|* is not com-
plete, it is called a Saks set. ) .

Denote by X, a Saks space and by K(w,,r) the open sphere with .
centre @, and radius r in the space X,. We ghall consider Saks spaces
satisfying the following conditions:
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(£;) Given any x¢ X, and r >0, there exists a d >0 such that every
element xe X, for which |j#|* < & can be written in the form z —
= @, — &y, With @y, #y¢ K (2, 7).
(Zs) X () = Xy 2,0, &, > 0 and ¢,—0, then there exist an increasing
sequence (n;) of indices and a sequence (50,%) such that:
() B, — @ |I" < 8y, for B =1,2,..., »
(il) ) &,, is subseries-convergent in X, (i.e. for each subset M of a set
E=1
of natural numbers 250,% is convergent).
kel

These conditions were introduced by Orliez in [13]. As to the origins
of (%;) see [13], p. 241; condition (Z;) is self-explainatory — it ensures
the subseries convergence of,Z' a}ﬂk in X, thus, as we shall see, a frequent

fo==1
application of the Orlicz—Pettis type theorems will be possible.

The use of the above conditions explains also the fact of deep analogies

" between vector measures and additive operators acting from Saks spaces.
Actually, in many eases the vector measure is simaply an additive operator
from the so-called generalized Saks space ([13], 1.68). Many of the results
presented below are motivated by the recent developments in the theory
of vector measures, and have been obtained on the way “from a vector
measure to an additive operator on a Saks space”. Probably one could
expect new results in measure theory from the opposite point of view.

In the sequel “let X, be (£,) or (,)” means “let X, be a Saks space
satisfying condition (Z,) or (X,)”.

In what follows the results are formulated for Saks spaces; it is clear,

-however, that every statement in which only condition (Z,) iz assumed
is valid for Saks sets also (i.e., the completeness of X, is then superfluous).

For certain restrictions concerning the scope of “the theory of Saks
spaces” see [12]. The reader is referred also to [14], [15] and [16].

We will denote by N the set of positive integers, and by v, u additive
operators from Saks spaces; the field of scalars may be the real or complex
field throughout.

Let ¥ be & Hausdorff locally convex (topological vector) space, and
Y' its dual; o(¥, Y') will denote the weak topology, (¥, Y’y the Mackey
topology, B(¥, X') the strong topology, and =(Y, Y') the topology of
uniiform convergence on weakly compact subsets of ¥', ¥, = (¥, o(¥, )
and similarly the notation ¥,, Y. ete. will be used.

The following fundamental lemma will frequently be used below:

0.1. LevmaA. Let v be an wdditive operator from a Saks space X, into
a topological vector space Y;

(a) if Xy s (2)) and v has one point of continuity, then v is uniformly
(Xg, X)-continuous;
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(b) if X, is arbitrary and v has one point of continuity, x, say, such
that |lmoll < 1, then v is uniformly (X,, ¥)-continuous.

This lemma is proved in [13] 2.2(A) when the arrival space Y is an
F-space, but the completeness of ¥ is obviously superfluous, and repeating
the reasoning of Orlicz with respect to each F-pseudo-norm separately,
one obtains the lemma for an arbitrary topological veetor space.

§ 1. Operators with values in general topological vector spaces.

1.1. ProposITION. Let X, be (Z,) or (Z,), (¥, B) a separable linear
topological vector space and o a linear topology on Y such that f has a basis
of a-sequentially closed meighbourhoods ot 0. If v: X, —Y is a-continuous,
then it is p-contimuous.

Proof. Let (y,) be a p-dense sequence in ¥, and V an arbitrary g-
neighbourhood of zero ; then we can find an a-sequentially closed symmetrie
B-neighbourhood of zero U contained in ¥V and we have ¥ = {Jy,+ U

o =]

n=1
=U U, Uri[U,] = X,. Since X, is metrizable, »~'[U,] are closed
n=1 n=1

in X,; therefore by the Baire category theorem there is a ball K(z,,7)
c X, with r > 0 such that its image »[K (@, 7)] = ¥, + U for a certain
meN. By condition (5,) there exists an s > 0 such that »[K(0,s)] = U+
+Uc V4V, ie., v is f-continuous at 0. Now by Lemma 0.1 it is g-
continuous. Let condition (Z,) be fulfilled and suppose that » is not f-
continuous. Then there exist a sequence (z,) and an e-sequentially closed
B-neighbourhood U of zero in ¥ such that »(@,)¢ U (Lemma 0.1). U being
a-seq. closed, »~*[C U] is open, and so we will find a sequence (a,), ¢, > 0,
a,~0, such that v[K (z,, a,)] = CU. By (Z,) there is an (c?:ni) such that
v(#,)e CU and 21’ &y, is subseries-convergent in X,. Then 1211 (@)
is a-subseries convergent, and hence, by [6], Theorem 1, f-subseries con-
vergent (). This implies that v(ii‘ni)e U for 4> 1,; a contradiction.

1.2. THEOREM (compare [13], Theorem 1). Let (Y, ) be a separable
F-space, and o an arbitrary Hausdorff Vinear topology on X coarser than 8.
Let X, be () or (Z,); v: X,—Y s B-continuous iff it is a-continuous.

The proof is that of [6], Theorem 2.

Remark. If ¥ is locally convex Hausdorff, it is sufficient to suppose
(¥, p) to be separable B,-complete and o to be locally convex Hausdorft
coarser than .

The elimination of conditions (Z,) and (Z,) in the forthcoming theorem
was suggested to the author by Dir. Drewnowski.

(1) In [6], a and f are supposed to be Hausdorff; this assumption, as easily seen,
is superfluous (but in terms of measures we can only state that a-countable additiv-
ity implies f-exhaustivity).
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1.3. THBOREM. Let Y be o lincar space, and o and 8 linear topologies
on XY such thai the set of partial sums of am a-subseries convergent series is
B-bounded; v: X,—Y a-continuous. Then
) (i) » iraozsfo7~ms |- I*-bounded sets (i.e., subseis of X, which are bounded
in (X, ||-|I) into B-bounded sets; )

) (i) if, moreover, the ||:|*-norm is coarser than the }|l-rorm, then v
is B-bounded (i.e., v[X,] is a bounded subset of (¥, B)).

Proof. Leti (#,) = X, #,~0 and suppose that (»(x,)) is not f-bounded.

We then find a sequence (4,) of numbers 0 < a, <1, @,~0 such that

,9(2,)+0. Let (a,) be such a subsequence of (a,) that EV@;<1
k=1

and kg; IV @, 5, " < 00, For every fini;ﬁoe subset M <N, k%l/;z—;;mnksxs
since X, is convex-balanced in X. 21/;,;% , being uxslconditionally
Oguehy in X, is subseries-convergentk;;r the completeness of X,. Then
ké; v(l/a_,;cwnk) is a-subseries convergent in ¥; thus by the assumption

('tj(l/ankmnk)) i§ p-bounded. But V&;Vl;;;v(m,%)ﬂ() in (¥, 8); a contradic-
tion. Now, let B < X, be |||[-bounded, (#,) = H, 1> b,—0 and let ¢,~0
be such that :

Cn

‘We have b,v(z,) #0—” v(en )0, which proves (i). (i) implies (i) since
X, is then [|-||*-bounded.

1.3’. COROLLARY.

(4) (compare [13], Theorem 2). Let a, B be two linear topologies on ¥

s:ueh that f has a basis of a-sequentially closed neighbourhoods at 0. Then
(i) and (ii) hold.

(B) Let (Y, a) be a locally conver Hausdorff space. There exists a locally
convex barelled topology § on ¥, a = B such that (i) and (i) hold.

(C) Let (X, B) be a locally convex Hausdorff B,-complete space and
; (lzgy Hausdorff locally convex topology on X coarser than B; then (i) and (ii)

old.

Proof. [11], Theorem 3 implies (A); [7], 2.4 implies (B); [7], 2
soaglion (01 i [7] plies (B); [7], 2.7
. 1./4:. THEOREM (compare [13], Theorem 3). Let X, be (Z5); Y, 0,8 as
in L3 (A); (Y, B) an (O)-space(2) (i.e. if the set of fimite partial sums of

. (% In [18] Orlicz calls such a space “fulfilling (Z) condition”, but in recent
literature the term “(0)-space” is used.
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the series > 4, is p-bounded, then the series is B-umconditionally Cauchy).
n=1
Then if v: X,—Y 4s a-continuous, it is p-continuous.

Proof. If » is not g-continuous, we find #,—0 and an e-sequentially
closed: g-neighbourhood of 0 such that »(w,)¢ U. By the argument used
in 1.1 we find Enm such that ) %,,i is subseries-convergent in X, and a:(a?ni)

o g==1
¢ U. Then >'v(@,) is a-subseries convergent; hence the set of all partial
i=1 '
sums of this series is f-bounded. As (¥, ) is an (O)-space, our series ig
f-unconditionally Cauchy; thus v(a@ni)+0 in (Y, B); a contradiction.

1.5. THEOREM (compare [13], Theorem 1'). Let Y be a locally convex
Hausdorff space, and v an additive (X, ¥,)-continuous operator. Then
each of the following conditions is sufficient for v to be (X, ¥.)-continuous:
(1) X, 8 (2,) separable, (ii) X, is (Z). »

Proof. (i) Xs being separable, »[X,] is a separable subset in ¥,.
Let (y,) be a dense sequence in »[X,]. The linear o(Y, Y")-closed span
Y, of (y,) is separable and contains »[X,]. By the Mackey theorem ¥,
is also a 7(¥, ¥')-closed linear span of (¥,). The result follows by 1.1.

(ii) Let 4,0 in X, and suppose that »(s,)+0 in Y,. There is then
a ¢(¥, Y')-closed neighbourhood of zero in ¥, say U, and (#,,) such that

»(#,,) ¢ U. By the same argument as in 1.1, we find (éni) such that Zéni
oo =1
is subseries-convergent and »(&,)¢ U. But 3 #(&,) is then subseries-
=

convergent in ¥, and hence in ¥, by the Orlicz—Pettis theorem. Thus
v(oﬁ,ﬂi)-—m in ¥,; a contradiction.

1.6. TEROREM. Leét (Y, 7) be an inductive limit of locally conver Hausdorff
spaces (Y;, v;), 1N, such that for each i: .

(G) X; is sequentiolly closed in (Y. 1, Ti41);

(jj) there emists a linear topology ' on X which induces on Y ils proper
topology ;.

Let X, be (2,), v: X,—~Y v'-continuous. Then v is v-continuous.

Proof. In fact, X, = |J »*[¥,], and so by a standard application
n=1

of the Baire category theorem and condition (Z,) we find a ball K(0, s)
such that »[K (0, s)] « ¥, for a certain ieN. By definition v induces on
Y, a topology which is coarser than z,. Hence » is 7-continnous at 0. We
apply Lemma 0.1.

Remaik. With hypothesis (jj) the space (¥, 7) is in fact a strict
inductive limit of (¥;, 7;); hence by [3], Ch. IIT, § 2, n° 4, Proposition 6,
it X, is |-|*-bounded, »[X,] < ¥, for a certain neN.
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A locally convex Hausdorff space is said to be a #-8pace if it can be
represented as a union of countably many weakly compact subsebs K,.
Since a balanced cover of a compact subset of a topological vector Haus-
dorff space is again compact, one can suppose K, to be balanced. A cloged
vector subspace, the quotient (if it is Hausdorff), and a countable inductive
limit (if it is Hausdorff) of »-spaces are »-spaces. It follows that a %-Space
need not be separable or metrizable.

The two topologies a and g are said to be consistent with each other
[17] if, when &; and @, are any two distinet points, #, has an e-neigh-
bourhood U, and @, a S-neighbourhood U, such that U, and U, are disjoint.

L.7. TamoreM. Let X, be (%) separable or (2:&Z%,), Y a x-space
and o a linear topology consistent with o(¥, Y, v+ X,;—»Y a-continuous.
Then v is (X,, ¥)-continuous. .

Proof. In fact, a« being consistent with o(Y,Y'), there exists
a Hausdorff linear topology y = inf(a, o(¥, ¥')). Of course, » is y-con-
tinuous and K,, being y-compact, aire y-closed. As yand o(Y, ¥') coincide
on K.+ K, v is (X,, ¥,)-continuous, since by a standard application of the
Baire category theorem and condition (I,) we ean find a ball K (0, )
such that »[K (0, s)] = K, + K, for a certain neN, Now, the result follows
by 1.5. . .

§ 2. Operators with values in concrete function spaces. In the preceding
section we gave some criteria which allow us to derive the “strong” con-
tinuity of operator »: X,—Y if ity “weak? continuity is assumed, provided
some additional hypotheses on the arrival space Y are satisfied. In this
section we will give some examples of concrete (mainly vector-valued)
function spaces ¥ which are not covered by the “general” theorems of
§1, and for which similar criteria on fhe continuity of operator v: X, ¥
are still valid. As a consequence we will obtain some refinement of 1.5.

Let K be a topological space, ¥ a topological vector space. We
denote by O(K, Y) the space of continuous Y-valued functions on K,
and by C,(K,Y) (resp. Cy(K, X), resp. C,(K, ¥)) the space C(K, XY)
endowed with the topology of pointwise (resp. pointwise in a set D dense
in K, resp. uniform) convergence in K.

2.1. (A). TeworEM. Let X, be (E,) or (3,), ¥ a topological vector space,
ond v,: X,—Y a sequence of continuous (additive) operators such that

2 ()=, (%) (n—>00) for each we X,. Then v, is (additive) (X,, X¥)-continuous -

and v, are uniformly (X,, Y)-continuous (with respect to n =1,2,..,).

There is an equivalent form of this theorem (see [8], 2.1):

2.1. (B). Let X, be (Z,) or (Z,), and u: X,~0s(N, ¥) an (additive)
continuous operator. Then “p: X,—C, (N, Y) ds continuous. Moreover,
the limit operator wy: X,~Y, where po(x) = lim (u(@)) (n) (n—>c0), is (ad-
ditive) continuous.

icm®

Continuity of operators on Saks spaces 17

Proof. The case Z,. It is sufficient to prove the theorem for each
F-pseudo-norm separately, and passing to the quotient we can suppose
Y to be a metrizable topological vector space. Now, by the Mazur trunca-
tion method ([8], 2.1), u: X,—0,(N, ¥) is of Baire’s first class; hence
it is continuous in a residual subset of X,, and thus continuous by 0.1.
‘We finish as in [8], 2.1.

The case X,. As above we can suppose Y to be metrizable. The
topology of uniform convergence in N has a basis of neighbourhoods of
zero which are closed in the topology of pointwise convergence in N (since
the F-norm defining the uniform convergence is lower semi-continuous

on C;(N, ¥)). So by the argument applied in 1.1 we find :ink such that

Z:?;nk is subseries-convergent in X, and /4(:5“,6)4—»0 in O,(N, ¥Y). This
=1

is impossible by [8] 3.1 (B).

2.2. PROPOSITION.

(A) Let X be (X)) or (Z,), K a compact metric space, andv: X,~Cy(K, ¥
continuwous. Then v: X;—C (K, ¥Y) is continuous.

(B) Let X, be (Z;) or (,), K a sequentially compact space, and »: X,
0K, Y) continuous. Then v: X—~C,(K,Y) is continuous.

Proof. Let te K and let D be a dense subset of K determining the
topology in C4(K, ¥). One can find (w,) = D, w,~%; then

1 (8) = ¥(@) (%) >0 (®) = (@) () (n—>o0).

Henece by the preceding theorem v, is (X,, Y)-continuous. This means
also that »: X, —~C (K, ¥) is continuous. We complete the proof of (A)
applying the proof of [8], 2.3, which at the same time proves (B).

Let ¥ be a Hausdortf locally convex space, ¥ its dual, Y™ its algebraic
dual, and o the family of subsets in ¥’ which are relatively sequentially
compact in Y.

2.3. COROLLARY. Let X, be (Zy) or (). If v is (X,, ¥,)-continuous,
then v: X,—Y s y-continuous, where y is the topology of A -convergence.

It follows (compare [7], 1.4, 1.5), for instance, that if ¥ is separable
(resp. strongly separable), the continuity of » in the weak topology defined
by the subset of ¥ which is dense in every sebt of a compact cover &
of ¥, (vesp. in every set of a bounded cover () of ¥,) implies the »(¥, ¥')-
continuity (resp. #(¥, Y')-continuity) of »:

(8) It is sufficient to supposes to be merely a “linear compact (resp.lbounded)
cover” in ¥4, i.e. to suppose that each # < is compact (resp. bounded) in ¥%, and the
linear span of ()& equals ¥’. A moment’s reflection shows that a “linear compact
cover” is a straightforward generalization of the notion of a fundamental get of
functionals ([18], [4]) for Banach spaces.

2 — Studia Mathematica LI.1
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2.4, TEmOREM. Let X, be (X)) separable or (%,), K o compact space,
D o sequentially dense subset of K, and Cy(K, Y) a space O(K, Y) endowed
with the topology of pointwise convergence in D. If v: X~ 04(K, X) is
continuous, then v: X -0, (K, Y) is continuous.

Proof. Passing to the quotient of ¥ by the closure of zero if needed,
we can suppose Y to be Hausdorff. By the reasoning applied in the proof
of 2.2. (A) above, one finds that v»: X~ 0 (X, Y) is continuous. Then
the proof of the case X, is the same as in [8] 2.5.

The case Z,. As in 2.1, the topology of 0, (K, ¥) has a basis of neigh-
bourhoods which are closed in the topology of 0,(X, ¥). The continuity
of v: X, —~C (K, Y)is obtained ag above; then applying [8]3.2 we complete
the proof as in 2.1., the case I,. .

It follows (compare 1.5) that if X, is (£,) separable or (5,), and ¥
a Hausdorff locally convex space, then the (X, ¥ »)-continuity of » implies
its (X, ¥,)-continuity. )

Let ¥ be a Hausdorff locally convex space, T a locally compact
space countable at infinity, and 4 (T, Y) the space of Y-valued contin-
uous functions with compact support on 7 endowed with its matural
inductive limit topology. We will denote by #(T, ¥) a set # (T , Y)
equiped with the topology of pointwise convergence in 7.

2.5. THROREM. Let X, be (Z,) separable or (Z, & Zy). v: X,—>oA (T, ¥)
is continwous iff v: Xy~ (T, Y) is continuous.

If we take into account 1.6 and 2.4, the proof is the same as in [10], 2.2.

One could also obtain theorems which correspond exactly to [107,
2.3, 2.4 .

Applying 1.4, one immediately infers that if X, is (5,), then »: X,
~L?(n), 0 < p < oo, which is w-continuous (where o is the topology of
convergence in »-measure on every set of finite y-measure), is continuous
in the #F-norm topology of L?(7) (in fact, we can even take as the arrival
space a generalized A, Orlicz space, see [9], [11]).

However, we will present an alternative proof, using the truncation
method of Turpin (ef. [9], Remark 1), firstly because this method is in-
teresting in itself, and secondly because it will allow us to state the
analog of the result mentioned above in the case of Bochner p-integrable
functions; and these spaces are not (0)-spaces in general.

Let T be a set, Z a o-algebra of subsets of T, (¥, |- ||) a Banach space,
and n: #->[0, co] a (countably additive) measure. The cagse 1 < P < o0
being well known, we recall only that we denote by L?(n; Y),o0<p<l,
& set of (Bochner) measurable ¥-valued functions over (7T, &, #) for ‘which

V JIr@irdn = |ifl, < co.
One can easily show that the Lebesgue-dominated convergence theorem
(LDOT) is still valid. If ¥ is a field of sealars we denote L?(n; Y) simply
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by LP(n). The topology o of convergence in 7-measure on every set of
finite #-measure is coarser than the F-norm topology on LP(y; Y),
0 <p < co.

2.6. THEOREM. Let X, be (Z,) or (£,). v: X,—~L?(n; Y) is continuous
iff it 48 w-continuous.

Proof. The case X,. (1) (Turpin truncation method.) Let # be finite,
that is, #(T) < co. Put

. {f(t) for te {t: |f(1)] < N},

0 elsewhere,

W) = @)y, N=1,2,..

Wi X,—~LP(n; ) is ||-|l-continuous. In fact, take z,—z in X,. Then
vV (,)—> Y () (n—o00) in g-measure, and since »¥ (z,), neN, are uniformly
bounded by N, this sequence is norm convergent. On the other hand,
¥ (@) (¢)—9(2) () (N—>o0) for each te T, and so by the LDCT W ()~ (x)
(as functions in L? (n; ¥)) in the norm topology; and this is true for each
we X,. Thus v: X, —LP(n; Y)is of Baire’s fivst class and hence continuous

© by Lemma 0.1.

(2) (Mazur truncation method.) Let 5 be o-finite, i.e., there exists

(T, < oo, |J T, = T. Put

#=1

a sequence (I')c %, T T, ..

(o) =v(@)x(Ty), N =1,2,..,
where y(T'y) is the characteristic function of a set Ty. vy(w)(1)—2(2) (1)
(N —o0) for each te T, and by the LDCT yy(2)—>»(z) (as functions in
LP?(n; Y)) in the ||-|,-norm topology. We can apply 2.1.

(3) Let w,—»me. {t: [v(z,)(?)]| % 0} iy o-finite, hence B = |J {t:

Na=1

lv(2,) @)l 0} is o-finite. Since {t: |lp(x)|| # 0} is n-almost contained
in @, we can suppose that (z,), » =0,1,2,..., belongs to I? over
(H, EnA, nlz). Thus we can suppose 5 to be o-finite.

The case Z,. (1) By (3) above we can suppose 5 to be o-finite, and
then the norm ||-||, is lower semi-continuous over (L”(n; Y), o) (see [9]).
If » is not [}-||,-continuous, by the standard argument (ef. 1.1) we find
a series ' y, of elements of Z?(y; ¥) which is w-subseries convergent

=]

and not ||-||,-subseries convergent. We will show that this is impossible.
(2) n is o-finite; we shall prove what follows:
Let # be a o-ring of sets, and p: A—~L*(n; Y) a w-countably additive
set function. Then w 18 ||-||,-countably additive.
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Suppose that the statement holds if # is finite; then if we define
uy 88 In the case X; (2), uy: 2—LP(y; ¥) are [} |l;-countably additive
set functions. Hence by the Nikodym theorem ([8]3.1) g is I+ llp-countably
additive. Thus we can suppose % to be finite.

(3) n(T) < oco;let || be the F-norm defining w; u: %~(L?(n; ¥), 1)
lf countably additive. Thus the corresponding submeasure majorant
& is order-continuous ([5], § 2, § 5); hence (2, u) is a 2-gpace ([8], 1.4).
Detining p¥ as in X, the ease (1), we will prove by the argument employed
there that u: (2, g)—L*(n; Y)is of Baire’s first class, and hence con-
tinuouﬁ ([8], 1.2). This means precisely that u is Il ll;-countably additive
since u is order-continuous. '

Theorem 1.7 eovers in particular LP () spaces for 1 < P < oo since,
being reflexive, they are »-spaces. We will show, by a direct method, that
this result is still valid for IL(y).

Let % be finite. It is known that if we take I'! over (T, #,n), the
correspondence between fe Z' and measures of the density f as elements
of ca(%) [2] is isometrically isomorphic. Therefore L' can be identified
via this eorTespondence with a set of y-absolutely continuous measures
on %. Now, by an application of the criterion of Bartle , Dunford and Schwartz
([2], Theorem 1.3), ¥y = {f¥: fe L'} (¥ are defined as in 2.6 the case
2y (1)) is relatively weakly compact in L' (for Yy is bounded and if f,,
ie I, belong to ¥,, then [A4(H)| = Uf,-dnlgj]fildn<Nn(E)—>0 with
n(B)—0 uniformly in ieI). & &

2.7. TEROREN. Let X, be (X,) separable or (Z,), (T, B, n) an (arbitrary)
Dpositive measure space, and o a linear topology on I'(n) consistent with
the weak topology of L'(n). If v: X,—~I'(y) 4s a-continuous, then it is
(Xs> L ())-continmous. »

Proof. Suppose first that 7(T) < co and let L' = I'(y), I = I'(n)
endowed with its weak topology ¢. Sinee Yy, N =1, 2, ..., are relatively
compact in L}, the fopologies y = inf(a, 0) and o coincide on Y I
Define »" as in 2.6, and by the argument.used there »(z)—> v() (N—o0)
in I', and hence in I}, for each we X,. Therefore »: X,—~L% is of Baire’s
first class, and thus continuous (the reasoning as in 2.6 the case 2 1)
with respect to each pseudo-norm separately). Theorem 1.5 implies that
v i8 (X,, I')-continuous. Now, 2.6 implies the result for an arbitrary .
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