s-Numbers of operators in Banach spaces

by

ALBRECHT PIETSCH (Jena)

Abstract. For each operator between Banach spaces one can define the sequence of approximation numbers, Kolmogorov numbers, Gelfand numbers, etc. As an unification we present an axiomatic theory of the so-called s-numbers, and we discuss related ideas of operators.

As has been shown in the famous book of I. Z. Gochberg and M. G. Krejn [1] the s-numbers are an important tool in the spectral theory of Hilbert space (cf. [18]). The s-number $s_n(S)$ of a compact operator S from an infinite dimensional Hilbert space H into itself is defined as the nth eigenvalue of the operator $|S| := (S^*S)^{1/2}$.

Particularly, the s-numbers can be used to describe the ideals in the ring $L(H, H)$ of operators. Let $S_c(H, H)$ be the closed ideal of compact operators. Then the most interesting ideals discovered by J. v. Neumann and R. Schatten are defined by

$$S_p(H, H) := \{S : S \in S_c(H, H) : \sum_{n=1}^{\infty} s_n(S)^p < \infty\}, \quad 0 < p < \infty.$$

For $p = 1$ we obtain the trace class of operators, and $S_1(H, H)$ is the ideal of Hilbert–Schmidt operators which are characterized by the inequality

$$\sum_{i, k} |(S_{ek}, f_k)|^2 < \infty$$

for arbitrary complete orthonormal systems (e_k) and (f_k).

The purpose of this paper is to present an axiomatic theory of s-numbers of operators in Banach spaces. Since we want to give a general survey, some known results for special s-numbers are reproduced.

Finally, I wish to thank my student F. Fiedler for his help by the elaboration of some proofs and H. Junek for a simpler version of the proof of Lemma 7.2.
0. Prerequisites. Let E be a real or complex Banach space with the closed unit ball B_E. The identity map of E is denoted by I_E.

A subspace is a closed linear subset. The embedding map of a subspace M into E is denoted by J_M, and the canonical map of E onto the quotient space E/M is denoted by Q_M.

An operator is a bounded linear map. Let L be the class of all operators between Banach spaces. The set of those operators which map E into F is denoted by $L(E, F)$.

Let $\dim(M)$ be the dimension of the subspace M, and let $\operatorname{codim}(M) = \dim(E/M)$ be the codimension. If the operator S is of finite rank, then the dimension of the image is denoted by $\dim(S)$.

For $a \in E^\ast$ (dual Banach space) and $y \in F$, let $a \otimes y$ be the map: $x \mapsto (x, a(x))y$.

Next we state some important lemmas which are used in the following.

Lemma 0.1. (Principle of local reflexivity, cf. [15]). Let M be a finite dimensional subspace of E'. If $s > 0$, then there exists $R \in L(M, E)$ such that

$$\|R\| \leq 1 + s\quad \text{and}\quad R(J_M x) = x \quad \text{for all} \quad x \in E \cap J_M^{-1}(M)$$

where J_M denotes the canonical map of E into E'.

Lemma 0.2. (Cf. [7], p. 199). Let M and N be finite dimensional subspaces of E with $\dim(M) > \dim(N)$. Then there exists $x \in M$ such that

$$\|x\| \leq \|x\| = 1.$$

Lemma 0.3. (Cf. [9]). Let M be a subspace of E with $\dim(M) = m$. Then there exists a projection $P \in L(E, E)$ such that

$$M = P(E) \quad \text{and} \quad \|P\| \leq 2^m.$$

1. Axiomatic properties of s-numbers. For operators in Banach spaces there are several possibilities to define sequences of numbers which coincide with s-numbers in the case of Hilbert space. A report about such numbers was given in 1966 by B. S. Mitjagin and A. Pelczyński [11] at the Moscow Congress in 1966 (cf. [12]).

In the sequel we deal with an axiomatic theory of s-numbers. A map

$$s : S \to (s_n(S))$$

from L into the set of sequences of non-negative numbers is called an s-number function if the following conditions are satisfied ($n = 1, 2, \ldots)$:

1. $|S| = s_1(S) \geq s_2(S) \geq \ldots \geq 0$ for $S \in L$.
2. $s_n(S + T) \leq s_n(S) + |T|$ for $S, T \in L(E, F)$.
3. $s_n(RST) \leq |S| s_n(T)$ for $T \in L(E, F), S \in L(E, F), R \in L(F, E)$.
4. If $\dim(S) < n$ then $s_n(S) = 0$.
5. If $\dim(E) \geq n$ then $s_n(I_E) = 1$.

The number $s_n(S)$ is said to be the n-th s-number of the operator S.

Theorem 1.1. The s-numbers are continuous functions since

$$|s_n(S) - s_n(T)| \leq |S - T|$$

for $S, T \in L(E, F)$.

Proof. By (2) we have

$$s_n(S) \leq s_n(T) + |S - T|.$$

Furthermore the inverse statement of condition (4) is valid.

Theorem 1.2. If $s_n(S) = 0$ then $\dim(S) < n$.

Proof. The assertion is an easy consequence of (3), (5) and

Lemma 1.1. Let $S \in L(E, F)$. If $\dim(S) > n$ then there exist a Banach space G as well as operators $X \in L(G, E)$ and $B \in L(F, G)$ such that

$$I_G = BX \quad \text{and} \quad \dim(G) \geq n.$$

Proof. We choose $m_1, \ldots, m_n \in E$ such that s_{m_1}, \ldots, s_{m_n} are linearly independent. Then by the Hahn--Banach theorem there are $b_1, \ldots, b_n \in F$ with $(s_{m_i}, b_i) = \delta_{m_i}$. Let $G := \sum_{i=1}^n m_i^\ast$,

$$X(m_i) := \sum_{i=1}^n \xi_i m_i \quad \text{for} \quad (\xi_i) \in \ell_2,$$

and

$$B(y) := (y, b_i) \quad \text{for} \quad y \in F.$$

2. s-Numbers of operators in Hilbert space. Now we show that s-numbers of operators in a Hilbert space are determined uniquely by their axiomatic properties.

Theorem 2.1. Let $S \in L(H, F)$, and let $P(\cdot)$ be the spectral measure of the positive operator $|S| := (S^*S)^{\frac{1}{2}}$. Then

$$s_n(S) = \inf \{\sigma \geq 0 : \dim(P(\sigma, \infty)) < n\}$$

for each s-number function.

Proof. By the theorem of polar representation (cf. [11], p. 21; [17], p. 284) there is a partially isometric operator U such that

$$S = U|S| \quad \text{and} \quad S^* = U^* S.$$

Hence

$$s_n(S) = s_n(U|S|).$$

We set $a_{\alpha} := \inf \{x \geq 0 : \dim(P(\sigma, \infty)) < n\}$. If $\varepsilon > 0$ then from

$$|S| = \int \sigma P(d\sigma) = \int \sigma P(d\sigma) + \int \sigma P(d\sigma)$$

$$= \int \sigma P(d\sigma) = \int \sigma P(d\sigma) + \int \sigma P(d\sigma)$$

$$= \int \sigma P(d\sigma) = \int \sigma P(d\sigma) + \int \sigma P(d\sigma).$$
and
\[
\dim \left(\int_{a_n^{+}}^{a_n^{-}} \sigma_n(\sigma) \, d\sigma \right) < n
\]
we obtain
\[
s_n(|S|) \leq \int_{a_n^{+}}^{a_n^{-}} \sigma_n(\sigma) \, d\sigma + s_n \left(\int_{a_n^{+}}^{a_n^{-}} \sigma_n(\sigma) \, d\sigma \right) \leq s_n + \varepsilon.
\]
On the other hand, let \(s_n > \varepsilon > 0 \). Then
\[
P(s_n - \varepsilon, \infty) = \int_{s_n - \varepsilon}^{\infty} P(\sigma) \, d\sigma \leq s_n \int_{s_n - \varepsilon}^{\infty} \sigma^{-1} P(\sigma) \, d\sigma
\]
and
\[
\dim \left(\int_{s_n - \varepsilon}^{\infty} P(\sigma) \, d\sigma \right) \geq n
\]
imply
\[1 = s_n \left(\int_{s_n - \varepsilon}^{\infty} P(\sigma) \, d\sigma \right) \leq s_n \left(|S| \right) \int_{s_n - \varepsilon}^{\infty} \sigma^{-1} P(\sigma) \, d\sigma \leq s_n (|S|) (s_n - \varepsilon)^{-1}.
\]
So we have
\[s_n - \varepsilon \leq s_n (|S|) \leq s_n + \varepsilon \quad \text{for all } \varepsilon > 0.
\]
Corollary. Let \(S \in S_n(H, H) \). Then \(s_n(S) \) is the \(n \)-th eigenvalue of the positive operator \(|S|\).

3. **Approximation numbers and isomorphism numbers.** Now we present two examples of s-number functions.

For every operator \(S \in L(E, F) \) the approximation numbers are defined by
\[a_n(\varepsilon) := \inf \left\{ \|S - A\| : A \in L(E, F), \dim(A) < n \right\}.
\]

Theorem 3.1. The map
\[\text{app} : S \rightarrow a_n(S)\]
is an s-number function.

Proof. Since the other properties are trivial we prove the condition (5). Let us assume \(a_n(I_E) < 1 \). Then there exists \(A \in L(E, E) \) such that \(\|I_E - A\| < 1 \) and \(\dim(A) < n \). Consequently, \(A = I_E - (I_E - A) \) is invertible by the Neumann series, and we have \(\dim(A) > n \). Contradiction.

Theorem 3.2. The approximation numbers are the largest s-numbers.

Proof. Let \(S \in L(E, F) \). Then for each s-number function and \(A \in L(E, F) \) with \(\dim(A) < n \) we have
\[s_n(S) \leq s_n(A) + \|S - A\| = \|S - A\|.
\]
Hence
\[s_n(S) \leq a_n(S) \quad \text{for all } S \in L.
\]

For every operator \(S \in L(E, F) \) the isomorphism numbers are defined as follows. If \(\dim(S) < n \) we set \(i_n(S) := 0 \). If \(\dim(S) \geq n \) then by Lemma 1.1 there exist a Banach space \(G \) as well as operators \(X \in L(G, E) \) and \(B \in L(F, G) \) such that
\[\mathcal{I}_G = BSX \quad \text{and} \quad \dim(G) \geq n.
\]
In this case let
\[i_n(S) := \sup\{\|B^{-1} X^{-1}\|^{-1}\},
\]
where the supremum is taken over all possibilities.

Theorem 3.3. The map
\[\text{iso} : S \rightarrow i_n(S)\]
is an s-number function.

Proof. Since the other properties are trivial, we prove
\[i_n(S + T) \leq i_n(S) + \|T\| \quad \text{for } S, T \in L(E, F).
\]
We may assume \(i_n(S + T) > \|T\| \). If \(0 < \varepsilon < i_n(S + T) - \|T\| \) then there exist a Banach space \(G \) as well as operators \(X \in L(G, E) \) and \(B \in L(F, G) \) such that
\[\mathcal{I}_G = B(S + T) X, \quad \dim(G) \geq n, \quad \|B^{-1} X^{-1}\|^{-1} \geq i_n(S + T) - \varepsilon > \|T\|.
\]
Since \(\|B TX\| < 1 \), the operator
\[BSX = B(S + T) X - BTX = \mathcal{I}_G - B TX\]
is invertible. From
\[\mathcal{I}_G = (I_G - B TX)^{-1} BSX \quad \text{and} \quad \|I_G - B TX\|^{-1} \leq (1 - \|B TX\|)^{-1}
\]
it follows that
\[i_n(S) \geq \|I_G - B TX\|^{-1} \|B^{-1} X^{-1}\|^{-1}
\]
\[\geq (1 - \|B TX\|)\|B^{-1} X^{-1}\|^{-1}
\]
\[\geq \|B^{-1} X^{-1}\|^{-1} - \|T\|
\]
\[\geq i_n(S + T) - \varepsilon - \|T\|.
\]
Consequently,
\[i_n(S + T) \leq i_n(S) + \|T\| + \varepsilon.
\]

Theorem 3.4. The isomorphism numbers are the smallest s-numbers.

Proof. Let \(S \in L(E, F) \), \(X \in L(G, E) \) and \(B \in L(F, G) \) such that
\[\mathcal{I}_G = BSX \quad \text{and} \quad \dim(G) \geq n.
\]
Then for each s-number function we have
\[1 = i_n(I_G) \leq \|B\| i_n(S) \|X\|.
\]
Hence
\[i_n(S) \leq i_n(S) \quad \text{for all } S \in L.
\]
4. Injective s-numbers. An s-number function \(s \) is called injective if the following property is satisfied:

Let \(M \) be a subspace of \(F \); then

\[
\sigma_n(J^F_S) = \sigma_n(S) \quad \text{for all } S \in L(E, M).
\]

In other words, injectivity means that the s-numbers \(\sigma_n(S) \) do not depend on the codomain of \(S \).

For every operator \(S \in L(E, F) \) the Gelfand numbers are defined by

\[
\sigma_n(S) := \inf \{ \| SJ^F_M \| : \dim(M) < n \}.
\]

Theorem 4.1. The map

\[
gel: S \rightarrow \{ \sigma_n(S) \}
\]

is an injective s-number function.

The proof is left to the reader.

A Banach space \(F \) is said to have the extension property if for every operator \(S \) mapping a subspace \(M \) of an arbitrary Banach space \(E \) into \(F \) there is an extension \(S \) from \(E \) into \(F \) such that \(\| S \| = \| S \| \).

Theorem 4.2. If \(F \) has the extension property then

\[
\sigma_n(S) = \sigma_n(S) \quad \text{for all } S \in L(E, F).
\]

Proof. Let \(S \in L(E, F) \). Since \(\sigma_n(S) \) are the largest s-numbers, it is enough to show \(\sigma_n(S) \leq \sigma_n(S) \).

If \(\varepsilon > 0 \) we choose a subspace \(M \) of \(E \) such that

\[
\| SJ^F_M \| \leq \sigma_n(S) + \varepsilon \quad \text{and} \quad \dim(M) < n.
\]

Then there exists an extension \(T \) of \(S \) with \(\| T \| = \| SJ^F_M \| \). We set \(A := S - T \). Since \(A \) is an operator, we have \(\dim(A) < n \). Hence

\[
\sigma_n(S) \leq \| S - A \| = \| T \| = \| SJ^F_M \| \leq \sigma_n(S) + \varepsilon.
\]

Every Banach space \(F \) is a subspace of a Banach space \(F^\infty \) which has the extension property. The embedding map of \(F \) into \(F^\infty \) is denoted by \(J^F \).

Theorem 4.3. Let \(S \in L(E, F) \); then

\[
\sigma_n(S) = \sigma_n(J^F_S).
\]

Proof. From the injectivity of the Gelfand numbers and Theorem 4.2 it follows

\[
\sigma_n(S) = \sigma_n(J^F_S) = \sigma_n(J^F_S).
\]

Theorem 4.4. The Gelfand numbers are the largest injective s-numbers.

Proof. Let \(S \in L(E, F) \). Then for each injective s-number function \(\sigma_n(S) = \sigma_n(J^F_S) \leq \sigma_n(J^F_S) = \sigma_n(S) \).

Let \(S \in L(E, F) \). Then the modulus of injectivity is defined by

\[
j(S) := \sup \{ \varepsilon > 0 : \| S \| \geq \varepsilon \| S \| \}.
\]

Without proof we state the following lemmas.

Lemma 4.1. Let \(S, T \in L(E, F) \); then

\[
j(S + T) \leq j(S) + j(T).
\]

Lemma 4.2. Let \(T \in L(E, F) \) and \(S \in L(F, F) \); then

\[
j(ST) \leq \| S \| j(T).
\]

Moreover, if \(T \) is onto then

\[
j(ST) \leq j(S) \| T \|.
\]

For every operator \(S \in L(E, F) \) the Bernstein numbers are defined by

\[
u_n(S) := \sup \{ j(SF^M) : \dim(M) < n \}.
\]

Remark. It is enough to take the supremum over all subspaces \(M \) with \(\dim(M) = n \).

Theorem 4.5. The map

\[
bern: S \rightarrow \{ \nu_n(S) \}
\]

is an injective s-number function.

Proof. We only show

\[
u_n(RST) \leq \| R \| \nu_n(S) \| T \| \quad \text{for} \quad T \in L(E, E), \quad S \in L(E, F), \quad E \in L(F, F).
\]

Let \(0 < \varepsilon < \nu_n(RST) \). Then there is a subspace \(M \) of \(E \) such that

\[
u_n(RST) - \varepsilon \leq j(RSF^M) \quad \text{and} \quad \dim(M) = n.
\]

Let \(M := T(M) \), and let \(T \) be the restriction of \(T \) to \(M \) considered as a map into \(M \). Then

\[
RSTF^M = RSTF^M T \quad \text{and} \quad \| T \| \leq \| T \|.
\]
Since by Lemma 4.1

\[
0 < u_n(RST) - \varepsilon \leq j(RST)^{n}_{\varepsilon} |T_{\varepsilon}| \leq \|RST\| \|T_{\varepsilon}\|
\]

we have \(j(T_{\varepsilon}) > 0\). Hence \(T_{\varepsilon}\) is one-to-one, and we obtain \(\dim(M) \geq n\). Consequently, since \(T_{\varepsilon}\) is onto, Lemma 4.1 implies

\[
u_n(RST) - \varepsilon \leq j(RST)^{n}_{\varepsilon} |T_{\varepsilon}| \leq \|RST\| \|T_{\varepsilon}\| \leq \|RST\| u_n(S) |T_{\varepsilon}|
\]

Theorem 4.5. The Bernstein numbers are the smallest injective \(n\)-numbers.

Proof. Let \(S \in L(E, F)\). For each injective \(n\)-number function we show that \(\dim(M) \geq n\) implies \(j(S)^{n}_{\varepsilon} \leq \varepsilon_n(S)\). This proves

\[
u_n(S) \leq \varepsilon_n(S) \quad \text{for all} \quad S \in L.
\]

We may assume \(j(S)^{n}_{\varepsilon} > 0\). Let \(M_{\varepsilon} := S(M)\). Then the restriction \(S_{\varepsilon}\) of \(S\) to \(M_{\varepsilon}\) considered as a map into \(M_{\varepsilon}\) is invertible, and we have

\[
\|S_{\varepsilon}^{-1}\| = j(S)^{n}_{\varepsilon}^{-1}.
\]

Now the conclusion follows from

\[
1 = \varepsilon_n(M_{\varepsilon}) \leq \varepsilon_n(S_{\varepsilon}) \|S_{\varepsilon}^{-1}\| = j(S)^{n}_{\varepsilon} \|S_{\varepsilon}^{-1}\| \leq \varepsilon_n(S) j(S)^{n}_{\varepsilon}^{-1}.
\]

3. Surjective \(n\)-numbers. An \(n\)-number function \(a\) is called surjective if the following property is satisfied:

Let \(E/\mathcal{N}\) be a quotient space of \(E\); then

\[
s_n(SQ_E^{\mathcal{N}}) = \varepsilon_n(S) \quad \text{for all} \quad S \in L(E/\mathcal{N}, F).
\]

In other words, surjectivity means that the \(n\)-numbers \(s_n(S)\) do not depend on the domain of \(S\).

For every operator \(S \in L(E, F)\) the Kolmogorov numbers are defined by

\[
d_n(S) := \inf \{\|Q_E^{\mathcal{N}} S\| : \dim(N) < n\}.
\]

Theorem 5.1. The map

\[
\text{kol} : S \rightarrow \{d_n(S)\}
\]

is a surjective \(n\)-number function.

The proof is left to the reader (cf. [13]).

A Banach space \(E\) is said to have the lifting property if for every operator \(S\), mapping \(E\) into a quotient space \(E/\mathcal{N}\) of an arbitrary Banach space \(F\), and for \(\varepsilon > 0\), there is a lifting \(S\) from \(E\) into \(F\) such that

\[
\|S\| < \varepsilon + \|S\|,
\]

Theorem 5.2. If \(E\) has the lifting property then

\[
d_n(S) = \varepsilon_n(S) \quad \text{for all} \quad S \in L(E, F).
\]

Proof. Let \(S \in L(E, F)\). Since \(\varepsilon_n(S)\) are the largest \(n\)-numbers, it is enough to show \(\varepsilon_n(S) \leq d_n(S)\).

If \(\varepsilon > 0\) we choose a subspace \(N\) of \(F\) such that

\[
\|Q_E^{\mathcal{N}} S\| = d_n(S) + \varepsilon \quad \text{and} \quad \dim(N) < n.
\]

Then there exists a lifting \(T \in L(E, F)\) of \(Q_E^{\mathcal{N}} S\) with \(\|T\| \leq (1 + \varepsilon) \|Q_E^{\mathcal{N}} S\|\).

We set \(A := S - T\). Since \(A\) is a \(N\)-dimensional operator, we have \(\dim(A) < n\).

Hence \(a_n(A) = \|S - A\| = (1 + \varepsilon) \|d_n(S + \varepsilon)\|\).

Every Banach space \(E\) is a quotient space of a Banach space \(E^\mathcal{N}\) which has the lifting property. The canonical map of \(E^\mathcal{N}\) onto \(E\) is denoted by \(Q\).

Theorem 5.3. Let \(S \in L(E, F)\); then

\[
d_n(S) = \varepsilon_n(SQ_E^{\mathcal{N}}).
\]

Proof. From the surjectivity of the Kolmogorov numbers and Theorem 5.2 it follows

\[
d_n(S) = \varepsilon_n(SQ_E^{\mathcal{N}}) = \varepsilon_n(SQ_E).
\]

Theorem 5.4. The Kolmogorov numbers are the largest surjective \(n\)-numbers.

Proof. Let \(S \in L(E, F)\). Then for each surjective \(n\)-number function we have

\[
s_n(S) = \varepsilon_n(SQ_E^{\mathcal{N}}) \leq \varepsilon_n(SQ_E) = d_n(S).
\]

Let \(S \in L(E, F)\). Then the modulus of surjectivity is defined by

\[
q(S) := \sup \{q \geq 0 : \{S(U) \neq q U\} \}.
\]

Lemma 5.1. Let \(S, T \in L(E, F)\); then

\[
q(S + T) \leq q(S) + q(T) + \|T\|.
\]
Proof. We may assume \(q(S+T) > \|T\|\). If \(0 < \varepsilon < q(S+T)-\|T\|\) we set \(q := q(S+T)-\varepsilon\). Let \(y \in U_F\). We choose inductively a sequence of elements \(x_n \in E\) such that

\[
Sx_1 + Tx_1 = (q-\|T\|)y \quad \text{and} \quad \|x_1\| \leq \frac{q-\|T\|}{\varepsilon},
\]

\[
Sx_2 + Tx_2 = Tx_1 \quad \text{and} \quad \|x_2\| \leq \frac{\|Tx_1\|}{\varepsilon},
\]

\[
Sx_{n+1} + Tx_{n+1} = Tx_n \quad \text{and} \quad \|x_{n+1}\| \leq \frac{\|Tx_n\|}{\varepsilon},
\]

Then

\[
\|x_n\| \leq \left(\frac{\|T\|}{\varepsilon}\right)^{n-1} \frac{q-\|T\|}{\varepsilon} \quad \text{for} \quad n = 1, 2, \ldots
\]

Thus, it is possible to define

\[a := \sum_{n=1}^{\infty} a_n,
\]

and we have

\[Sx = (q-\|T\|)y \quad \text{and} \quad \|x\| \leq 1.
\]

This proves \(S(U_F) \supset (q-\|T\|)U_F\). Consequently,

\[q(S) \geq q - \|T\| = q(S+T)-\|T\|-\varepsilon.
\]

Without proof we state

Lemma 5.2. Let \(T \in L(E,F)\) and \(S \in L(F,G)\); then

\[g(ST) \leq g(S)\|T\|.
\]

Moreover, if \(S\) is one-to-one then

\[g(ST) \leq \|S\|g(T).
\]

For every operator \(S \in L(E,F)\) the Mitiagin numbers are defined by

\[v_n(S) := \sup\{g(Q_{F_n}^S) : \text{codim}(N) \geq n\}.
\]

Remark. It is enough to take the supremum over all subspaces \(N\) with \(\text{codim}(N) = n\).

Theorem 5.5. The map

\[\text{mit: } S \mapsto (v_n(S))\]

is a surjective \(s\)-number function.
THEOREM 6.3 Let \(S \in L \) such that \(S \) is compact; then
\[
\|s_n(S)\| = \|s_n(S')\|.
\]

Proof. Using similar arguments as in the preceding proof we obtain
\[
\|s_n(S)\| \geq \|s_n(S')\|.
\]
To show the inverse inequality we need the compactness of \(S \).

If \(\varepsilon > 0 \) then we find \(x_1, \ldots, x_n \in U \) with
\[
S(U) \subseteq \bigcup_{i=1}^{n} (S_{x_i} + \varepsilon U_p)
\]
as well as a subspace \(N \) of \(F'' \) such that
\[
\|Q_{F''} s''\| \leq \|s_n(S)\| + \varepsilon
\]
and \(\dim(N) < n \).

Then there is a finite dimensional subspace \(M \) of \(F'' \) with \(N \subseteq M \) and \(J_P S_{x_i} M \) for \(i = 1, \ldots, n \).

By Lemma 6.1 there exists \(E \in L(M, F) \) such that
\[
\|E\| \leq 1 + \varepsilon
\]
and \(RD_P S_{x_i} = S_{x_i} \) for \(i = 1, \ldots, n \).

We set \(N_2 = R(N) \). Using the definition of the quotient norm on \(F''/N \), we choose \(x'_i \in N \) with
\[
\|s'' J_P x'_i - S_x x_i\| \leq \|Q_{F''} s''\| \leq \|s_n(S)\| + \varepsilon.
\]

Let \(x_i := R x'_i \). Then \(x_i \in N_2 \), and therefore
\[
\|Q_{F''} S_{x_i}\| = \|Q_{F''} J_P S_{x_i}\| = \|Q_{F''} J_P S_{x_i}\| \leq \|s'' J_P x'_i - S_x x_i\| \leq (1 + \varepsilon) \|s_n(S)\| + 2 \varepsilon.
\]

For each \(x \in U \) with some index \(i_x \) there holds
\[
\|s_n(S) - S_{x_x}\| \leq 2 \varepsilon.
\]

Consequently,
\[
\|Q_{F''} S_x x_i\| = \|Q_{F''} S_{x_x}\| \leq 1 + \varepsilon \|s_n(S')\| + 2 \varepsilon.
\]

This proves \(s_n(S) \leq s_n(S') \).

The proof of the following lemma is implicitly contained in [2], p. 62, or [31], p. 234.

LEMMA 6.1. Let \(S \in L \); then
\[
j(s) = q(S') \quad \text{and} \quad q(s) = j(S).
\]

THEOREM 6.4. Let \(S \in L \); then
\[
v_n(S) = u_n(S').
\]

Proof. Let \(N \) be a subspace of \(F \) with \(\text{codim}(N) = n \), and let \(M := \{b \in F' \mid \langle y, b \rangle = 0 \quad \text{for all} \quad y \in N \} \)

be the corresponding subspace in \(F' \) with \(\dim(M) = n \). Then by Lemma 6.1 we have
\[
q(Q_{F''} S) = J(S')^n S.
\]

Now the assertion follows using the same duality arguments as in the proof of Theorem 6.2.

Remark. It is unknown whether
\[
u_n(S) = v_n(S)
\]
holds for all \(S \in L \).

Finally we state the trivial

THEOREM 6.5. Let \(S \in L \); then
\[
u_n(S) = \varepsilon_n(S').
\]

7. \(s \)-Numbers of diagonal operators. In this section we compute the \(s \)-numbers of diagonal operators \(S \),
\[
S(x_1, \ldots, x_m) := (c_1 x_1, \ldots, c_m x_m)
\]
with \(c_1 \geq \ldots \geq c_m > 0 \),

mapping \(\ell^p \) onto \(\ell^q \). Since \(s_n(S) = 0 \) for \(n > m \), the following let \(n = 1, \ldots, m \).

THEOREM 7.1. If \(1 \leq p = q \leq \infty \) then
\[
s_n(S) = c_n
\]
for each \(s \)-number function.

Proof. Since \(\text{dim}(A) < n \) for
\[
A(x_1, \ldots, x_m) := (c_1 x_1, \ldots, c_m x_m) \leq (1 + \varepsilon) \|s_n(S')\| + 2 \varepsilon.
\]

We have \(s_n(S) \leq s_n(S) \leq \|s - A\| = c_n \).

One the other hand, let
\[
J(x_1, \ldots, x_m) := (x_1, \ldots, x_m, 0, \ldots, 0),
\]
and
\[
S(x_1, \ldots, x_m) := (c_1 x_1, \ldots, c_m x_m),
\]

Then \(S = QJS \), and therefore
\[
1 = s_n(J) \leq s_n(S) \|S_1\| \leq \|Q||s_n(S)\| \|S^{-1}\| \leq s_n(S) s_n^{-1}.
\]

Consequently,
\[
s_n(S) \geq c_n.
\]
To prove the following theorem we need two lemmas (cf. [9]).

Lemma 7.1. Let \(M \) be a subspace of \(\ell^p_n \) with \(\text{codim}(M) < n \); then there exists \(e = (e_1, \ldots, e_n) \in M \) with \(\|e\|_m = 1 \) such that the set
\[
K := \{ k : |e_k| < 1 \}
\]
has less than \(n \) elements.

Proof. We consider an extremum point \(e \in U_M \). Let us assume that \(K \) has at least \(n \) elements. If
\[
N := \{ x \in \ell^p_n : e_k = 0 \text{ for } k \notin K \}
\]
then \(\dim(N) \geq n \). Hence we find \(y \in M \cap N \) with \(\|y\|_m = 1 \). Since
\[
\varnothing := \max\{ |e_k| : k \in K \} < 1,
\]
we have
\[
e_k \neq 0 \quad \text{for } 0 < \delta < 1 - \varnothing.
\]
So \(e \) cannot be an extremum point of \(U_M \). Contradiction.

Lemma 7.2. If \(0 < q < p < \infty \), \(\mu_1, \ldots, \mu_{n+1} > 0 \), and \(|\xi_{n+1}| \leq |\xi_k| \) for \(k = 1, \ldots, n \), then
\[
\frac{\sum_{k=1}^{n+1} |\xi_k|^p \mu_k}{\sum_{k=1}^{n+1} |\xi_k|^q \mu_k}^{1/q} \geq \frac{\sum_{k=1}^{n} |\xi_k|^p \mu_k}{\sum_{k=1}^{n} |\xi_k|^q \mu_k}^{1/q}.
\]

Proof. We set
\[
a := \left(\frac{\sum_{k=1}^{n} |\xi_k|^p \mu_k}{\sum_{k=1}^{n+1} |\xi_k|^p \mu_k} \right)^{1/p}
\]
and \(\beta := \left(\frac{\sum_{k=1}^{n} |\xi_k|^q \mu_k}{\sum_{k=1}^{n+1} |\xi_k|^q \mu_k} \right)^{1/q} \).

From
\[
\frac{|\xi_k|}{|\xi_{n+1}|} \leq a \quad \text{for } k = 1, \ldots, n
\]
it follows
\[
\frac{|\xi_{n+1}|}{a} \leq \frac{|\xi_{n+1}|}{\beta}.
\]

Consequently,
\[
\frac{\sum_{k=1}^{n+1} |\xi_k|^p \mu_k}{\sum_{k=1}^{n+1} |\xi_k|^q \mu_k}^{1/q} \geq \frac{\sum_{k=1}^{n} |\xi_k|^p \mu_k}{\sum_{k=1}^{n} |\xi_k|^q \mu_k}^{1/q}.
\]

Theorem 7.2. If \(1 < q < p < \infty \) then
\[
a_p(\delta) = a_q(\delta) = d_p(\delta) = \left(\sum_{k=1}^{n} |\xi_k|^{1/p} \right)^{1/p}
\]
where \(1/p := 1/q + 1/p \).

Proof. Since \(\dim(M) < n \) for
\[
A(\xi_1, \ldots, \xi_n) := (\xi_1, \xi_2, \ldots, \xi_n, 0, \ldots, 0),
\]
we have
\[(a) \quad a_p(\delta) \leq \|S - \delta\| = \left(\sum_{k=1}^{n} |\xi_k|^{1/p} \right)^{1/p}.
\]

On the other hand, let \(M \) be an arbitrary subspace of \(\ell^p_n \) with \(\text{codim}(M) < n \). If
\[
D(\xi_1, \ldots, \xi_n) := (\xi_1, \xi_2, \ldots, \xi_n, 0, \ldots, 0)
\]
is considered as a map from \(\ell^p_n \) onto \(\ell^q_n \) by Lemma 7.1 there exists \(e = (e_1, \ldots, e_n) \in D(M) \) with \(\|e\|_m = 1 \) such that
\[
K := \{ k : |e_k| < 1 \}
\]
has less than \(n \) elements. We set \(x := D^{-1} e \). Then from Lemma 7.2 it follows
\[
\frac{\|Sx\|_q}{\|x\|_q} = \frac{\sum_{k=1}^{n} |\xi_k|^p \mu_k}{\sum_{k=1}^{n+1} |\xi_k|^p \mu_k}^{1/q} = \frac{\sum_{k=1}^{n} |\xi_k|^q \mu_k}{\sum_{k=1}^{n+1} |\xi_k|^q \mu_k}^{1/p} \geq \left(\sum_{k=1}^{n} |\xi_k|^{1/p} \right)^{1/p} \geq \left(\sum_{k=1}^{n} |\xi_k|^{1/q} \right)^{1/q}.
\]

Consequently,
\[\text{(c)} \quad a_q(\delta) \geq \left(\sum_{k=1}^{n} |\xi_k|^{1/q} \right)^{1/q}.
\]

By Theorem 6.2 we have
\[\text{(d)} \quad d_p(\delta) = a_q(\delta) \geq \left(\sum_{k=1}^{n} |\xi_k|^{1/q} \right)^{1/q}.
\]

Finally, the assertion follows from \((a), (c), \) and \((d), \).

If \(p = \infty \) the proof must be changed in an obvious way and we do not need Lemma 7.2.

In the case \(1 < p < \infty \) the \(s \)-numbers \(a_p(\delta), a_q(\delta) \) and \(d_p(\delta) \) seem to be unknown. A special result was proved by S. A. Smoljak (cf. [19]).
Theorem 7.3. If \(p = 1 \) and \(q = 2 \) then
\[
\alpha_n(S) = d_n(S) = \max_{\sigma = \text{diag}} \left\{ \frac{n - m + 1}{2} \right\}.
\]

Remark. Let \(I_m \) be the identity map of \(\ell_m^q \) onto \(\ell_v^q \). If
\[
M := \left\{ x \in \ell_v^q : \sum_{k=1}^{\infty} x_k = 0 \right\}
\]
then \(\text{codim}(M) < 2 \). Since
\[
\|X^r_{\ell_v^q}\|_2 = \frac{1}{\sqrt{2}},
\]
it follows
\[
\alpha_v(I) \leq \frac{1}{\sqrt{2}}.
\]
On the other hand, from Theorem 7.3 we obtain
\[
\alpha_v(I) = d_v(I) = \sqrt{(m-1)/m} > 1/\sqrt{2} \quad \text{for} \ m = 3, 4, \ldots
\]
This proves that the \(\varepsilon \)-numbers \(\alpha_v \) and \(d_v \) are different in general.

Remark. In the next step one should try to compute the value of \(\alpha_v(I_m) \) for the identity map \(I_m \) of \(\ell_m^q \) onto \(\ell_v^q \). Using the operators
\[
A_v := \frac{1}{2} \ e \otimes e \quad \text{and} \quad A_v^* := I_m - \frac{1}{m} \ e \otimes e \quad \text{with} \ e = (1, \ldots, 1)
\]
it can be proved that
\[
\alpha_v(I) = 1/2 \quad \text{and} \quad \alpha_v(I) = 1/m.
\]
From B. S. Ismagilov the author was informed about the following result:
\[
\alpha_v(I_m) = O \left(\frac{m^{1+\varepsilon}}{n} \right) \quad \text{for each} \ \varepsilon > 0.
\]

There is some kind of duality between \(\varepsilon \)-numbers.

Lemma 7.3. Let \(\dim(E) = \dim(F) = m \), and let \(S \in L(E, F) \). If \(S \) is invertible then
\[
\alpha_v(S) d_{m-n+1}(S^{-1}) = 1
\]
and
\[
\alpha_v(S) d_{m-n+1}(S^{-1}) = 1.
\]

Proof. Let \(M \) be a subspace of \(E \) with \(\dim(M) \geq n \). If \(N := S\{M\} \) then \(\dim(N) < m - n + 1 \), and from
\[
\|S\{x\}\|_{\ell_v^q} = 1
\]
we obtain
\[
\alpha_v(S) d_{m-n+1}(S^{-1}) = 1.
\]
The proof of the other equality is analogous.

Remark. It is unknown whether, with the same assumption as in Lemma 7.3, there holds
\[
\alpha_v(S) d_{m-n+1}(S^{-1}) = 1
\]
Up to this time we can only prove an inequality. For this purpose, if \(\varepsilon > 0 \), we choose a Banach space \(G \) as well as operators \(X \in L(G, E) \) and \(B \in L(F, G) \) such that
\[
\alpha_v(S) - \varepsilon \leq \|B\|^{-1} \quad \text{and} \quad \dim(G) \geq n.
\]
Let \(A := S^{-1} - XB \). Then \(\dim(X) \geq n \) and \(A(F) \cap X(G) = 0 \) it follows \(\dim(A) < m - n + 1 \). Consequently,
\[
\alpha_v(S) - \varepsilon \leq \|B\|^{-1} \quad \text{for} \ \varepsilon = (1, \ldots, 1)
\]
As an immediate consequence of Theorem 7.2 and Lemma 7.3 we obtain

Theorem 7.4. If \(1 \leq p < q \leq \infty \) then
\[
\alpha_v(S) - \varepsilon \leq \frac{1}{\sqrt{2}} \quad \text{for} \ \varepsilon = (1, \ldots, 1)
\]
where \(1/p = 1/2 - 1/q \).

8. Relations between some \(\varepsilon \)-numbers. As a consequence of the preceding results (Theorems 3.2, 3.4, 4.4, 4.6, 5.4, and 5.6) we have

Theorem 8.1. Let \(S \in L(E) \); then
\[
\alpha_v(S) \geq \alpha_v(S) \geq \alpha_v(S) \geq \alpha_v(S)
\]
and
\[
\alpha_v(S) \geq \alpha_v(S) \geq \alpha_v(S) \geq \alpha_v(S).
\]
The following statement is well-known (cf. [8]).

Theorem 8.2. Let \(S \in L(E) \); then
\[
\alpha_v(S) \geq \alpha_v(S).
\]
Proof. Let \(S \in L(E) \). Since
\[
\alpha_v(S) := \inf \|Q_{\varepsilon} S\| \quad \text{dim}(N) < n
\]
and
\[
\alpha_v(S) := \sup \|Q_{\varepsilon} S\| \quad \text{dim}(M) \geq n,
\]
it is enough to show
\[
\|Q_{\varepsilon} S\| \geq \|Q_{\varepsilon} S\|.
\]
We may assume $j(S/J)^{\parallel}_M > 0$. If $M_{a} := S(M)$ then $\dim(M_{a}) \geq n$. Consequently, by Lemma 0.2 there exists $a_{n} \in N$ such that

$$\|Q_{a_{n}} S\| = \|S\| = 1.$$

Now the inequality which we want to prove follows from

$$1 = \|S\| \geq j(S/J)^{\parallel}_M \|x\| \quad \text{and} \quad 1 = \|Q_{a_{n}} S\| \leq \|Q_{a_{n}} S\| \|x\|.$$

Theorem 8.3. Let $S \in L_{1}$ then

$$c_{a_{n}}(S) \geq u_{a_{n}}(S).$$

Proof. Using Theorems 6.3 and 6.4 we have

$$c_{a_{n}}(S) = d_{a_{n}}(S') \geq u_{a_{n}}(S') = u_{a_{n}}(S).$$

The results are represented in the following diagram where the arrows point from the larger a_{n}-numbers to the smaller ones:

$$c_{a_{n}}(S) \quad u_{a_{n}}(S) \quad a_{n}(S) \quad d_{a_{n}}(S) \quad i_{a_{n}}(S).$$

Theorem 8.4. Let $S \in L_{1}$ then

$$a_{n}(S) \leq g^{n^{1/2}} d_{a_{n}}(S) \quad \text{and} \quad a_{n}(S) \leq g^{n^{1/3}} c_{a_{n}}(S)$$

where g is a positive constant.

Proof. Let $S \in L(F, E)$. For $\varepsilon > 0$ we choose a subspace N of F such that

$$\|Q_{a_{n}} S\| \leq d_{a_{n}}(S) + \varepsilon \quad \text{and} \quad \dim(N) < n.$$

Then by Lemma 0.3 there exists a projection $P : L(F, F)$ with $N = P(F)$ and $\|P\| \leq (n-1)^{1/2}$. Next, by

$$J(x + N) := y - Py$$

we define an operator $J : L(F/N, F)$. Then

$$\|J\| \leq \|P\| \leq 1 + (n-1)^{1/2} \leq g^{n^{1/3}}$$

where $g = \sqrt{2}$. From

$$S - P = (I_{P} - P)S = JQ_{a_{n}} S$$

we obtain

$$a_{n}(S) \leq \|S - P\| \leq \|J\| \|Q_{a_{n}} S\| \leq g^{n^{1/3}} (d_{a_{n}}(S) + \varepsilon).$$

The proof of the other inequality is similar and will be omitted.

Remark. It is unknown whether

$$a_{n}(S) \leq g^{n^{1/2}} d_{a_{n}}(S)$$

holds for an exponent $\alpha < 1/2$.

Theorem 8.5. Let $S \in L_{1}$ then

$$u_{n}(S) \leq n^{1/2} u_{n}(S) \quad \text{and} \quad v_{n}(S) \leq n^{1/2} u_{n}(S).$$

Proof. Let $S \in L(E, F)$. If $0 < \varepsilon < u_{n}(S)$ we choose a subspace M of E such that

$$u_{n}(S) \leq j(S/M \|x\|) \quad \text{and} \quad \dim(M) = n.$$

Let $N = S(M)$. Since $j(S/M \|x\|) > 0$, the restriction S_{a} of S to M considered as a map onto N is invertible, and we have

$$j(S/M \|x\|) = \|S_{a}^{-1}\|^{-1}.$$

Let $P : L(F, N)$ such that $P_{E} = I_{N}$ and $\|P\| \leq n^{1/2}$. Then

$$I_{M} = S_{a}^{-1} P S_{a} M.$$

Consequently,

$$u_{n}(S) \leq \|S_{a}^{-1}\|^{-1} \|J_{a}\|^{-1} \leq n^{1/2} \|S_{a}^{-1}\|^{-1} = n^{1/2} (u_{a_{n}}(S) - \varepsilon).$$

The proof of the other inequality is similar and will be omitted.

The next statement was proved by B. S. Mitiagin and G. M. Henkin [10].

Theorem 8.6. Let $S \in L_{1}$ then

$$c_{a_{n}}(S) \leq n^{1/2} u_{n}(S) \quad \text{and} \quad d_{a_{n}}(S) \leq n^{2} u_{n}(S).$$

Remark. Probably there holds

$$c_{a_{n}}(S) \leq n^{1/2} u_{n}(S) \quad \text{and} \quad d_{a_{n}}(S) \leq n^{2} u_{n}(S).$$

A smaller exponent of n as $\alpha = 1$ is impossible since for the identity map I of $I_{a_{n}}$ into $I_{a_{n}}$ we have

$$u_{n}(I) = v_{a_{n}}(I) = 1/n \quad \text{and} \quad c_{a_{n}}(I) = d_{a_{n}}(I) = 1/2, \quad \text{cf. [3].}$$

As an immediate consequence of the preceding results we obtain

Theorem 8.7. Let $S \in L_{1}$ then

$$a_{n}(S) \leq g^{n^{1/2}} d_{a_{n}}(S)$$

where g is a positive constant.
9. Ideals of operators. For each subclass A of L we set

$$A(E, F) := A \cap L(E, F).$$

A is called an ideal of operators if the following conditions are satisfied (cf. [15]):

1. If $a_n E$ and $y_n E$ then $a_n y_n x E, F$.
2. If $T \in L(E, E)$, $S \in A(E, F)$ and $R \in L(F, F_0)$ then $RST \in A(E, F)$.
3. If $T_1, T_1 E, A(E, F)$ then $T_1 + T_1 E, A(E, F)$.

A subclass A of L with properties (1) and (2) is said to be an ideal of operators.

Let s be an ε-number function. Then we define

$$S_0^\varepsilon := \{a \in L : \sum_1^n s_n(a) < \varepsilon \}$$

and

$$S_0 := \{a \in L : \lim_n s_n(a) = 0\}.$$

We have the trivial

Theorem 9.1. The class S_0^ε is an ideal, $0 < \varepsilon < \infty$.

Theorem 9.2. The class S_0 is a closed ideal.

Proof. Let $S \in L(E, F)$. We suppose that, for every positive $\varepsilon > 0$, there is $T \in S \in L(E, F)$ with $\|T - S\| < \varepsilon$. Then we find a natural number n_0 such that

$$s_n(S) < \varepsilon \quad \text{for} \quad n \geq n_0.$$

Consequently,

$$s_n(S) < \|S - S_n\| + s_n(S_n) < 2\varepsilon \quad \text{for} \quad n \geq n_0,$$

and therefore $S \in S_0^\varepsilon \subseteq L(E, F)$. This proves the closedness of $S_0^\varepsilon \subseteq L(E, F)$.

Let K be the class of compact operators. Then we state the known

(cf. [14], p. 146)

Theorem 9.3. $S_0^\varepsilon = S_0^{\text{com}} = K$.

Proof. Let $S \in K(E, E)$. If $\varepsilon > 0$, we choose $y_1, \ldots, y_m E$ such that

$$S(U_m) = \sum_1^m (y_i + \varepsilon U_m).$$

Let N be a finite dimensional subspace of E with $y_1, \ldots, y_m E$. Then $\|Q_0^N S\| \leq \varepsilon$. Consequently,

$$s_n(S) < \varepsilon \quad \text{for all} \quad n \geq n_{1} := \dim(N).$$

This proves $K \subseteq S_0^{\text{com}}$.

Now the inverse statement will be established. Let $S \in S_0^{\text{com}} \subseteq L(E, F)$. If $\varepsilon > 0$, we choose a natural number n with $d_n(S) < \varepsilon$. Hence there is a subspace N of F such that

$$\|Q_0^N S\| < \varepsilon \quad \text{and} \quad \dim(N) < n.$$

Since U_m is compact, we find $y_1, \ldots, y_m E$ such that

$$\|y_i + \varepsilon U_m\| = \|y_i + \varepsilon U_m\| < \varepsilon.$$

Let $x \in U_m$. Then $\|Q_0^N S x\| < \varepsilon$ and therefore $\|S x - y_i\| < \varepsilon$ for some $y_i E$. Since $|y_i| \leq \|y_i\| + \varepsilon$, we have

$$y_i \in \bigcup_1^m (y_i + \varepsilon U_m).$$

Consequently,

$$S x \in \bigcup_1^m (y_i + \varepsilon U_m)$$

for all $x \in U_m$.

This proves $S_0^{\text{com}} \subseteq K$.

Finally, $S_0 \subseteq S_0^{\text{com}}$ follows from $s_n(S) = d_n(S)$ and Schauder's theorem (cf. [21], p. 275).

An ε-number function s is called additive if the following improvement of condition (2) of § 2 is satisfied:

1. $s_{n+1}(S + T) \leq s_n(S) + s_n(T)$ for $S, T \in L(E, F)$ and $m, n = 1, 2, \ldots$

Theorem 9.4. Let s be an additive ε-number function. Then S_0^ε is an ideal of operators, $0 < \varepsilon < \infty$.

Proof. Let $S, T \in S_0^\varepsilon \subseteq L(E, F)$. Since

$$s_n(S + T) \leq s_n(S) + s_n(T)$$

for $s_1, s_2, \ldots \geq 0$ with $\varepsilon := \max(2^{p-1}, 1)$, we have

$$s_n(S + T) \leq s_n(S) + s_n(T).$$

If $p = \infty$ then

$$\lim_n s_n(S + T) = \lim_n s_n(S) + s_n(T) < \lim_n s_n(S) + \lim_n s_n(T) = 0.$$
Remark. By the definition
\[\Sigma_p^2(S) = \left(\sum_{k=1}^{\infty} S_k^2(S') \right)^{1/2} \text{ for } S \in S_p \]
we obtain a quasinorm \(\Sigma_p^2 \) which is in general not a norm even in the case \(1 \leq p < \infty \).

The following statement is proved in [14].

Theorem 9.3. The approximation numbers, Gelfand numbers and Kolmogorov numbers are additive.

Remark. It seems to be unknown whether the isomorphism numbers, Bernstein numbers and Mitiagin numbers are additive.

References

Received February 14, 1973 (648)