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Centered operators

by

BERNARD B. MORREL (Athens, Ga.)
and
PAUL 8. MUHLY* (Iowa City, Iowa)

Abstract. An operator T on a Hilbert space is called a centered operator in case
the sequence ... T%(T™)%, TT*, T*T, (T*)21?, ... consists of mutually commuting opera-
tors. In this paper, all centered operators.are completely described up to unitary
equivalence and criteria are given for deciding when one is irreducible. Roughly
speaking, it is shown that the most general centered operator is a direct sum of unila-
teral weighted shifts (backward, forward, or truncated) with commuting operator
weights and a weighted translation operator acting on a space of vector-valued
functions.

§ 1. Introduction. A computation reveals that if T is a weighted
shift (unilateral or bilateral, forward or backward), then the operators in
the sequence ..., T*(T*)*, TT*, T"T, (T**T*, ... are mutually commuting '
operators. Following [10], we shall take this property as the defining
property of a class of operators called centered operators and, answering
the question raised in [10], we shall establish the extent to which this
property determines the class of weighted shifts.

In the next section we show that the partial isometry in the polar de-
composition of a centered operator is a power partial isometry (i.e., all of ity
positive powers are partial isometries). This fact coupled with the work
of Halmos and Wallen [5] enables us to show that a centered operator
can be written as a direct sum whose summands are either weighted
shifts (with operator weights) or quasi-invertible centered operators.
(Recall that a quasi-invertible operator is one with zero kernel and dense
range.) We then show, in Section 3, that every quasi-invertible centered.
operator may be written as the direct sum of operators which are egsen-
tially weighted translation operators on spaces of vector-valued functions.
In Section 4, we exhibit a complete set of unitary invariants for centered
operators, while in Section 5, we derive conditions for a centered operator
to be irreducible. Our concluding Section 6 iy devoted to questions for
future investigation.

* Supported in part by a grant from the National Science Foundation.
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All Hilbert spaces considered here are complex and all operators
are bounded and linear. The restriction of an operator T or of a family
of operators J to an invariant subspace . will be denoted by T'|.# and
T\ M, Tesp.

§ 2. Classification. By definition, the indtial space of an operator T
is the orthogonal complement of its kernel and the final space of T is
the closure of its range. We shall denote the projection onte the initial
(vesp., final) space of T by B(T) (resp., F(T)), but for k =2,3,... we
shall denote the projection onto the initial (resp., final) space of T by
B, (T) (resp., Fp(T)). The following relations among these projections
are easily verified:

(2.1) B(T*) = F(T); B(T)=F(I"),

2.2) B(T) = B(T'T); F(T)=F(TT,

and

(2.3) it j <k, then B;(T)> Bp(T) and Fy(T) = F\(T).

The unique representation of an operator T' ag the product UP
where P is the non-negative square root of 7% T and U is a partial isometry
such that B (T) = E(U), will be called the polar decomposition of T' (cf.
[4]; problem 103). If 7' is a centered operator with polar decomposition UP,
then the following two assertions are consequences of (2.2) and the spectral
theorem:

(2.4) E,(T) commutes with 7y, (T),j, % =1,2,...,
and
(2.5) for k =1,2,..., both B,(T) and Fy(T) commute with P.

TaeorEM 1. Let T be a centered operator on o Hilbert space # and
let UP be the polar decomposition of T. Then a) U is a power partial isometry,
b) the operators in the sequence {(U*\EPTU" ), commute with one amnother,
and, c) the polar decomposition of T" is U"|[P(U*PU)...(T* "' PU],
n=1,2,...

Proof. We use induction to prove ¢) and the following variants of
a) and b): a’) for each positive integer m, U is a partial isometry for all
k< n; and b') for each positive integer », the operators in the gequence
{(U"PUMZZE commute with one another.

Since there is nothing to prove in case # = 1, we pass to the induction,
step and assume that assertions a’), b’), and ¢) all hold for gome positive
integer n > 2.

To see that a’) holds at n+1, we note that the induction hypothesis
¢) implies that F,(U) = F,(T) and that (2.4) implies that ¥, (U) commutes
with B(T) = E(U). Applying Lemma 2 of [5], one hag that U™ = U U*
is a partial isometry.
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To prove that b’) holds at n+1, we need to show that for k = 0, ...

<oy =1, (U"Y¥PU* commutes with (U*)"PU" For this, observe that
the induction hypothesis ¢) together with (2.5) imply that for % < =,
F(T) = Fy(U) and that F,(U) commutes with P. Using the induction

hypothesis b’), we obtain the following equation which is valid for 1 < %
< n-—1.

[(TVPUILTPU] = (VP (D) (TP U] T*
= (T T OILUPUPHIPT = (U*F[(T*—*PU+)P U*
= (U*'PUH[PF(D)]U* = (0" PUI[0X(U*)1PU*
= (T PUML(T"PTH).

To complete the induction argument for b’), we must show that P
commutes with (U*)"PU"; but for this, it suffices to show that
UPU* and (U)"*PU"" commute sinee P[(U*)"PU"] = U*(UPT*)x
x((T*)"LPU™") U, whereas, [(U*"PU™P = U*[(U*)"*PU*][UP U*] U.
Next, observe that the induction hypothesis ¢) implies that F(U) = I, (T)
for 0 < & < n, and.so, by (2.8), we have [(U*):PU*]? = (U PF,(U)PU*
= (U"P*[F,(U) U*] = (U*)*P* U*, which shows that (U**PU* is the
unique non-negative square root of (U*Y*P?U*. Similarly, UPU* is the
unique non-negative square root of UP®TU* = TT™. Thus, to complete
the induction on bh’) we need only show that TT* commutes with
(U*y"1P2y»-'. The induction hypothesis ¢) implies that

[(TT*) (( U*)n—lljg Un—l)i]((T*)n—lTn-—l) — (TT*)((T*>"T")
= (T*"I"{(TT") = (T PO (T T (T
= (U P U (LT Y,

so that TT* and (U")"'P:U™' commute on the final space of
(I*y"-1T"!. Next, we note that the induction hypothesis implies that
ker I™ = ker U". 8ince U"f = 0, fe o#, if and only if U 'feker U, and
gince ker U = kerP, it follows that ker(1™) = ker(PU"'). Upon tak-
ing orthogonal complements and recalling (2.2), we see that the initial
space of (U™**P2U" is the initial space of (T")"T™. Invoking (2.2)
again and using (2.3) and the fact that (T%)"*I" ig Hermitian, we
gee that the initial space of (U*)*~*P* U™ * iy contained in the final space
of (T*"~*T™'. This last inclusion implies that 77T commutes with
(U*y-1P2U™ ! on all of 2. Thus, b’) holds at #--1.

Tinally, to show that ¢) holds at n--1, we need to show that T+
= UM P(U*PU) ... (U*"PU")] and that the kernel of I™' iy the
kernel of U™*'. Using the induction hypothesis ¢) together with the fact
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that b’) holds at n-1 we may conclude that

((U*)n lPUn— )(U*)nPUﬂ]

= U"H[((T"PUMP(U*PT) ... (U*—1PU™)
= U(U“‘(U*)")P[U"P(U*PU) ((U”‘)"‘lPU”'l)]
= U[F,(T)JP[UP(U*PT) ... (U PU*)
= UP[F,(T)1T"

= UPT" = T+,

U [P(T*PT) .

To complete the proof, we apply the induction hypothesis o) and
the result of the preceding paragraph to obtain
(THy e+t = (T*yn P
[Ty PO .. A(U*PU)P|(U*"P*U*[P(U*PT) ..
= PU*PUY ... (T* P U™ (U P2 U
= ((Z"y ™) (U PR T

. (( U*)n—-IP Un—-—l”

Since the two factors in this last product are commuting Hermitian
operators, an elementary application of the gpectral theorem shows that
the kernel of the product is the (closed) span of the kernels of (T*)y*T"
and (U*"P*U". But we bave ker((T*)"I™) = kerT™ == ker U" by the
induction hypothesis. Since ker U" < ker[(U*)"P*U"], it follows that
the kernel of (T%*)"*'T™+! is the kernel of (U*)"P?U™. Arguing as we did
above, we find that ker ((U*)"P* U") = ker(PU") = ker U"*'. Thus o) holds
at w41 and the proof of Theorem I is complete.

In [5], the authors show that every power partial isometry may be
uniquely represented as the direct sum of a unitary operator, a pure
isometry, a pure co-isometry, and a direct sum of nilpotent power partial
isometries. This result, together Wlth Theorem I, motivates the following
definition.

DerINITION 2.1. Let T be a centered operator with polar decompo-
sition. UP. Then T will be called a type I (resp., type X1, type III, type IV)
centered operator in case U i3 a pure isometry (resp., & pure co-isometry,
a direct sum of nilpotent power partial isometries, a unitary operator).
If U is a nilpotent power partial isometry of index n, then 7' will be called
a type III, centered operator.

Let s# be a Hilbert space and let {4,}5., be a sequence of mutually
commuting, quasi-invertible, non-negative operators, with sup|d,| < oo.
We define operators C;,¢ =1,2,3, by the following matrices acting
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on. suitable direct sums of copies of s#:

00 0 0 7]
A, 0 0 0
(2.6) Ci=10 4,0 0 ,
0 0 4,0
[0 4,0 0 0...]
@.1) 0,=|0 0 4.0 0. ’
0 0 0 4, 0..
and
=0 0 0...0 0
4,0 0 0
(2.8) Op= [0 400 0
0 ’ .
[ i ... 04,,0

Tlementary computations reveal that Oy (resp., 0, 0,) is a type I (resp.,
type IT, type IIIL,) centered operator. The next theorem shows that our
clagsification of centered operators is exhaustive and that these examples
are canonical.

TarorREM II. Let T' be a centered operator on a Hilbert space #. Then
may be written uniquely as # = HyPH DA 111DH v where #n reduces
T and T|#y is a type N centered operator, N = I, XX, IIT, IV. The space

Ay may be written uniquely as Ky = D) @ vrr,, where each Hyyy reduces
Ml

T and T\, 8 @ type 11T, centered operator. Tinally, if T is a type I
(resp., type II, ltype XIL,) centered operator, then T is unitarily equivalent
to am operator of the form (2.6) (resp., (2.7), (2.8)), where the A, are commuting,
quasi-invertible, non-negative operators.

Proof. Let UP be the polar decomposition of 7. By Theorem I,
U is a power partial isometry satisfying E,(U) = E,(T) and F.(T)
=(T), t=1,2,3,... According to the main result of [5], we may
uniquely decompose # into the direct sum of at most four subspaces,
H = DAy DA 1D 1y, ll of which reduce U, such that U|s#; is
a pure isometry, Ul|#y is a pure co-isometry, U|s#py; is a direct
sum of nilpotent power partial isometries, and Ul|s#yy is unitary.
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The proof given in [5] actually shows that the orthogonal projections
onto the subspace # 5, N = I, IL, IIL, IV, lie in the weakly closed algebra
generated by the family {H,(U), F(U)}i-, or, equivalently, the family
{B(T), T, (T)}2.,. Since each of the projections in this family eommutes
with P = (T*T)Y* (by (2.5)), it follows that s reduces 7, N =1I, II,
IIT, IV. Since the polar decomposition of T|s#y is (Ul#y)(P|#y),
N =1, II, ITI, IV, it follows from the definition that T'|#y is a centered
operator of type N, N =1I, II, III, IV. Noting that a subspace which
reduces 7 must also reduce U, we observe that the uniqueness portion
of the Halmos—Wallen decomposition. implies that of our decomposition.

Since the proof of the assertion concerning the decomposition of sy,
reduces to the corresponding result for power partial isometries, we shall
omit it.

If T is type I, then U is a pure isometry by definition. Therefore,
it & = (Us#)*, then there is a Hilbert space isomorphism W from #
onto EREDED... such that the matrix of WUW™ with respect to the
direct sum has I,’s on the first subdiagonal and zeros elsewhere. Since
the projections onto the summand in #@E® ... may be expressed as
Boolean combinations of the projections {WH, (U)W}, and since
each of these commutey with WPW=* (Theorem I and (2.5)), it follows

_that the matrix of WPW relative to this decomposition is a diagonal
matrix with. non-negative entries {d;}j.;. Hence, the matrix represen-
tation of T relative to this decomposition has the form (2.6). Since H(P)
= B(U) = ##, each 4, is quasi-invertible. Finally, since the matrix of
W(U"P(U*")W~" is the matrix diag(0,...,0,4,,4,,...) (n zeros),
Theorem I implies that the 4,’s commute. ’

‘We conclude the proof of Theorem II at this point because the remain-
ning assertions are easily proved with minor variations of the proof just
completed.

§ 3. Type IV centered operators. We omit the proof of the following
lemma which is a variant of Theorem I.

Lmvma 3.1, Let T' be a quasi-invertible operator with polar decomposition
UP. Then T is a (type IV) centered operator of and only if the operalors
(U PU™. ., commute with one another.

If T' i8 a quasi-invertible operator with polar decomposition UP,
then we shall denote the 0*-algebra (resp., von Neumann algebra) gen-
erated by {(U*)"PU™5._. and the identity operator by &, (resp., Zp).
For APy we define a(4) = UAU". Then o is an automorphism of Z
and o(Py) = Py. We shall refer to « as the conjugation of 2, (or of #y)
effected by U. Note that by Lemma 3.1 & is commutative if and only
if T'is centered. This observation coupled with the analysis in [13] suggests
a solution to the problem of representing type IV centered operators.
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Recall that a commutative von Neumann algebra has uniform multi-
plicity m in case it is unitaxily equivalent to an n-fold copy of a maximal
abelian von Neumann algebra (ef. [117]).

DEFINTITON 3.2. A type IV centered operator T will be called. a type TV,
centered operator provided that # has uniform multiplicity n.

Lmyovis 8.3, Let T' be a type IV centered operator on a Hilbert space 2,
let {Bj}icp be the family of mawimal projections of wniform multiplicity
in Pp, and let n; be the multiplicity of Py| B#. Then B reduces T and
T\By# is a type IV,, centered operator. If Ty is a type IV centered operator
on & Hilbert space #y, and if {T}};,s is the family of mawmimal projections
of uniform multiplicity in 9’2,'.1, then T and T, are unitarily equivalent if
and only if there is @ one-to-one function o from S onto F such that for
each ie S, T\ B is unitarily equivalent to Ty | Fopyt'y .

Proof. Write UP for the polar decomposition of T and observe that
since the projections ; are unitary invariants for 2, and since U*#y U
= Py, it follows that U, and hence 7, is reduced by each E#. Since
the polar decomposition of T'| W5 is (U|E,;#)(P|B#, it follows that
T'|E,s is a type IV, centered operator.

One half of the second part of the assertion is trivial. For the other
half, let W be a Hilbert space isomorphism from s# onto #, such that
WIW™ =1,. If T, =P, U, is the polar factorization of T, then it
follows easily that WPW~' = P,, and hence, that WUW™' = U,. Thus,
WPy W = %’,1, and since {H;};., and {F;}; s are unitary invariants
for # and &y, , respectively, there is a one-to-one function ¢ from # onto
F such that WE,W™ = F,; for every ie.#. It follows that W|HE#
effects & unitary equivalence between T'|H# and T,|F,,s#,, and the
proof of the lemma is complete.

Although there may be many ways in which one may express a type IV
centered operator as a direct sum of type IV, centered operators, the
lemma provides one which is both canonical and a unitary invariant
for the operator. Accordingly, we shall refer to the decomposition in
Lemma 3.3 as the canonical decomposition of a type IV centered operator
into & direct sum of type IV, centered operators.

In order to avoid uninteresting technical complications we shall
agsume for the remainder of this paper that oll’ Hilbert spaces under consi-
deration are separable. The interested reader will find that with sufficient
care, our analysis may be modified to handle the non-separable case as
well.

Suppose that X is a compact Hausdorff space, that = is a homeomor-
phism from X onto X, and that u is a measure on X (all measures considered
are aggumed to be positive, regular, and Borel). Recall that u is called
quast-invariant (with respect to ) in case u and wov have the same null
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sets. It & is a Hilbert space, then LZ(u) will denote the Hilbert space
of all measurable #-valued functions on X which are square-integrable
with respect to w. If e L™ (u), then M, will denote the multiplication
operator on L} (u) defined by (M,f)(z) = @(x)f(z), fe Li(p). An operator
A on Lj(u) is called decomposable in case there is a bounded measurable
function A (z) from X into the algebra of operators on & such that
(Af) (@) = A (2)f(@) a.e. (u), fe L%(u). Recall that the algebra of decom-
posable operators is the commutant of the algebra of multiplication
operators. '
TeroreM III. Let T be a type IV, centered operator on a Hilbert space i,
let UP be its polar decomposition, let X be the maximal ideal space of Py, and
let I' denote the Gelfand transform Py onto C(X). Then there exists 1) a homeo-
morphism © of X onto X, 2) o finite quasi-invariant measure u on X, 3) an
n-dimensional Hilbert space &, 4) a decomposable unitary operator @ on
L% (u), and B) o Hilbert space isomorphism W from 3 owto L (u) such
that WIW ™ = O8 My, where § is the unitary operator on L (u) given by

(3.1) (8) (@) = flz(@)(d(uov) [du)” (2), feLs(p).

Proof. Recall that a, the conjugation effected by U, is an awuto-
morphism of #p. Therefore o = I'al"™* is an automorphism of O(X),
and so there is a homeomorphism = from X onto X such that a(p) = goz
for all p in C(X). Hence we have
(3.2) NUATY = [I'(4)]or, Ae&Py.

By hiypothesis, #7 has uniform multiplicity ». Thus there is a finite measure
uon X, an n-dimensional Hilbert space &, and a Hilbert space isomorphism
W from # onto L% (k) such that

(3.3) WAW—l = MI'(A)? AE@T'

Putting T = WUWY, (3.2) and (3.3) yield '

(3.4) UM, 0* = M,,, ¢<0(X).

Since p is regular, (3.4) persists when ¢e 0(X) is replaced by a function
in L*(p) and this implies that x is quasi-invariant. It follows that §,
defined by (3.1), is a well-defined unitary operator on Ii(u) satistying
(3.5) SM8" = My, ¢eI®(u).

Setting @ = ﬁS*, while noting that (3.4) and (3.5) imply that @ commutes

with all multiplication operators, we may conclude that WIW™* = J.M far]
= O8M ), and that the proof is complete.
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§ 4. Unitary invariants. Our objective in this section is to establish
a complete set of unitary invariants for centered operators in terms of
the parameters which enter into their canomical representation. First
of all observe that two centered operators are unitarily equivalent if
and only if the various summands (type I, type LT, type IIL,, and type IV,)
in the canonical decomposition of each are unitarily equivalent. Thus
we may restrict our attention to centered operators of pure type. The
following proposition is essentially due to Lambert [7] and so its proof
will be omitted.

Provosxrion 4.1, For ¢ =1,2, let T, be a type I (resp., type II,
type II1,,) centered operator on the Hilbert space # ;. Consider T; in its matriz
form (2.6) (resp., (2.7), (2.8)) and let the non-zero entries for T, be AP.
Then Ty and Ty are unitarily equivalent if and only if for each &k, AL and
AP are unitarily equivalent.

Thus the problem of determining a complete set of unitary invariants
for centered operators reduces to that for type IV, centered operators.
To present our solution, we need some additional terminology. Let X
be a compact Hausdorff space, let v be a homeomorphism of X onto X,
let 1 be a quasi-invariant measure on X, let & be a Hilbert space and let
8§ be the unitary operator on I%(u) defined by (3.1). A funetion @™ from
the integers to the space of decomposable unitary operators on
Lj(u) is called a cocycle on ILi(u) (relative to § or =) in case O7+™
= G (§rOM (8*"). A cocycle @™ is called a coboundary in cage there is
& decomposable unitary operator B on L%(u) such that 6™ = B(S" B*(§*)").
Finally, two cocycles @@ and ¥™ are called cohomologous in case there
is a coboundary B(S"B*(8*)") such that 6™ = BY®§"B*(§")") for
all n.

Unless dimé& =1, the set of cocycles does not form a group under
operator multiplication. However, in any cage the relation of being coho-
mologous is an equivalence relation on the set of cocycles; and, therefore,
we shall refer to the equivalence class of a cocycle as its cohomology class.
To understand cocycles a little better, obgerve that if @™ is one and
if U = 00, then U" = @M 8" Thus a cocycle is completely determined
by its value at 1. Observe also that another cocycle ¥™ ig cohomologous
to @™ if and only if there is a decomposable unitary operator B with
effects a unitary equivalence between &M and PWS. In particular,

O™ i5 a coboundary if and only if there is a decomposable unitary operator

which cffects a unitary equivalence between ™S and §. We refer the
reader to Mackey’s article [9] for further discussions about cocycles.

TrEoREM IV. Tor 4 = 1,2, let T; be a type IV, centered operator on
the Hilbert space 3¢, let U,P; be the polar decomposition of Ty, and let
X, Iy, vy, elo., be the objects associated with T'; in Theorem III. Then T'y
18 unitarily equivalent to T'y if and only if there is a homeomorphism o from
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X, onto X, such that 1) I'y(Py) = [I(P,)]oo, 2) 0oty = 1,00, 3) 400
and py have the same null sets, and 4) if O, is determined by the function
O,(x), i =1, 2, and if O, is the decomposable operator on sz(/,ag) determined
by V,[0.(c@)] V57, where Vy is a Hilbert space isomorphism from &y
onto &,, then the cocydles delermined by O, and O, are cohomologous.

Proof. Note that since each T; is type IV,, dimé&, = n = dimé,
by definition, and so 4) makes sense. Suppose W is a Hilbert space iso-
morphism from s#; and 2, such that WI,W~' = T,. Then for all =,
WULP,(UT)'W™ = UpPy(U;)", and we find that W effects a spatial
igomorphism between £y, and Py, Arguing ag in Section 3, there is a homeo-
morphism o from X, onto X, such that I'(WAW™) = [I'(4)]oa,
AeZy,. This and (3.2) yield [I3(4)]o(00my) = [Iy(4)]0(%,00), dey,.
These two equations clearly yield 1) and 2).

For the rest of the proof, we shall regard W as a Hilbert space iso-
morphism from I (u,) onto L%, (). Then, from what has been shown
so far, we have WM W = M,,,, pe O(X,). But, as in §3, this implies
that g,00 and u, have the same null sets. This proves 3)

For 4), define V on L} (u;) by

(4.1) Vi =[Vo(foo)l(d(u:00)/du)”,  fe L, (1)

where V, is a Hilbert space isomorphism from &, onto &,. From what
has been shown so far, it follows that V is a Hilbert space isomorphism
from L (u,) onto L, (4s) which satisties the following three equations:

(4.2) VM,V = M,,, ¢ec0(X);
(4.3) V&V = 84

and

(4.4) Vo, v =6,

where (:)1 ig defined in 4). Equaitions (4.1) and (4.2) imply that B = Wy-!
commutes with all multiplication operators on Lf,z (us) and go is decom-
posable. Since U, is 6;8; (i =1, 2) in the representation provided by
Theorem IIT, W68, W™ = 0,8,. Hence (¢.3) and (4.4) imply that
BOISQB*‘S;" = (WV-(8,V)(V8, VYW 8 = W(V-10, V)8, w18y
= W(O,8)W™8; = @nszﬁ‘r = 0,;
and this verifies 4). :
Oonvergely, suppose that there is a homeomorphism o from X, onto
. a;pd 2 ":E[llbert space isomorphism V, from &, onto &, satisfying 1)—4).
If Vis 2deﬁned by (4.1), then V is a Hilbert space isomorphism from. Lf,l (141)
onto L,z(/ug} which satisfies (4.2), (4.3), and (4.4). By 4), there is a decom-
posable unitary operator B on I}, (u;) such that BO,S,B*S! = @,.
Therefore, if W = BV, then W is a Hilbert space isomorphism from

icm

Centered operators 261

Ly (@) onto Lj, such that WO 8, M py W™ = 0,8, Mpyp,; and this
completes the proof.

§ 5. Irreducibility. To determine whether or not a centered operator
ig irreducible, it clearly suffices to restrict one’s attention to operators
of pure type. The analysis in [7] shows that a type I, II, or III, centered
operator is irreducible if and only if max(dim (kerT), dim (kerT™)) = 1.
Thus it suffices to consider type IV centered operators. For these, we need
gome more terminology.

Let X be a compact Hausdorff space, let v be a homeomorphism
of X onto X, and let x be a quasi-invariant measure. Suppose also that &
is a Hilbert space which is written as the direct sum of two subspaces,
& = &4@® &y Then, in the obvious way we consider L;i(y) as a subspace
of Lj(p), and the equation Lj(u) = Lj, (1)®Lp,(u) is valid. Next, let S
(vesp., 8y, 8,) be the unitary operator on Lfj(u) (resp., L, (u), L, (1))
defined by (3.1), and note that § = §,®8,. Finally, let &, be a decom-
posable unitary operator on Lf;.i(,u), 9 =1,2, and set @ = O,06,. Then
0ig a decomposable unitary operator on L} (u) and we shall call the cocycle
it determines the direct sum of the cocycles determined by @, and @,.
A cocycle cohomologous to the direct sum of two coeycles will be called
reducible and a cocycle which is not reducible will be called irreducible.
We note in passing that irreducible cocycles do indeed exist [6].(")

TrmoreM V. Let T be o type IV, ceniered operator. In the notation
of Theorem XX, write T as O8M rpy acting on Ly (p). Then T is irreducible
if and only if w is ergodic and the cocycle determined by O dis irreducible.

Proof. Since the multiplication operator detérmined by an invariant
function commutes with @SM pp,, ergodiciby is clearly necessary for T
to be irreducible. Likewise, since the cohomology class of the cocycle
determined by @ is a unitary invariant for T, the irreducibility of the
cocycle iy clearly necessary for T to be irreducible. Conversely, suppose u
is ergodic and that the cocycle determined by @ is irreducible, and let @
be a non-zero projection which commutes with @S rp,. Then ¢ commutes
with @8 and all multiplieation operators on L% (u) and so is decomposable.
Moreover, if @ is determined by the projection-valued function @ (),
then )

Q (@) = [(O8)Q(8*0")](z) = O)Q((®) 6" (x) a.e. (u)

where @(x) is the unitary-valued function which determines @. This
equation shows that the measurable functions which assign to each

() Added in proof. Recently, 8. C. Bagchi, Joseph Mathew and M. G. Nad-
karni (On systems of émprimitivity on locally compact abelian groups with dense actions,
Indian Statistical Institute Technical Report No. Math—Stat [21/73) have exhibited
a general method for construeting irreducible cocycles with values on Hilbert spaces
of arbitrary dimension.
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the dimension and the condimension of the space §(«)# are invariant;
and since y is ergodic, they must be constant. Hence there are orthogonal
subspaces &, and &, such that & = &,0 &,, and there is a decomposable
unitary operator B on L (u) (determined by the unitary function B(z))
such that B(z)(Q(#)8) = &, and B(x)(Q(x)8)* = &, a.e. (u). It follows
that the cocycle determined by BOSBE*S* is the direct sum of cocycles
on L‘}l (#) and Lf,,2 (). If &, is not the zero space, then we have contra-
dicted the hypothesis on @. Hence we may conclude that &, = {0}, @ is
the identity, and that the proof is complete.

§ 6. Concluding remarks.

(6.1). If T is an operator on a Hilbert space #, let &/, be the weakly
closed algebra generated by T, let s/, denote the commutant of 7 and
let oy denote the commutant of /5. In [12] Shields and Wallen showed
that if T is a unilateral shift (with non-zero weights), then s/, = op.
On the other hand, Lambert and Turner [8]have exhibited type I centered
operators 7 such that ofp 5 ofp. It is therefore matural to ask: For
which centered operators T does fy = sy or gl '

(6.2). In both [3] and [10], the authors have shown (independently)
that every hyponormal operator 7 such that TT* and T*T commute
hag a proper invariant subspace. In particular, every hyponormal centered
operator has invariant subspaces. On the other hand, the Bishop operator
is centered and is one of the leading candidates for an operator without
a proper invariant subspace.(*) Therefore the following question may
be difficult: Which centered operators have proper invariant subspaces?

(6.3). Here is an analogy which may be worth pursuing: Weighted
shifts are to centered operators what diagonal operators are to normal
operators. We call an operator which is the direct sum of diagonal operators
(forward and backward), unilateral weighted shifts, and bilateral weighted
shifts a basic weighted shift. The following question is due to P. R. Halmos:
Are the centered operators the closure (in the uniform operator topology)
of the basic weighted shifts?

(6.4). It would be interesting to characterize the intersection of the
clasy of centered operators with other, more familiar, clagses of operators.
For example, an analysis due to Bastian [2] shows that the only irreducible,
hyponormal, type IV, centered operatovs are bilateral weighted shifts.

(6.5). Finally, observe that if T is a quasi-invertible operator on
& Hilbert space o with polar decomposition UP, then, as we noted. in § 3, U
effects an automorphism of #,, via conjugation. Thus, if 7 is actually invert-

(*) Added in proof. Recently A. M. Davie (Invariant subspaces for Bishop’s
operator, preprint) has sh wn that a large number of Bishop’s operators have invariant
subrpaces.
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ible, the C™-algebra generated by T' contains U and P and may be regarded
a§ & covariant representation of the covariance algebra generated by 25
and the automorphism [1, 13]. This remark, albeit a bit banal, puty into
evidence certain structure which hag not been exploited heretofore in
the analysis of an operator in terms of the C*-algebra it generates, and
which may prove useful in future investigations.
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