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On Littlewood-Paley funections

by
WOLODYMYR R. MADYCH (College Station, Tex.)

Abstract. We define and study a generalization of the Littlewood-Paley funection,

g}‘, by using properties of certain approximations of the identity. L? estimates are
obtained and some examples and applications are given.

Introduction. If f is a reasonable function on R", the Littlewood-Paley
function, ¢}(f), is defined for 1> 0 by

A+1

~ 3 1/2
9i (f, @) ={of R_{mayjﬁzﬁlgradPg*f(w—z)lzdzdy}

where P, (z) is the Poisson kernel for the upper half space.
Stein introduced g in [9], where he showed that the transformation

2
f-g5(f) is bounded on IL°(R™ for max ll, o <p<oco. In [10],
[y

he used g} to obtain a characterization of the Lebesgue spaces, IZ, and
in [11], showed how g} and its variants can be used to obtain Hormander’s
version of Miblin’s multiplier theorem.

Subsequently, Segovia and Wheeden, [8], introduced a Littlewood-Paley
function, which we eall g}*(f), and which is defined for 1> 0 by

U f a(z -H/)'“rIM

where g(2) = 2 ;] - |2,/'* and I, () is the Polsson type kernel for the upper

1/2
dzdy}

F *f(z—2)

half space as5001ated with the heat equation 2 Uz — Uiy, + Uy == 0. They

showed that the transformation f—gi*(f) 1s bounded on LP(R™) for

on+2 }
m <P < oo
It is the purpose of this paper to show that Littlewood-Paley functions
with similar properties can be dcfmed without recourse to Laplace or
* heat equations.,

max [ 1,
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This article is divided into two chapters. Chapter I contains certain
facts, some of which are well known, which are needed in the develop-
ment and applications of the contents of Chapter II. The promised results
are contained in the second chapter.

Some of the material presented here formed part of the author’s disser-
tation directed by Professor Walter Littman at the University of Min-
nesota.

CHAPTER I
PRELIMINARIES

1. Notation and conventions. R is the real line whose elements are
denoted by 7, s, and 1 and R, = {{< R: 1> 0}.

R" is n-dimensional real Euclidean space whose elements are denoted
by %,v, 2 and &. _

If 2 is a subset of R”, Q2 and Q° denote the closure and complement
of £ in R™ respectively. If £ is measurable, |2| denotes the Lebesgue
measure of Q.

If © and 2 are eclements of R", (z,2) = ijz, and |z| =

Vo, 5.

The symbols a and b will alwzuys be used Lo denobe linear transforma-

laz

7l L we R”} and e* denotes the adjoint of a.
I denotes the identity matrix.

tions on R™ lja]| = sup{

. . L)
D; denotes the differential operator T j=1,...,m.
‘i
All funetions considered by us are complex valued and all integrals
are over R", unless denoted otherwise.

If f is a measurable function on R®, then

Ifle = {[ 1f@)Pda}”™, 1<p< oo,
Iflleo = ess. sup. |f(2)l,

and L*(R") = L”, is the usual Banach space of funetions for which 1£1l;
is finite.

2" always denotes the Holder conjugate of p for 1 < P <

11
PR
)

oo, namely

If £ is an open subset of some Euclidean space, C%(£2) is the set of
infinitely differentiable functions on £ and () is that subset of 0°(R)
consisting of functions with compact support. In the case @ = R",
we simply write 0 and € instead of C°(R") and Cy (R™).
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The subspace of O* consisting of functions which together with all
their derivatives tend to zero at infinity faster than any rational function
is denoted by & and is given the usual topology. Its dual, the space of
tempered distributions, is denoted by & and is also given the usual topol-
ogy. T, f> denotes the distribution T acting on fe &.

We say that a distribution 7 is in 0*°(R™\ {0}) (or F(R™\{0})) if the
distribution (1—¢)7 is in (®(or &) for every @e €5 which is identically
one in a neighborhood of the origin.

The Fourier transform of fe & is defined by

F1(&) = (&) = (2r) ™" [ f(2)e

and the inverse Fourier transform of f is defined by

F (w) =f(ac) = (gn)—nlsz(g)ei@,@df_

Plancherel’s formula thus reads:

IFls = flls = IfTls-

The Fourier transform is defined on &’ in the usual manner.

All Fourier transforms and differentiations are to be mterpreted in
the &’ sense, unless they make sense otherwise.

The convolumon of two functions, f and ¢, defined on R"™ is fxg(x)
= [f(# —2)g(2)dz, whenever this operation makes sense.

The symbol C will be used generically for constants appearing in certain
estimates. Sometimes it will be subscripted to denote the parameters
it depends on. At other times the parameters ¢ depends on will be clear
from the proof of the estimate. It need not be the same at different occur-
rences.

The end of a proof will always be signalled by m.

—i(z, & dr,

2. Quasi-homogeneous metrics, functions, and distributions. Let a be a
linear transformation on R" and consider the one parameter group #*
= ¢?1%¢! ¢~ (. We say that ¢ is good if |t <t for 0 < ¢t< 1. If there is
an &> 0 such that |[t%] <# for 0 <i<1, we call a reasonable. Observe
that if @ iy reasonable, then there is a positive constant, &, such that ka
is good. Also note that if a is reasonable or good, then a* also has that
property.

Suppose a is reasonable and consider the function F(z,t) = |17 x|,
t> 0. It is clear that, for fixed = 7= 0, F(x;1) is a strictly decreasing
continuous function of ¢, hmF (#,1) = oo and limF(z,{) = 0. It follows

o0
that F(x,t) =1 has a umque golution which we call g (). Having defined
0.(2) for & 0, set ,(0) = 0. The following proposition, whose proof
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follows immediately from the definitions, gives us some important prop-
erties of the function p,.
PROPOSITION. 1.
(1) gge C*(R™{0}).

(il) 0, (1"} = tg(w), t> 0.

(i) gu(w) =1 if and only if |s| = 1.

(iv) If a is good, then o,(%+2) < g,(a)+ 0,(2).

We call g, the quasi-homogeneous “metric” with respect to . Note that
(iv) of the above proposition implies that if & is good then the function
(%, #)=> 0, (w —2) is indeed a metric on R™

The above considerations suggest the polar change of variables

(1) =g,

where 7 = g,(%)>0 and 2’ = g,(#) %8 = {m: |o| = 1}. Writing
' in terms of the usual polar angles of R”, 6, ..., 6,—y, and computing
the Jacobian of (1), we get dz = r*"*~drdo, where tra = trace of & and
4oy = J4(by, oy Oy_y)d0y ... @0,_; is & measure on 8" L. (For more details
concerning the metric and the polar change of variables see [2] or [6].)

Throughout the rest of the section a is always assumed to be reasonable.

The following formulas can be easily verified using the above change of
variables:

o

do, = —“tra,
sn—1 "

o ;

dx = = yi7a

eglz)<r . n

where w, is the area of §" 7. _

If f is a measurable function on R™ such that for some real constants
€ and m, |f(#)| < Co,(x)™, then for any e 07 such that ¢ = 1 in a neigh-
borhood of the origin ¢(2)f(») is integrable if m > —trg and (1 —rp(m))f(m)
iy integrable if m < —tra. Also note that if ¢ ig diagonal (i. e. az
= (@%y, ..., @, &,)) then there is a constant 0> 0 such that

07 0u(@) < ) |y < Coy()

i=

-

for all # in R™

A function f, defined on R, is said to be quasi-homogeneous of degree %,
ke R, with respect to  if for every ¢ > 0 the formula f(#*2) = t*f(z) holds
for every « #0. .

The notion of quasi-homogeneity for temipéred distributions is analog-
ous to that for functions. For ¢ > 0, define the operator af acting on
pe & by the formula nfe(z) = ¢(1*z). For Te ¥ define the operator i
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acting on T by the formula
At Ty p) = (T, 17" af 1.

It is clear that #fT is in &’. Define 7 to be quasi-homogeneous of degree
k with respect to a if for every ¢ > 0, T = t*7.

A simple computation shows that for 7e &, 72‘2’ = t‘t‘“nfllf’ . Now,
if ' is quasi-homogeneous of degree & with respect to a, applying the
Iast formula results in @f"7 — ¢~***] and hence, 7 is quasi-homoge-
neous of degree —tra —k with respect to a.

We conclude this section with

PROPOSITION 2. If the tempered distribution T is locally integrable,
i 0% (R"™ {0}), and quasi-homogeneous of degree % with respect to a, where

—tre <k <0, then T is locally integrable, in C%(R™\{0}), and quasi-

homogeneous of degree —tra—Fk with respect to a*.
S dt
Proof. Let ¢ be in C°(R,) such that f (p(t)—t— =1, Write g(=)
0
=g’(m)¢(ga(w)). Clearly ge &,

r at
(@) = [ trg(ea) =,

. ~ .t
B = [y,
[

and the conclusion of the proposition follows. m
3. Vitali families, maximal functions, and ¢‘quasi-homegeneous like’>
kernels. Let {U,, s > 0} be a family of open subsets of R™ whose closure is
compact. :
DEFINITION. {Ug, > 0} is a Vitali family with constant A if and
only if
(i) for §; < sy, Uy = U, and QOUE = {0},

(if) |U;— Uy < A|U,| for all s, where U, — U, denotes {#: 2 = y —=z
where ¥ and 2 are both in Uy},

(iii) |U,| is a left continuous function of s.

TEEOREM 1. Suppose 2 is o measurable set in R" and let x—>r(z) be
a mapping of 2 into R, satisfying:

(i) r(®) is bounded and for every ry> 0 the set {w: we Q,7(x) > 1o}
38 @ bounded subset of R™.

(ii) If {m} is & sequence which converges to z, and r(x,) 17, then zye O
and (%) = 7.
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If {U,, s > 0} is a Vitali family with con§tant_,A, then there exists a sequence
{wx} = Q such that w

1) {Bp+ Usyy) s disjoint,
2) Lc U {%‘Jc’l' ( Ur(mh) - Ur(mk))}$

E=1
3) 19/ < A3 (U
=
. THEOREM 2. Let {U,, 8 > 0} be a Vitali family with constant A. For
fe LY, define

1
M =§
f(@) Sup TR

[ 1f@—a)ae.
US
Then
(@) Ha: Mf(x)> 13 < Allf]L,
(i) | Mfll, < Clfll, for 1 <p << oo, where C is a constant depending
only on A and p.
For proofs of the above theorems see Riviére [6].
In the statements of the next two theorems, we take « to be reasonable.

THEOREM 3. Suppose H e I and |H ()| < h( 04 (2)) where h (%) is a decreas-
ing function on Ry and [ h{g,(#))dx < constant.
Oonsider the transformation f—Mg, f where

My, f(w) = sup Ut‘t“’H(t“”z)f(m—z)dz].
>0

If b is reasonable and commutes with a, then

1M gz, fllp < Clif 1l

where C.1is -a constant which depends only on H, p, and n.
Proof. Write

Jor 1<p < oo,

U H (170 2) f(x —2) de
/

(e
< TEH ()| 1f (@ —2) | de
k=m0 2F—Lgp (t—02) <ok
< DI nEEhet [ f(w—e)|de.
Jo=—00 ga(t"bz)<2k

Taking the sup over t> 0, we get

Mg f(a)< D) h(2F)2 0 ()

k=—occ
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where
Mif(7) = S ey | Uflo—2)lde.
>0 2570 l2—kai=by <1

Let {Uf,¢> 0} be the family of open subsets of R™ defined by U¥
= {e: 277" < 1}. Clearly {U¥, ¢> 0} is a Vitali family with constant

2". Observing that |U¥ :%2"”%“" and applying Theorem 2, it

follows that || M,f|, < Clifll, for 1 <p< oo, where ¢ is a constant
depending only on n and p. Since this is true for each k = 0, £1, +2,...,
we conclude that

00

M flp < 3 W@2520fl, < [0 [ Bleq(@)da]if1,. w

k==—00

The next theorem is a quasi-homogeneous version of a classical result
generally referred to as Sobolev’s imbedding theorem. For a proof in the
case ¢ = I, see Stein [11].

THEOREM 4. Suppose H is locally integrable on R™ and |H (2)| < Co, ()™~ 1%,

a
tr 1 1
where 0 < a <tra. If p and g satisfy 1 <p < ke and — = ——L,
a P tra
then for fe L? the transformation f—H+ J ts well defined and |H*f|,< C||f llp s
where C depends on H, p, and n.

4. Distributions whose Fourier transforms are in' .

& 1
D—<a.
j=1 Fj

PRrROPOSITION 3. Let By, ..., B, be positive integers such that

Suppose that fe &' satisfies
@ Ifl. < B,
(i) IDfifl.< B, j =1,...,m;

then. fe I and |[f!|1;: CB, where C is a constani which depends only on
/?17 ey ﬂn -

Proof. From (i) it is clear that f iy a function in I*. To compute the

N : 1
L' norm of f, let b be the linear transformation defined by br = (——

@
ﬁl 12
1 .
- _}é: x,| and write
¢ (i f _ ; 12 —2 /
@ Jif@lds <{[|1+e@)f(@Pda)"{ [ (1+0y(m) " da}”
where g, (#) is the quasi-homogeneous “metri ¢” with respect to b. Recalling

4 — Studia Mathematica L.1
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n

2 lz;1% and applying Plancherel’s formula we have

that g, () <

i+ a@)f@Pdel™ < o(Ifl.+ f,’HDf"fllz)-
j=1

Using the polar change of variables we have

{f(l + Qb(w))'z(lm}m =

(3
1 o . -
2-<2. Slipping the last two estimates into (2) gives
g=1 Fi f
us the desired result. m

THEOREM 5. Suppose a is reasonable and let B, ..

off @nmrig)” <o
0
since trd =

.y B be positive inte-

n
1
gers such that 27 < 2. If f is in L™ such that

j=1 V7j
@ [ 1Dpf(e)ras < B
1<eg(d) <2
Jor all k=0, %1, £2,..., and integers y;, 0<y;<B;, j=1,...,m,
where fi,(£) = f(2**€) and the By's are positive mumbers with 3 By < oo,

then f is in L' and the I* norm of f is bounded by a constant which depends
y By and Y By
Prootf. Let v be a positive function in CF (R

only on By, ...

) with support in [$,2]
1 — ' 0

and such that p(t)>0 for —=<t<V2. Set B(t) =p(t), N yp(2*

V2 =,

and @(&) = ®(g,(¢)). Observe that geCP, (27" ¢) has support in

{&: 21 g, (8) < 28} and Y@(27%&) =1 for & 0. Write

= _Sj’f"(f)

It is clear that the f*’s are in I* To obtain an estimate on their L' norms,
using the same method as in proof of Proposition 3, write

(8) f8 = Yo a)f(8)

(4) flfk ) de < {fl 1+ g,( zka* fk(‘»l dm}m{f(l—l—e gkar, )) 2dm}1lz
~ktra

<(|1fk||z+{flgb 20 ) ) ) - 09 *

icm
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Now, using Plancherel’s formula and (i), we have
~ - ktra
I =1 <{ [ fordE" <2 B,

r<o— R <

and
—Rtr a

[ e @ a)ff @)raa}™ = 2% {[ 1g,(@)f (27 0) a0} ™

kire  n
comaTr D[ Db pte)Pag)™
=1

<ot 33 Diferas)”
J=1 yp=0 ftp(f) <2
ktra
< 0% * B,

Slipping the last two estimates into (4), we conclude that

(5) 14 < OBy,

Since ZB, < oo, it follows from (B) that there is an P in I* such that
lim Hlf’ 2 1”’][1 = 0 and Wl’l()h(‘ I’ norm is bounded by OZB,C Observe
Lhat (3) 1mplms that lm 2 f* =fin &', and using the fa.ct that the

m-roo Ke--m
Fourjer transform is continuous on &', we conclude that f = I
The following corollary of Theorem 5 can be used. for most apphoa,tions.
COROLLARY. Suppose a s diagonol (i.e. an = (@ %y, ..., 0, 8,) and
>0, §=1,...,n) end let By, ..., B, be as in Theorem 5.
If fis in L™ and sufficiently smooth with

sup (2R DRf(8)] < By

olc»1<qa(§)(,z AR

=20, 41, +2

for b =0, 41, -2,

the B;) ¢ are positive numbers with

., and «mteqms vy 0Ly << By, § =1, ..., n, where

)‘ By, < oo, then [ is in I} and L' norm

I:m»-eo

, By, and Z'Bk.

5. Vector valued singular integrals. In this section we assume that
@ is a good linear transformation on R™ In this case, the function.
(%, 8)—>0,(2 —2) 15 a metric on R™

It o is a Hilbert space, then |u|y denotes the norm of the element
w of # and LP(s#°), 1< p < oo, denotes the space of strongly measurable

of f depends only on By, ...
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# valued functions defined on R"™ such that [f(z)|, belongs to L¥ with
norm ||f||zpsey = L” norm of {f(x)],. If #; and #, are two Hilbert spaces,
then & (s#,, #,) denotes the space of bounded linear operators from
#y to H#y and i L is in Z(#, ) then |Llgup,u,) = sup{|Luly,:
e #y, [ulp, < 1}, ‘

The following theorem is a generalization of the Calderén—Zygmund
inequality and its proof can be found in Riviére [6].

THEOREM 6. Let A (x) be a function on R™ with values in L (AH'y, #'y)
such that 2" is measurable and integrable on compact subsets of R™N{0}.
Suppose A has the following properties:

(i) | f() 61’(m)dw|y(#l__,¢2)<01, where (y is independent of & and o,
e<pg(x) <
0<e< d< oo, and for each wue #y, lim f A () dw w emwists.
&0 e<ga(d:]<1

(i) For weor;, [ [ () U, dit << O |l e, where Oy is inde-
e<pg() <2
pendent of w and g, ¢> 0.
(iii) For we s, [ (=) —A (2 V1|, A < Oyl 5 where Oy
L 2a(®)>2e4(2)
18 independent of u and z
Also assume that ™ (x) enjoys the same properties as A (w).
Under these conditions, the tramsformation f-2'f given by A f(x)
lim  f  #()f(e—2)de is well defined om LP(o#) to LP(o#,) fmﬂ

&0
! s<ua(z)(4-

L<p< oo and |}.)ff|]u)(f2) CHf||LnM1) where C depends only on Oy, Cy,
C; and p.

CHAPTERII
LITTLEWOOD—PALEY FUNCTIONS

L. g . Suppose that K is in L' and a is good ; then for fe L?, 1 < p < oo,
the Littlewood—Paley function ¢ 9, (f) is defined by the formula

12 .
(6) I, (1 ®) {f | K f(2 —»l y  Where Ku(w) = 177K (¢t~ %).

The following theorem gives some coriditions on K which imply that
the semi-linear transformation, f—9x,(f), maps L¥ boundedly into L”.
TrEoREM 7. Suppose K has the following properties:

(1) 1K (2)} < heq(w)) where h(t) is a decreasing function on R, and
Rt < Olt‘s"““(l—;—t ~% for some 8 > 0.

(i) [K(z)dz = 0.
(ili) [ K (x—2)—K(@)|ds < Cy0q(2)° for some &> 0.
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Under these conditions it follows that
192, (Flly < Clfllpy 1< p<oo,

where O depends only on Oy, Cy, 6, & and p.

Proof. This result is an easy consequence of Theorem 5. To see this,
let #, be the complex numbers and let

o0
: dive
Hy = {p: @ measurable on R, with {f |<p(t)127} < Do].
0

Lot o (2) be the linear operator transforming the complex number ¢ into
the element K (@) ¢ of #y. Now, i A" (@) satisfies the hypothesis of Them o
5, observe that gg, (f, #) == |4 f()|,, and hence

N9z, (Pl = 1 F limeyy << CNFlzoory = CllS llp-

The calculations showing that () and #™*(x) satisfy (i), (i), and
(iif) are analogous to those in. Benedek, Oalderén, and Panzone [1], so we
omit them. m

Obhervc ‘(hm‘r if K satisfies the hypothesis of Theorem. 6, then

f |K al &)|2— <oo and recall that I(,m(é (t’" ). Now, if K is a function

whlch dopcndx only on Q,,*( ) (i.e. ( = z(g,,,.(E ) where » is a function

on R ) then f \K a(E)] - f [ (t)|? = constant independent of &.
0

In this case, t01 frand fﬁ in &, we hzwe

3 g . dt
ffKﬁﬁwmwmm#wm:ffumwmmamaﬁ7w

= 0 [foh(8 = 0 [ @ do.
Applying Holder’s inequality to the last formula results in

(rn)if;(aij dae

B ”91{“ (fl) Hp ”glfa,(.fz)“p' 4

The last inequality together with Riesz represemtation and a simple
limiting argument give us the following:
JOROLLARY., Suppose K satisfies the hypothesis of Theorem 6 and I (&)
depends only on g (&), then if K is not identically zero
Ifllp < Ollgr, (Nllps L <P < o0,

where O is & constant depending only on K and p.
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2. 9x, m,+ Suppose H is a non-negative function in L' and b is
reasonable, if K and o satisfy the hypothesis of Theorem 7 and f is in
IP, 1< p < oo, the Littlewood—Paley function gz, m,(f) is defined by

the formula
{ffn @ =) % f(2) dzm}”‘

where th(m) = ¢t~ H (¢~%). Observe that if f is in L2 then
(8) 9%, 2, (F) “a Oliflls

= {121, f RO

with somewhat better H, the semi-linear operator f—>gx, m,(f) maps L?
boundedly into L® for other values of p also.

Consider the transformation f— Mg, f defined by the formula M, f(x)
= &;ug;)]th*f(m)l. Clearly this operation maps L* boundedly into IL®

(M 9K, Hy () 2)

where C . The following theorems show that:

and recall that Theorem 3 gives conditions on H which insure that it
maps L? boundedly into L? for p’s less than oo.

THEOREM 8. Suppose f—My, f maps L7 boundedly into L* for 1< q < oo,
then there is a constant, C,, independent of f, such that

19, 25 (F)llp < Cp 1l
Proof. Since we already have the result for p =2, aspume that

for 2 <p < oo.

2 < p < oo. Let p be any function in L?, where ¢ = (%) , and write

UM@){yKa,Hb(f, w)}gdwk ff{fﬂlb($"z)|(p(m) |dm} |Kta=i<f(z)|2-%t. e

< [ Mugp(—2) g, 2o

where @(z) = lp( —x)|. Applying the hypothesis and Tslder’s inequality
to the right-hand side of the last estimate we get

| [ 0) sy 0, (> )P0 | < Cllplgligac, (I

The desired result now follows from Riesz representation and Theorem 7. m

THEOREM 9. Suppose H (x) < (p(gu(w)) where p(t) is o decreasing function
on R, p(o,@) is in LYy and @(t)<Or ™% for A> 0. If B(&<
01404 (8)? ¥>4% min{tra, 4}, then there is a constant, O, independent

2%
of f such that llge,m,(F)lls < Cylfllp for mx{l, ﬂ%‘%}<p < .

icm
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This theorem is a simple corollary of the following lemma and the
Marcinkicwicz interpolation theorem. The proof presented here is a mod-
ification of the calculation used by Fefferman, [3], in obtaining the cor-
responding estimate for g7.

TeMMA L. Suppose H and K satisfy the hypothesis of Theorem 9 and

. 2tra
A satisfies 0 < A < tra. Then, for p = ———

s and any f in IP,

o grqm, Sy @) > s} < Os7P ISl

for cach s > 0, where C is a constant independent of f and s.
" . P, 2tra
Proof. Let f be a function in L*, p = e To prove thc lemma

Jit suffices to show that

(9) Ko: gy, m, (5 @)

where C is a constant independent of f.
Let B(x,s) = {#: g,(®—2) < s} and observe that {B(0,s),
a Vitali family with constant 2”. Now set

> 1 < Clifllp

s> 0} is

1
Plo) = sup{lB(a i [ lf(z)Wdz} and @ = {w: F(a)> 1}.

80
B(r,8)
Sinee |f(2)] is in L%, it follows from Theorem 2 that ].Q = 2%, [||7’
Lot o7 () bo a mapping of Q2 into R defined by r(z) = § inf ga r—2).
pef2t

Since  is open and of finite measure, () satisfies the hypothesis of
Theorem 1 and hcncc there exists a sequence in @ such that {B(a, r (@)}

iy disjoint and U By, 2r(w, z;)) = 2. Let {V,;} be a disjoint family of meas-
urable  sots such that Blw, r(@) = V; < Blo, 2r(m), § =1,2,...,

U V; = Q. Define the funetions f* and f by
jrel
l J
, "”';‘7““ f f(z)(]z, {IJEV“
f(a) = Vil
Fflay, e Q°
and f'' (#) = f(@) —f (@), and observe that the estimates
(10) s gy, 1, (f L w) > < OlfIE
and
(11) Ha: ﬂzca‘ua(f”; x> 3N < Clfliy

imply (9).
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To see (10), note that, by definition, |f' ()] < ¢’ for almost all @,
where ¢’ is independent of f. This together with the fact that | f o < Iflln
imply that f' is in L2 and ||f'|} < O||f|%. Hence, applying (8), we have

He: I m,(f 5 #) > 3} < - A9y m, (2 z)f < Cifis,
which proves (10).
Let By =B(.- dr(my), fil2) =f" @)y, (®), and write Kokf"(x)

= 2 Kpoxfy(#) = A,(x)+A,(z), where

A, 1) = g[Kta*fa(w)]xB;(w), Axfo, ) = 3Ky ()], (@),

and yp always denotes the characteristic function of the set I. Now, if

={f [ Hata—2) fA1(z,t)!2dz—%£}1/2

and
o0 i , t
gs(2) = {bf th (& —2) | A,y(2,1)] dz—~}

Iz m, (" @) < g2(2) + ga()
and it is clear that (11) will follow if we can show

then

(12) Ho: g:(m) > B < CIFIG
and
(13) Ho: go(2) > £} < O)f|B.

To see (12), write
A8 Kot @) > 1< 160l ~ 16 { [ e, reae.

To obtain an estimate on |4, (z, t)|, recall that I (%) < h(@a(m)) where

h(s) is a decreasing function on R, and [ h(ga(@))dz < oo, and observe
that

(15) xB;(z) 5115; K o2 — )r< 7 f t‘““h(z ealt™(= J)))
Also note that
(16) flf” )y < 01V,
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where € is a constant depending only on a. Using (15) and (16), we have

(7) 14, (2, t) 2%;;' (2) K 0% f; (2)

Je=1

>xﬁ »sup Ku(z —y)] f If" ()| dy
Vi

< O [ h{gq () da

dt
To obtain an estimate on J j |4y (=, )| T’ use (17) and write

(18) ffm (2, 1) ‘dz S0 ) j[mta*f, g |dz~~

-=1

Sinee K satisfies the hypothesis of Theorem 7, it is easy to see that
For . at
J j III,a(z—y)—Ktu(z—imf)lxﬂc (z)dz7<< ¢ for any yeV,,
i
0

where «; is the center B, Ience, using the fact that f f'(y)dy =0 and
(16) we have ¥i

o

@9) [ [ ey (2) 2yl

0

at
—Kya(e—a)1f" () dy | x ( #)dz-—

at
[ 1) f J st Kt 1,0 8y

Vj-
< GV,
Slipping (19) into (18) results in
o0 .
di A .
(20) [ [1dse nrassl< o N D)l = 0121 ol
:l ,I:l

Egtimate (12) now follows from (14) and (20).
To complete the proof of the lomma, it remains to show (13). Since
121 < ClIf15, (13) will follow from

(21) Hre @ ga(@) > HH < Ol
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o e
Reeall that ¢, (x { f f H (®—2) A2, 1)|2de w—} and observe that
o

Ay(z,8) = > [Kta*fj(z)]xﬂj(z) is identically zero for ze £°, since B; = Q
i=1
for all j. It follows that

@) = DO [ [, @ Halo =9 14,0, D2a-" .

m=10

Now, if #, is the center of B, and x iy in £° then for any = in V,,
0a(®—2) = $0(r—u,) and hence, since H ()< O () ™%, Hualw—z)
< Ot 04 (% — ®) """, Using this fact together with the last formula for
go(2) gives us ‘

N o
(22) (@] < D oulw—w,) f [ #r, @452, tpas
m=1 0

for all me Q°.

oo

o dt
To obtain an estimate on [ | t"x,.-m(z) |A2(z,t)|2dz~-t—, first observe
0

that the integrand can be non-zero only if # is contained in V,, N B
for some j. Now recall that B(my,r(a)) < V; < Bw, 2r(z) and By
= Ba;, 4r (a,)) where r(x;) = ﬁ-lnf 04 (; — ). It is casy to see that if

B;NV,, #@ then B, < B,, Where B, = Bz, 22r (x m)} and if N denotes
the number of B;’s Whoqe intersection with V,, is not empty then & < (44)%%,
Hence if denotes the sum of those j’s where B; NV, 5 @, then

J~m
27, @) [ Aa(z, 1)< N 3 |Kwxf;(2)1% Using the last inequality, we have
]~77!
\7 4 dt
fftx,, VI, (2, 1) de —-~<N ffz Kt (2)] ‘dz»——

]Nﬂl- 0

Now, using Plancherel, Fubini, and the fact that b6 (&) = 0 (1+Qa.(£))"’
for y > /2, write

i A ~2~Adf",... A-eml’-u 5 M
(24) fft B fy () 2de —fm(¢>|ofcm<t oS-

<0 [ 1lea (817 (8)2ae
= OB 2,

where R** is the inverse Fourier transform of g, (£)~*2. Applying Propo-
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gition 2 and Theorem 4, we see that the transformation f—>Rm*f maps
2tra

LP p = T itre’ boundedly into L*. In view of this fact, (24) becomes

- a
(25) [ [ttty 2z < DI
{ .

Now observe that

5 Y53 \ TP i’ l . 9
(26) D0 = S i@ ra™ < 3o
it J~m l’ F~mn

i ON | By |2 =2 |V, P2,

Putbing estimates (25) and (26) into (23) and then slipping the result
into (22) gives us

(27) [9a (@)1 << O D) |Vl (@ —a,) 7, for  me -,
M=l

Now that we have (27), simply write

e 200 gola) > }} =< 16 j [go ()2 due

o0
< ¢ 2‘1 [-Vm‘g/p f 0ol bmm)»-tmml duo

med F;)L
o
Y] 1 4
<O YVl = CIfI
Mk

which ix the desired result. m

Note that the assumption that ¢ is good in Theorems 7, 8, and 9 was
used only to take advantage of the fact that in this case the function
(#y 2)=>0q(w ~#) I8 a metric. A simple change of variables shows that it
sutfices to take a to boe reasonable,

3. Examples. Suppose ¢ s reasonable and @ is a function in CP(R,)
w11,h Hup])ol'i, i [L/2, 2], write ®(@) = [p(ea(£)e=Pds and & (x)

[lo(ew(&)]2e < dg. Cloarly @ and. (15’ both satisty the hypothesis

of Theorem 7 and its corollary and hence, if ¢ is not identically zero,
we have

(28) Jp ”f”p 5 ”g )Hp = 017”pr

for 1 < p < oo and an analogous incquality for (/%(f). Now let m be the
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least integer greater than #/2 and write ¥(x) = (Jo/™-+1)7% Tt is clear
from Theorems 3 and 8 that

(29) ) ”gtpa ¥, f ”p Jp”f”zz
for 2 << p < oco.
PROPOSITION 4. Suppose b is in L™ with (b, < B and
M [ Dyn(ra< B
e (b) <2
Jor all t > 0 and integers y;, 0 < y; < m, j=1,...,n, where hy(£) = h(1* &)
and B is a positive constant, then for any f in &, ‘

g, (Thf, ) < Cto,,w,(f) %)

PO N
where T4f 4s defined by Tyf(£) = h(8)f(&) and C is a constant depending
only on ¢ and B.

Proof. Observe that
(30) Dar I f (@) = [By(2, 1) Paxf(z —2) da

where @2, 1) = [1(£)p(0q (1 &) e ds.
Now break up the integration in (30) into an integral over the seb
{#: 7%= < 1} and its complement and write

(31) |¢;«*Thf(x)\2<2{t““ [ 1@z, ) )Pk f (@ —2) e+

t—%|«1

+C [ | By (e, )2 de [ o™ (@ f(z —2 |2dz}

[ %2)z=1
Note that
1942, O < [l [ (o0 (1" £))| A€ < CBEH
and
f| 12| Dy (2, 1) [2de = t““f{[zV" (1%, t)|2de

n
<0 f| 3o, e, t)]’dz
F=1

<ot ' [l b= &) o (g1(6)]!
j=1

< OB2~&e,
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Slipping the last two estimates into (31) gives us

o0

o At e . it
f |Prax Ty f ()2 =0 O f f t ““(ll"""zl'"z’"+1)\(D,n*f(:1:~z)|‘2dz‘{tv,
0 0

which i8 the desired result. m

As an immediate corollary, we sce that if A satisfies the hypothesis
of l‘r(moql‘rmn 2 then the transformation f->77,f maps L? boundedly into
IPfor L <p <

Lot P, j , my be the Lt functiom whose Fourier transform

is given by 1"'( ) o |Elem8 1’1(5) $je LA AP ,ny, and for 1> 0,
gt HA(w) = (1 )" 'Lh(s thflowoockmmy function. introduced
by Stein iy simply ¢} (f, z) = { fqp, i} (fy @)1}

Let 1™ Dbe the function Whow bourwr transform is given by

e = (S ief e~ (3 igie ris,))
1 .

where the principal determination of the square root is indicated. If a is

the linear transformation given by ax = (@, ..., 2, 2&,) and H*(z)

----- == (L4 gq (@))%, then 9.(fy@) and g . ,(f, @) are the Littlewood~
'3 @’

Paley functions studied by Jones [5] and Segovia and Wheeden [8].
More gonerally, suppose @ iz symmetriec and let K be o function whose
Fourier transform iy given by

(32) o K(E) = h(&)eeld

where ki continuous on R”, in 0®°(R™8{0}), and quasi-homogeneous
of degree o> 0 with respect to «. The following proposition together
with the mean value theorem shows that K satisfies the hypothesis of
Theorem 7.

PrROPOSITION B, [f K satisfies (32) then K (w)< O (L4 gg (@)~

Proof, Without loss of generality we can assume that o is diagonal
(i, 00 @i = (@gty, ooy ay@g)). Since K is bounded, it saffices to obtain
an estimadio tor p,(w) > 1. Write

[ () - ()2 f (&) et gl g g
o (27)” 71/29( 1) -t —a I h(&)e ~0p($) ey () gl E"’(i§

where @' = [g, (@)% is on the unit sphere. The last formula implies
that it is vnough to show that the inverse Fourier transtorm of h(&)e™ %
is bounded on the unit sphere independent of r > L. To see this, let (&)
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be a function in CF(R") such that ¢(&) =1 for g,(£) <1, @(&) = 0 for
0,(£) > 2 and observe that the inverse Fourier transform of f(¢,r)
= h(&)e~%®" g oqual to f,(x,r)+fale,r) where fi(&,r) = f(&, 7

and f(&,7) = f(&,7)(1—p(&). Clearly ful@, ) is bounded independent
of z and . To obtain an estimate on f,(z, ), observe that

N

DPUfalEs )] = { Y Mamagi( O 56O (14 (8) + (£, 7)

k=9

where h,lamj+ e I8 in C*(R™{0}) and quasi-homogeneous of degroe
a—ma;+ & with respect to ¢ and (&, r) is supported in 1 < g,(&) < 2 and
bounded independent of » > 1. From this we see that

DPLA(EMII< 0[ea £ (L—p (),

and hence, if m is large enough, [|D}*[f,(£, 7)]| @£ is bounded independent
of > 1. It follows that for sufficiently large m, |w|mf;(m, r) is bounded
independent of z and r > 1 and we conclude that fv‘z(m, ) is bounded in-
dependent of » > 1 for || = 1. m

Littlewood~Paley functions constructed with kernels of type (32) have
applications analogous to that of g;. Suppose ¢ is dia.gona.l and K7,
J=0,1,...,n, s defined by K'(&) = g,(£)e™e® and (&) = &e~o®,
j=1,...,n For 1> 0 set I{‘(x) = (14 g4(®))"™*, for a> 0 define
the transformation f—f, by f,(£) = 0,(£)~f(£). And for m =1,2,
define  A7f(x) = A,[47'f(2)] where A4,f(2) = f(z—z2)—f(z Plna.lly

r>1,

for 0 < a<tra and—<m, a

. = least eigenva.lue of a, define 27*(f, z)
0

for fin & by
' (f, @) = {[140f.(2) u ()

As in [10], it is not difficult to see that

tra—2a dz}1/2

(33) DS, @)

where

< Onefus(fr®)  for 0 << 9a

Gailfym) = {g: [gK{l,H;(f’ w)]‘z}l/z.

Estimate (33) together with Theorems 5 and 9, imply a characterization

of the quasi-homogencous Lebesgue spaces introduced by Sadosky and
Cotlar [7]. The details will appear elsewhere.

icm®
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