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and
0p(dy, Agy 45) = J[AI,A2,A3](A12 A, 4y),

which hold true for any triple 4,, 4,, 4, of pairwise commuting operators
in L(X), and from the condition (ii) of the previous theoren. So we have
3.4. TaroreM. Let X be a complex Banach space. Then the joint spectra
Ory 01 Oy, and o defined on ¢(X) possess the spectral mapping property
with respect to polynomial mappings.
As we mentioned before, the part of this theorem concerning the
spectra o1, o, and o is due to Harte [5] and [6].
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Domains of attraction of stable
measures on a Hilbert space

by
J. KUELBS* and V. MAND REKAR** (East Lansing, Mich.)

Abstract. We characterize all probability measures in the domain of attraction
of a stable measure defined on the Borel subsets of a real separable Hilbert space H.

1. Introduction and notation. Let B be a topological vector space
and #(F) the class of Borel subsets of H. We say that a probability
meagure on #(F) is in the domain of attraction of a probability measure
w on AB(E) if there exists real numbers b, >0 and vectors a, in
' X +... +X,

by

where X, X,, ... ave independent identically distributed random variables
with £(X,) =P (i =1,2,...). and P is a Borel probability measure.
The b,’s are called norming constants. In case H iy a real separable
Banach space it is shown in [6] that stable measures and only stable
measures have non-empty domains of attraction. When F is a real
separable Hilbert space H, a detailed Levy—Khinchine representation
of the stable measures analogous to the one-dimensional case [3] is
obtained in [6] and it is used here to characterize probability measures
P which lie in the domain of attraction of a non-degenerate stable
measure on H. Our results will include and generalize the work of
Rvadeva [9] when H is finite-dimensional. The difficulty in the infinite-
dimensional case results from the fact that the conditions for weak
convergence of infinitely divisible measures ([4] and [7]) involve certain
compactness criteria and these are attacked by wusing the concept of
regular variation and modifications of some of the elegant ideas
in [1].

Let u be a finite Borel measure on a topological space X. Then 4
in #(X) is called a continuity set of u if p(dA) = 0 where 04 denotes
the boundary of 4. A set §, is called the support of u if

B(n=1,2,...) such that .Z’( - a,,) converges weakly to u
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(i) 8, is closed and the complement of 8, has p-measure zero, and

(ii) if eS8, and if U is open in X with #¢U then x(U) > 0. In case
X is a separable metric space, it is easy to see that 8, exists and is uni-
que, i.e. 2¢8, iff there exists an open set U such that ¢ Uand u(U) = 0
and sinee X is separable and metric the complement of 8, is & countable
union of open sets of p-measure zero so it v of measure zero.

A finite measure g on a topological vector space B is called non-
degenerate if the closed linear subspace generated by 8, = H.

If 1 is & measure on & set X and f maps X into ¥ then &/ is the measuro
on Y defined by w'(4) = p(f*(4)) for all 4 such that u(f*(4)) exists.

The Fourier transform of a probability measure x on a real Hilbert
space H is defined by

fle) = [ 6o wdy)  (oem).
H

‘When H is separable it i3 shown in [5] that p is a stable measure on H iff:
(L1) w is a Gaussian measure on H and
p (@) = expi(e, f)—1/2(Tw, x)}

where feH is called the mean vector and T is an S-operator ([7],
D. 164) on H which is the covariance operator of u,

(1.2) there exists a constant o (0 < a<<2), a finite Borel measure I” on
8 = {xeH: ||g]| =1}, and a vector fe<H such that

ib(e) = expli(a, B)— [ |(@, 8)* I(ds)+iC (a, #)}

d
where
J( mnfzﬁ f(w, 8)|(@, 8)| 1 I(ds) (e #1),
Ola, @) =1 o .
[if(w, slogl(z, 5)| I(ds)  (a =1).
s

. We call the number a (0 < a < 2) the type of the stable law 4 oand
if p is Gaussian we say u is of type 2. For the sake of simplicity, the rop-
resentations (1.1) and (1.2) will be denoted by u = [8, T] and po="la,l", B,
respectively. We remark that in case y is Gaussian the repregentation
[8, T] can be alternatively thought of as [2, I, p] where I'"is the discrete
measure on § sitting at the normalized eigenvectors of 7' with the amount
of mass at each eigenvector equal to the corresponding cigenvalue divided
by two. With this interpretation we can denote the representations (1.1)
and (1.2) by w = [a, ', ] for 0 < a < 9.
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For a non-degenerate stable measure u, the non-degencracy of I
plays an important role in the study of the problem of the domain of
attraction.

2. The support of a stable measure. Throughout we consider measures
u defined on the Borel subsets of a real separable Hilbert space H, S,
denotes the support of u, and L(S,) denotes the closed linear subspace
generated by S,.

2.1 LeMMA. If w ==[a, ;0] is a stable wmeasure on H of type
a (0 <ass2), then L(8S,) = L(8).

Proof. If y¢L(Np) and y # 0, then there is an feH' (the topolegical
dunl of H) such that (f, y) > 0 and f{L(8;)) = 0. Now f(L(8p)) = 0 implies
A(f)= 1Dy (1.1) and (1.2) so f(-) = 0 almost everywhere with respect to g.
Thus {a: |f(@)] > 0} is an open set which has x measure zero and containg
vy, giving y ¢S, and henee L(S,) € L(Sy). Conversely, for y¢L(S,), ¥ 0, -
there exists geH’ such that g(y) >0 and g(L(S‘,)) = 0. Therefore g =0
almost everywhere with respeet to u and hence from (1.1) or (1.2) end
the interpretation for the Gaussian case given at the end of Section 1
we have f{g) =1 imiplying [ g, 8)1*I'(ds) = 0. Hence (g,s) = 0 on S,

S

and due to the linearity and (;,()ntin11ity of g(-) we have that ¢(L(S;) = 0.
This implies 7 ¢ L(S;) completing the proof.
The following corollary is now immediate

2.2, COROLLARY. If w =1[a, I,0], 0 <a<<2, is a wnon-degenerate
stable law on H , then every non-zero linear fumctional on H has a non-
degenerate stable distribution with parameter a.

For a Borel probability measure u on H, define for each aell

©ug(A) = p(d—a) for Ae#(H). We say that ¢ is an admissible translate

of p if p, is absolutely continuous with respect to u and we denote the
set of admissible translates of w by 4,. Clearly 0 is in A4,.

2.3. Remarks. (i) Let g = [a, I, 0]. In case « =2, I" is a discrete
measure (see Section 1) with positive mass only on the eigenvectors of
the covariance operator 7' of u. Denote these eigenvectors by {e;}. Hence
&, equals this diserete set and since it is easy to see that .1, contains
all finite linear combinations of the e’s, we get 4, dense in L(8y). If ¥
is an open neighborhood of zero such that x(V) = 0, then p(V ~a) =0

Voed, Hence 1= ,u(i}(Sﬂ)) = ,u(L(Sp)) <Zx w(V—a;) =0 for any
i=

countable subset [a;] of 4, which is dense in L(S,). This is impossible and
hence u(V)> 0.

In view of Lemma 2.1, 8, < L(8y) so if §, Is a proper subset of
L(8,), we can find xeL(8;) — 8, and U = {y: lly—a< ¢} such that
UnS, =0 and p(U) =0. Since U is open and 4, 1s dense in L(8,)

4 — Studla Mathematica L.2
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= L(8;), we can choose ae U N 4,. Then U—a is an open neighborhood
of zero and hence x,(U) > 0 giving 4 (U) > O since acA,. Thus § = L(S,).
Now putting H = L,{0,1] and a = 2 we get Theorem 2.1 of [2]
for Gaussian processes.
(i) For 0 < a < 1 and x4 non-symmetric, it can be shown that §, can
be a cone in H. It is not known, to us anyway, whether 8, = L(§;) is
case g is symmetric. .

3. The domain of attraction for a Gaussian measure (¢ = 2). The
following theorem generalizes Theorem 4.1 of ([9]), p. 194). We note
that the methods of [9] depend on the finiteness of the dimension. of H.
The main techniques used here deal with the properties of regularly
varying functions as given.in ([1], pp. 275-284). A function U on [0, o)
varies regulaily with exponent g (—oo < g <oo0) if

. U(tx)
T

for each @ > 0. In the case ¢ = 0 we say the function varies slowly.

2

3.1. THEOREM. Lel H be a real separable Hilbert space. Then o Borel
probability measure P on H is in the domain of altraction of a non-
degenerate Qaussian measure u with mean vector zero and - covariance
operator T iff '

R2” f P (dw)
(a) lim —AE2E g
00 “P(d
. Ilwllf<R”m” (aa)
JoPP(dn)
(b) lim ]]m||<R(y @) E(do) - (Ty, =)
i HfR (2, 2/ P(dw)  (T2,2)

for 2 # 0 provided [|z|2P(dw) = oo, or
i

”w”f<R(y,w~—a,) P (dz) (Ty, y)

lim > 5 =
Bow [ (2, 2—a)'P(dp) (T2, 2)
llzll<®
for z # 0 provided H{ ll||2P (d) < oo where o =sz @P (dz) in the semse of
) .
Bochner.
. — “fR[]azmm””‘P(dw)
e Ay = Hm MEA<E__
(©) "Taw | JlPam)
[lzll<B

form =1,2,... where, for each m, m,, () = 2! (@, &;)e; for some complete
i>m

icm
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orthonormal system {e;} in H, and

lim 4,, = 0.

Proof. First assume P is a Borel probability measure on H with
(3.2) f |2 P (d2) < oo.
H
Let X, X,, ... be independent identically distributed random varia-
bles with % (X;) = P and set Z, = X;,—a where a = [ 2P (dz). Then by
[81, p. 173, we have that N '
g(zl+.._.+z;) :f(xﬂt..jxn ,_.)

—Vna
Vn Vn

converges weakly to the Gaussian measure with mean zero and covariance
operator

(8.3) (8y,2) = [(y,2—a)(z, 2—a)P(dw).
"

Henee if P is in the domain of attraction of a non-degenerate Gaussian
measure px with mean zero and covariance operator T, then by ([6],
Theorem 1.5) we get that T = AS where 2 > 0. Now condition (a) holds
since we are assuming (3.2). Since T = A8 with 2 >0 and g is non-degen-
erate we have T' and 8§ vanishing only at zero and hence (3.3) implies (b).
Now (c¢) follows since

E{ N7t 1" P (dlzs)

Am. - T
[liz*P (dw)
b4
Further, 4, >0 since

[mmaltP(d2) = > [ (, &P (do)
H izmH
= Z[(S%, &)+ a, )]
L2
and the last term is a positive number as § is a positive trace class operator
whieh, as mentioned above, only vanishes at zero since p is non-degenerate.
Now assume (a), (b), (¢) and (3.2). By [8] we have P in the domain
of attraction of the mean zero Gaussian meagure with covariance operator
A8 where S is as in (3.3) and 1 is any positive number. Since (b) holds,
we have T = AS for some 1 >0, and since (T'z, 2) > 0 for z = 0, we have
u = [0, T] non-degenerate and P is the domain of attraction of u.
Now assume

(3.4) f o> P (dz) = oo.
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From [4], p. 331, we have P in the domain of attraction of the Gaussian
measure y = [0, '] with norming constants [b,] iff
(1) Lim aP{e—>b,y,| > Rb,} = 0 for every B >0
k3 !
where y, = f by, P (dax).
i<y,

(i) sup ab;* . f e — b,y PP (d2) < oo for some &> 0,
n

ity 3pll<ely,

- (iii) limsup 2d;*® f W00 (2 — b p )PP (dat) = 0 for some
(3.5) mon Ve e
K RN

e >0 and @, (z) = 2(:1;, ¢;)e; for some CONS le} in H.

i=m
(iv) Ymlimnb® [ (g, 2—b,p, ) P(dw) = (Ty, )
efo ey ll<ebyy '
=lim lim»b;;? f (¥, @ —b,p,)* P (da).
b0 T{ Ihe—byyil<eby,

Now (3.4) and P in the domain of attraction of a non-degencrate normal
law implies that f (y, x)*P(dx) =. co for all non-zero yef. Henee by
"

the argument used in ([3], p. 173) and since limy, = 0, we have (3.5)
n
equivalent to

(i) BmnP (x| > Rb,) =0 for cach R > 0.
n .
(i) supnbd;* f ] P (dw) < oo for some & > 0.
n Ll <eby,
(iii) limsupndy* f [l @ PP (d) = 0 for some &> 0
(3.6) woon il <eby,

and u, o8 in (3.5).

(iv) Limlimub,? f (4, &) P(de) = (Ty, y)

el n Il <y,

= limlimab;* f (y, @)D (da).
sl0 n Il <2 &y,

Henee our theorem is proved if we show (3.6) is equivalent to conditions
(a), (b) amd (e) of the theorem:

First we observe that for ¥ s 0 and for each & < 1 we have
(3.7) lim#nby? f NP (de) = mﬂ—hmnb;‘ J (y, @y P(dr).

w iz, <Dy, % i< eby,
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Now assume (3.6) holds. Then from (3.7), (3.6)(iv), and the non-
degeneracy of y we obtain

1
e (Ty, y) > 0.

Thus for R such that b, < R<b,,, we have

(3.8) lim#nb;* l@l2P (dx) =

» )<y,

EP(jal) > R) _ nb,P(le] > b,)
[ alFP(da) = n [ [fP(de)

i< lall<by,

; o bay . ' A
by (3.6) (i), (3.8), and that lim 2L = 1 since the b,’s are norming constants.
n n

Thus (a) holds. To obtain (b) suppose b, < R < b,.; and note that
[ (y, 2P (dw) [ (y,z}P(dr) [ (y, 2y’ P(dz)
ileli<by, < la<r lizl<bpy .

[ (z,2PP(de) = [ (2,@0P(d2) = | (2, @) P(dx)

Iafi<byi1 <R el <by,

b

Henee from (3.6)(iv) and since —'bil— —1(b) follows since we are assuming
n

J flXlf P (dx) = oo. To show 4, > 0 we first note that if b, < B < b,,, then

[ Nn@lPPde) #05° [ |myalPP(d2)

<R 12i<by,

= ; .
[ lelPP(dz) = nb;* [ |@PP(da)

el <R : Iaii<by 41

Iz}

. b
Henee, since —22

— 1, there is a constant ¢ > 0 such that
n
limaby® [ |, 2|’ P (dz)
(3.9 A 2 <l N .
) "7 e supnby® [ =P P (am)
n

llzil<dy,

Now P in the domain of attraction of 4™ with the same norming constants
{b,}, and the non-degeneracy of u™™ (u non-degenerate implies & ™ non-
degenerate) along with an inequality of the type in (3.8) implies
Limabz* [ |jm,alfP(da) > 0.
n llell <y,

Thus (3.9) implies 4,, > 0 as x4 non-degenerate implies the denominator
is positive. Similarly,

supnby® [ |myal P (dz)

n llzll <by,

1< -
™ limnby? [ |#PP(dw)
n llxli<dy,

%0 by (3.8) and (3.6) (iii), (¢) holds.
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Now we show (a), (b), {¢) imply (3.6). From (a) and [1], p. 283,
we have that U(B) = [ |j»[*P(dw) vaties slowly (recall that wo assume
=<

b

U(co) = oo). Hence there exist constants b, > 0 such that lim ——’b”—“— =1,
b,~>occ guch that o

U (b1

by,
Thus U slowly varying implies nb;>U(b,R)-—=>1 for each R > 0and
hence (3.6)(i) follows from this and condition (a). Further (3.6)(ii) holds
by definition of ‘the b,’s with ¢ = 1. With U, (B) = [ |lu,a|*P (dw),
(¢) and our choice of b, imply that el <R

' Uy (ba)

e = limnb;? U (b,) -2 =
ll;.ﬂ’ilbn Uy (by) 11:“% n Ulbn) U (b,) o

and sinee 1,0, we get (8.6)(iii) with ¢ = 1.

Let M, (A) = nP(b,'A) for 4<% (H —{0}). Then by Theorem 5.1 of
([7], p- 186), and (3.6)(i), (i) and. (iii) we have that the sequencoe of infinitely
divisible measures u, with Levy-Khinchine representation [0, 0, M,]
(see [7] for details) is weakly conditionally compact. From (3.6)(i) and
Theorem 5.4 of [7], p. 189, we see that all limit points of u, are Gaussian.
If py =10, 8,] is & limit point of {u,} and {4n,} 18 & subsequence con-
verging. weakly to u,, then by ([4], p. 328) we have for all yH

limlimn b2 [ (y, 2)*P(dw)
slo el <eby,

= limlimn, by * f (y, 2)"P(dw) = (8,9, 9).

20T llsl<eby,

However, then by (b} we have (8,y,y) = (Ty, y) and hence all limit
points uy of {u,} coincide with the mnon-degenerate Gaussian measure
p =1[0,T]. Again applying [4], p. 328, we obtain 3.6 (iv) go the proof
is complete.

4. The domain of attraction for 0 < « < 2. In this section we consider
the domain of attraction of a non-Gaussian stable meagure. The main
techniques used deal with the properties of regularly varying functions
as defined in Section 3.

We start with a lemma which will be needed to prove the main
theorem of the section.

4.1, LEMMA. Let ‘P be-a Borel probability measure on a real separable
" Hilbert space H , I' a finile non-degenerate Borel measure on. the wnit sphere

icm
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8 of H, and assume 0 < a < 2. Then the conditions

P(le) > B) o
®) Bl > 18) =

where for each m = 1,

Cp >0, 7, (@) = Z(w, e e, for some C.O.N.8. {¢}, and

k=m

limg,, =0,
m-—>00

Pzl > B, z/llel e 4) I'(4)
Plo]> B, o/lw|d”) T I'(4Y)

sets A, A%< B(S) with I'(4™) #0,

(b)

for all continuity

b,
imply that there exists a sequence of b, > 0 such that b, —oc0,———1 and
n41
. = 41— e L) 2—0)
(3) HmnP (ol > Bb,, afleled} = B~ -

for continuity sets A of I' and B >0,
(b) supnb,* f |lz|[2 P (dz) < oo for some & >0,
n

(43) Tl <eby,
() limsupnby® [ |mnal?P(ds) =0 for some &>0 and
m n llzl}<<aby,

some projections of the form given in (4.2)(a),

(@) imlimnd;* [ (y,)P(de) =0.

&0 n—>00 U:cll<5bn

Proof. Let Z(t) = P(|jz]| >¢) for ¢ >0. Then (4.2)(a) with m =1
implies Z(t) is regularly varying with exponent —a. Hence [1], p. 281,
Theorem 1 implies

. R2Z(R)
lim —

B [ 17t

and since

R ®
[ lel2P(de) = — [ 122(dt) = —R*Z(B)+2 [ 125,
0 0

lell<E
we have
(4.4) lim R2P(|z} > R) _ 2—a
) R | |l#]2P (d2) a
lali<R
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Thus 0 < o< 2 and [1], p. 283, Theorem 2 implies U (1) = [ l)|2P (dx)
. X . lla| <¢
(t>0) is a regularly varying function and henece there is a sequence

b
{b,} such that b,—oco,—"~—1, and limub;*U(b,) = 1. Thus (4.3) (D)

. N1 " 92—
follows with ¢ < 1. Further, from (4.4) we sec that limaP (el > b,) = i
n a

and hence by (4.2)(a) with m =1 that
1.5 H ] 2—u —u
(4.5) limnP(|lx]|> b, R) = —— R (R>0).
k3 a

Thus (4.2)(b) and (4.5) imply (4.3)(a). )

» We now seek to establish (4.3)(c) and (4.3)(d). Let Zyp (B) =

P (|, @ >1). Then (4.2)(2) implies for t >0 .
]im——~—-——rZ(bnt) =~ﬁ«,

K /Jm(bnt) am

and hence along with (4.3)(a) with 4 = § one has

9 —
(4.6) maP (|m, 2] > b R) = ¢, R 22
2

m
acy

« ,
Sinee 0 < o< 2 and ¢,, ¢, are positive, [1], p. 277, Lemma 3 implies

that Z,(t) is regularly varying with exponent —a. Tho arguments used

to obtain (4.4) can now be repeated to conclude

(4.7 lim _an—P(””mm“ >b,) - 2—a )
n Wbt [ |, @2 P (d) a
oy @l <by,
But [ [m,olPP(d0) < [ 2P (de) so (4.6) and (4.7) gives (4.3)(c)
il <by, izl <by,

with e<<1 as lime,, = 0.
Let M,(4) =nP(b;'4) and M(4) = [ {L’;rr(ds) for Aed(H).
A7
Condition (4.3)(a) implies that the sequence of finite measures {,}

_ 2—q
converges ‘weakly to M -—mehen both are restricted outside some
neighborhood of zero. Hence we have for every yeH (y = 0) that

(48) qmmmw>W=%%Mmmpn

for £ in a dense set of positive real numbers. Now for any A% (H—{0})
we have M(A/a) = a"M(4) so (4.8) implies

/ i | —a 2— \
(4.9) limnP(|(y, o)} > tb,) = ¢ "ﬁ(?c; M|(y, o) >1).
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Now M(ily, )| >1) >0 or otherwise by the definition of M we would
have F(_s: l(y,8)] >0} = 0, and thus ¥ is orthogonal to L(8,) which
is a contradiction sinee y = 0 and I' non-degenerate implies L(S8,) = H.
Thus (£.9) holds on a dense set of ¢ and the limit is positive so by [1],
p. 277, Lemma 3, U(l) =P{{(y,»)| >t} is regularly varying with
exponent —a. Using the argument as in (4.4) we have

(4.10) L vanP([(g/, x)] > &b,,) _ 2—a

wonby® [ (y, 2)2P(dx) a

{1 ()} <eby}
From (4.9), (4,10), and (4.3)(2) we get for each & >0
limaby®- ) (y, ®)2P(dx) = &° My, o)l > 1)
k¢ {*(V.:t').i <ebp} T(S)
Sinece {|x|l < &b} < {l(¥, #)| < ¢llylld,}, we get for each y = 0 that
limud;? f (, @)P (ds) < (efyl)2-= 2@ 2 > 1)
faif< ey} ()

n
and henece (4.3)(d) holds for 4 = 0. For y = 0 (4.3)(d) is obvious so the
lemma is proved.

4.11. TurorEM. Let P be a Borel probability measure on a real separable
Hilbert space H. Then P lies in the domain of attraction of a non-degenerate
stable measure u = [a, I', 0] where 0 < a < 2 iff (4.2) holds.

Proof. X u = f[a,I’,0] where 0 < a <2 and g is non-degenerate
then by Lemma 2.1 I" is non-degenerate and by Lemma 4.1 (4.2) implies

bo

(4.3) where b, is a sequence such that b, >0, b,—~>co, and
n+1
‘We now will show that for this sequence of b,’s (£.3) and (4.6) which

follows from (4.2) imply

» . @ _T(4) (2—a)
(MhWWW—mm>mWW¢MnR S =
for R > 0, 4 a continuity set of I, and y,, = f z/b, P (dx),
(I} <y, L
(b) supnd,;® j iz — by, |2 P (dar) < oo forsome & >0,
(412) n {le byl <2,
(¢) limsupnd;® [ [l (@—bya)lPP(dw) =0
L lle—Dy vl <8y,
for some &>0 and some Sequence of
projections =, as defined in (4.2)(a),
(@) limlimnb;® [ (y,0—b,)*P(dx) =0, '
&40 n Byl <sby,
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Since lim b, = oo, it follows easily from the dominated. convergence theorem
n

that 9, = [ #/b,P(dz)—>0 in H. Henee we see (4.12)(a) and (4.3)(a)

2| <<b,
are equivajigntnancl further that the set integrated over in (4.12)(b), (c)
and (d) can be replaced by the set {|[z] < sb,} for some e > 0 ag in (4.3) (),
(¢) and (d). Further, if (4.3)(b),(c) hold for any & > 0 then easy estimatbes
along with (4.6) and lime,, = 0 imply that they hold for all & > 0. Henge

agsuming (4.3)(b),(c) ﬁold with ¢ = 1 we see thatb
it [ l=bunlPde) < b [ elrP(de)—| [ aP(s)|?)

el <y, i<y, lali<by,

<ab;* [ |2 (dz) < oo
Nl <By
80 (412)(b) easily follows since y,~-0. Similar estimates imply that
(4.3)(c) gives (4.12)(c) and (4.3)(d) gives (4.12){(d).
Thus (4.2) implies (4.12) where {b,} is a sequence of positive numbers

b .
converging. to infinity such that -——2- -»1. Since b,—co, the triangular
n--1

array of probability measures

WP = LX) 1<j<n,n>1}

where X,, X,,... are independent random variables with distribution
P is uniformly asymptotically negligible, and hence by the Corollary
of [4], p. 331, we have that P is in the domain of attraction of u =

[a,I',0] iff (4.12) holds. Thus (4.2) implies P is in the domain of attrac-
tion of u.

Now assume P is in the domain of attraction of 4 = [a, I',0]. Since
# 18 non-degenerate, we have a sequence of positive constants {b,} such

that limb, = oo, lim s
n n n+1 b
for these b,’s. Further, we then have (4.3)(a) a8 y,—0, and §inee ——" -1

=1, and as remarked above (4.12)(a) holds

1
ssome elementary inequalities ag in [9], p. 197, make (4.2)(b) oﬁrious.
To obtain (4.2)(a) we first observe that P in the domain of attraction
of u implies P™ ig in the domain of attraction of 4™ and that the same
norming constants work for P™. Now ™ is stable and, in fact, u™
= [a, I',, 0] where I}, is a finite measure on By = {@: o = ||mpa) = 1}
Since p'™ converges to the unit mass at zero as m goes to infinity we have

the Fourier transforms of u™ as given in (1.2) converging to 1. Hence
by [7], p. 189, we have

(4.13) Im7I,(8,) =0.
m
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Now choose positive constants {b,} and vectors {a,} such that lim b], = oo,

Z)I n

Tim —%H
n n

=1, and

AEsn

n

converges weakly to . Then by the Corollary of [4], p. 331, and arguing
ag above we have

. , @ 4 o,
(4.14) 11331%1’(![00“ >Rbn’_ﬂm_]l E_A.)——- - R
and
; 7, ’ I A a
(4.15) maP™ (Jal| > Rb, , of|a] < A) z_% R

for each B > 0 and each continuity set 4 of I'(I},). Letting ¢, = I, (Sn)

= I',(8) we have ¢, >0 for m >0 since p is non~degene1;ate and by

(4.13) lime, = 0. Further, P™™(|jz] > Rb,) = P(|m,z| > Rb,) so (4.14)
m s

=1 and some elementary inequalities

by,
and (4.18) along with lim bj“

n n
(see, for example, [9], p. 197) imply (4.2)(a). Thus the theorem is p‘rovgd.
Using the ideas involved in the proof of Theorem 4.11 we can easily
establish the following fact which iy analogous to the xesult [1], p. 313,
when H = R'.
4.16. TumoreM. If P is the domain of atiraction of a non-degenerate
stable law of type o (0 < a < 2) on a real separable Hilbert space H, then

L(t)
tﬂ

Pl >1) ~

as t->oco where L(t) is a slowly varying function. Furthermore, if u is a stable
low of type a (0 < a < 2) on H then

¢
pllell > 1) ~ =
as t—>oc0 and hence

[ el w(da) < oo for each 0 <y < a.
H

4.17. Remark. After this work was completed, some. Wo"rk,by
M. Klosowska on the domain of attraction of normal distribution on
Hilbert space appeared in Studia Math. 43 (1‘972) (pp. 195-208). 01ea.r1y
this work is related to our work in Section 3, in subject matter. However
we note that our methods are entirely different.
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The moduli of smoothness and convexity
and the Rademacher averages
of trace classes S, (1< p < oo)*

by
NICOLE TOMCZAK-JAEGERMANN (Warszawa)

Abstract. It is proved that the moduli of smoothness and convexity of the trace
classes 8, have the same order as the corresponding moduli of Ly (1 < p < o) a.rnd
the Rademacher averages of S, behave in the same manner as the (‘orrespond?ng
averages of Ip (1< p < o). As a corollary some results on p-absolutely summing
operators are obtained.

Let 1<p < co. By 8, we denote the Banach space of compuct’
cperators on & Hilbert space H such that

H‘A’I:p = (tr(-A*A)MZ)”p < 0.

‘In the present paper we investigate some geomfetric properties of thpse
spaces. Tt is shown that several properties are similar to the correspox‘ul.mg
properties of I, spaces, despite of the faet that for P # 2 and the }nf]lllte-
dimensional Hilbert space H, 8, is not isomorphic to any sub»pace'of
L, (cf. [16]). In particular the moduli oﬁ smoothn.ess and convexity
of 8, have the same order as the corresponding moduli of L, (.} < p < o0).
This fact in the ease of modulus of convexity and p > 2 was proved by
Dixmier [1]. )
TFurthemore the Rademacher averages of 8, behave in the same
manner as the corresponding averages of L,. Namely we pl.‘OVG t»h.e fgl—
lowing inequalities: There exixt econstants ), such that for arbitrary

Aoy ooy Ay I 8y (0 =0,1,...) we have (*)
L n
(0-1) ”Eﬁ:Ain(t)Hl‘dt <0p (ZH‘ jHi)”g for ¢ =2,
0 i=0 =0
0.2) J113 4y e 0, S1as) tor p<.
(0.2 o “ 37\, )éﬁ

* Thié is a part of the authors Ph.D. thesis written under the gupervision of
Professor A. Pelozynski at the Warsaw University.
(1) Further |- denotes (|* )
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