On Littlewood–Paley functions

by

WOŁODYMYR B. MADYCH (College Station, Tex.)

Abstract. We define and study a generalization of the Littlewood–Paley function, g^*_1, by using properties of certain approximations of the identity. L^p estimates are obtained and some examples and applications are given.

Introduction. If f is a reasonable function on \mathbb{R}^n, the Littlewood–Paley function, $g_1^*(f)$, is defined for $\lambda > 0$ by

$$
g_1^*(f, \omega) = \left(\int_{\mathbb{R}^n} \int_0^\infty \frac{\omega^{\lambda+1}}{(|x|+y)^{n+1}} \left| \text{grad} P_y \ast f(x-s) \right|^2 dy dx \right)^{1/2}
$$

where $P_y(s)$ is the Poisson kernel for the upper half space.

Stein introduced g_1^* in [9], where he showed that the transformation $f \to g_1^*(f)$ is bounded on $L^p(\mathbb{R}^n)$ for $\max \{1, \frac{2n}{\lambda+n} \} < p < \infty$. In [10], he used g_1^* to obtain a characterization of the Lebesgue spaces, L_p^n, and in [11], showed how g_1^* and its variants can be used to obtain Hörmander’s version of Mikhlin’s multiplier theorem.

Subsequently, Segovia and Wheeden, [8], introduced a Littlewood–Paley function, which we call $g_1^{**}(f)$, and which is defined for $\lambda > 0$ by

$$
g_1^{**}(f, \omega) = \left(\int_{\mathbb{R}^n} \int_0^\infty \frac{\omega^{\lambda+1}}{(\varphi(x)+y)^{n+1+\lambda}} \left| \frac{\partial}{\partial y} P_y \ast f(x-s) \right|^2 dy dx \right)^{1/2}
$$

where $\varphi(x) = \sum_{i=1}^{n-1} |x_i| + |x_n|^{n/2}$ and $P_y(x)$ is the Poisson type kernel for the upper half space associated with the heat equation $\sum_{\nu=1}^n \nu \sigma_{\nu} y_{\nu} - u_x = 0$. They showed that the transformation $f \to g_1^{**}(f)$ is bounded on $L^p(\mathbb{R}^n)$ for $\max \{1, \frac{2n+2}{\lambda+n+1} \} < p < \infty$.

It is the purpose of this paper to show that Littlewood–Paley functions with similar properties can be defined without recourse to Laplace or heat equations.
Chapter I
PRELIMINARIES

1. Notation and conventions. \(\mathbb{R} \) is the real line whose elements are denoted by \(r, s, t \) and \(\mathbb{R}_+ = \{ t \in \mathbb{R} : t > 0 \} \).

\(\mathbb{R}^n \) is an \(n \)-dimensional real Euclidean space whose elements are denoted by \(x, y, z \) and \(f \).

If \(\Omega \) is a subset of \(\mathbb{R}^n \), \(\overline{\Omega} \) and \(\partial \Omega \) denote the closure and complement of \(\Omega \) in \(\mathbb{R}^n \) respectively. If \(\Omega \) is measurable, \(|\Omega| \) denotes the Lebesgue measure of \(\Omega \).

If \(x \) and \(z \) are elements of \(\mathbb{R}^n \), \(\langle x, z \rangle = \sum_{j=1}^{n} x_j z_j \) and \(|z| = \sqrt{\langle z, z \rangle} \).

The symbols \(a \) and \(b \) will always be used to denote linear transformations on \(\mathbb{R}^n \). \(|a| = \sup \left\{ \frac{|ax_\ell|}{|x_\ell|} : x \in \mathbb{R}^n \right\} \) and \(a^* \) denotes the adjoint of \(a \).

\(I \) denotes the identity matrix.

\(D_j \) denotes the differential operator \(\frac{\partial}{\partial x_j} \), \(j = 1, \ldots, n \).

All functions considered by us are complex valued and all integrals are over \(\mathbb{R}^n \), unless denoted otherwise.

If \(f \) is a measurable function on \(\mathbb{R}^n \), then

\[\|f\|_p = \left(\int |f(x)|^p \, dx \right)^{1/p}, \quad 1 \leq p < \infty, \]

\[\|f\|_\infty = \text{ess. sup.} \, |f(x)|, \]

and \(L^p(\mathbb{R}^n) = L^p \), is the usual Banach space of functions for which \(\|f\|_p \) is finite.

\(p' \) always denotes the H"older conjugate of \(p \) for \(1 \leq p \leq \infty \), namely

\[\frac{1}{p} + \frac{1}{p'} = 1. \]

If \(\Omega \) is an open subset of some Euclidean space, \(C^\infty(\Omega) \) is the set of infinitely differentiable functions on \(\Omega \) and \(C^\infty_0(\Omega) \) is the subset of \(C^\infty(\Omega) \) consisting of functions with compact support. In the case \(\Omega = \mathbb{R}^n \), we simply write \(C^\infty \) and \(C^\infty_0(\mathbb{R}^n) \) instead of \(C^\infty(\mathbb{R}^n) \) and \(C^\infty_0(\mathbb{R}^n) \).

The subspace of \(C^\infty \) consisting of functions which together with all their derivatives tend to zero at infinity faster than any rational function is denoted by \(\mathcal{S} \) and is given the usual topology. Its dual, the space of tempered distributions, is denoted by \(\mathcal{S}' \) and is also given the usual topology. \((T, f)\) denotes the distribution \(T \) acting on \(f \in \mathcal{S} \).

We say that a distribution \(T \) is in \(C^\infty(\mathbb{R}^n \setminus \{0\}) \) (or \(\mathcal{S}(\mathbb{R}^n \setminus \{0\}) \)) if the distribution \((1 - \varphi)T \) is in \(C^\infty \) (or \(\mathcal{S} \)) for every \(\varphi \in C^\infty_0 \) which is identically one in a neighborhood of the origin.

The Fourier transform of \(f \in \mathcal{S} \) is defined by

\[\mathcal{F}f(\xi) = \hat{f}(\xi) = \int f(x) e^{-2\pi i \xi \cdot x} \, dx, \]

and the inverse Fourier transform of \(f \) is defined by

\[\mathcal{F}^{-1}f(\xi) = \hat{f}(\xi) = \int f(x) e^{2\pi i \xi \cdot x} \, dx. \]

Plancherel's formula thus reads:

\[\|f\|_2 = \|\hat{f}\|_2 = \|f\|_2. \]

The Fourier transform is defined on \(\mathcal{S}' \) in the usual manner.

All Fourier transforms and differentiations are to be interpreted in the \(\mathcal{S}' \) sense, unless they make sense otherwise.

The convolution of two functions, \(f \) and \(g \), defined on \(\mathbb{R}^n \) is \(f \ast g \) where

\[f \ast g (x) = \int f(x - y) g(y) \, dy, \]

whenever this operation makes sense.

The symbol \(C \) will be used generically for constants appearing in certain estimates. Sometimes it will be subscripted to denote the parameters it depends on. At other times the parameters \(C \) depends on will be clear from the proof of the estimate. It need not be the same at different occurrences.

The end of a proof will always be signalled by \(\blacksquare \).

2. Quasi-homogeneous metrics, functions, and distributions. Let \(a \) be a linear transformation on \(\mathbb{R}^n \), and consider the one parameter group \(t^a = e^{-ita}, \quad t > 0 \).

We say that \(a \) is good if \(|t^a| \leq 1 \) for \(0 < t \leq 1 \). If there is an \(\varepsilon > 0 \) such that \(|t^a| \leq 1 \) for \(0 < t \leq 1 \), we call \(a \) reasonable. Observe that if \(a \) is reasonable, then there is a positive constant, \(b \), such that \(ba \) is good. Also note that if \(a \) is reasonable or good, then \(a^* \) also has that property.

Suppose \(a \) is reasonable and consider the function \(P(x, t) = |t^{-a}x|, \quad t > 0 \).

It is clear that, for fixed \(x \neq 0 \), \(P(x, t) \) is a strictly decreasing continuous function of \(t \), \(\lim_{t \to 0} P(x, t) = \infty \), and \(\lim_{t \to \infty} P(x, t) = 0 \). It follows that \(P(x, t) = 1 \) has a unique solution which we call \(\phi_a(x) \).

Having defined \(\phi_a(x) \) for \(x \neq 0 \), set \(\phi_a(0) = 0 \). The following proposition, whose proof
follows immediately from the definitions, gives us some important properties of the function \(q \).

Proposition 1.

(i) \(q(x) \in C^\omega(\mathbb{R}^n \setminus \{0\}) \).
(ii) \(\delta q(t^a x) = t^a \delta q(x) \), \(t > 0 \).
(iii) \(\delta q(x) = 1 \) if and only if \(|x| = 1 \).
(iv) If \(a \) is good, then \(\delta q(x + z) \rightarrow \delta q(x) \) as \(z \rightarrow 0 \).

We call \(\delta q \) the quasi-homogeneous "metric" with respect to \(a \). Note that \(\delta q \) of the above proposition implies that if \(a \) is good then the function \((x, z) \rightarrow \delta q(x - z) \) is indeed a metric on \(\mathbb{R}^n \).

The above considerations suggest the polar change of variables

\[
 x = r^a z,
\]

where \(r = \delta q(x) > 0 \) and \(z = \delta q(x)^{-a} x \in S^{n-1} \). Writing \(z \) in terms of the usual polar angles of \(\mathbb{R}^n \) and \(\theta_n \), \(\theta_{n-1} \), and computing the Jacobian of (1), we get \(dq = r^{n-1} dr \, d\theta \), where \(r = trc \) is the radial component of \(r \). Therefore, \(\delta q \) is a measure on \(S^{n-1} \). For more details concerning the metric and the polar change of variables see [2] or [6].

Throughout the rest of the section we always assume to be reasonable.

The following formulas can be easily verified using the above change of variables:

\[
 \int_{S^{n-1}} \, d\theta = \frac{n}{\delta q(x)} t^{a-1} \, dt,
\]

where \(\delta q(x) \) is the area of \(S^{n-1} \).

If \(f \) is a measurable function on \(\mathbb{R}^n \) such that for some constant \(C \) and \(m \), \(f(x) \leq C \delta q(x)^m \), then for any \(\varphi \in C^\omega \) such that \(\varphi \equiv 1 \) in a neighborhood of the origin \(\mathbb{R}^n \) is integrable if \(m > -a \) and \((1 - \varphi(x)) f(x) \) is integrable if \(m < -a \). Also note that if \(a \) is diagonal (i.e. \(a = (a_1, \ldots, a_{n-1}) \) then there is a constant \(C > 0 \) such that

\[
 C^{-1} \delta q(x) \leq \sum_{j=1}^n |a_j|^{1/2} \delta q(x) \leq C \delta q(x)
\]

for all \(x \in \mathbb{R}^n \).

A function \(f \) defined on \(\mathbb{R}^n \) is said to be quasi-homogeneous of degree \(k \), \(k \in \mathbb{R} \), with respect to \(a \) if for every \(t > 0 \) the formula \(f(t^ax) = t^{ka} f(x) \) holds for every \(x \neq 0 \).

The notion of quasi-homogeneity for tempered distributions is analogous to that for functions. For \(t > 0 \), define the operator \(\delta q^a \) acting on \(\varphi \in \mathscr{S} \) by the formula \(\delta q^a \varphi(x) = \varphi(t^{a} x) \). For \(T \in \mathscr{S} \) define the operator \(\delta q^a \)

acting on \(T \) by the formula

\[
 \langle \delta q^a T, \varphi \rangle = \langle T, t^{-a} \delta q^a \varphi \rangle.
\]

It is clear that \(\delta q^a T \) is in \(\mathscr{S} \). Define \(\mathcal{T} \) to be quasi-homogeneous of degree \(k \) with respect to \(a \) if for every \(t > 0 \), \(\delta q^a T = t^{ka} T \).

A simple computation shows that for \(T \in \mathscr{S} \), \(\delta q^a T = t^{-ka} \delta q^a \mathcal{T} \). Now, if \(T \) is quasi-homogeneous of degree \(k \) with respect to \(a \), applying the last formula results in \(\delta q^a \mathcal{T} = t^{-ka} \mathcal{T} \) and hence \(\mathcal{T} \) is quasi-homogeneous of degree \(-ka - k \) with respect to \(a^* \).

We conclude this section with

Proposition 2. If the tempered distribution \(T \) is locally integrable, in \(C^\omega(\mathbb{R}^n \setminus \{0\}) \), and quasi-homogeneous of degree \(k \) with respect to \(a \), where \(-ka < k < 0 \), then \(\mathcal{T} \) is locally integrable, in \(C^\omega(\mathbb{R}^n \setminus \{0\}) \), and quasi-homogeneous of degree \(-ka - k \) with respect to \(a^* \).

Proof. Let \(\varphi \in C^\omega(\mathbb{R}^n) \) such that \(\int_0^\infty \varphi(t) \frac{dt}{t} = 1 \). Write \(g(\mu) = T(\mu) \varphi(\delta q(a)) \). Clearly \(g \in \mathscr{S} \),

\[
 T(\mu) = \int_0^\infty t^{-k} g(t^a \mu) \frac{dt}{t},
\]

\[
 \mathcal{T}(\mu) = \int_0^\infty t^{-k} g(t^{-a} \mu) \frac{dt}{t},
\]

and the conclusion of the proposition follows.

3. Vitali families, maximal functions, and "quasi-homogeneous like" kernels. Let \((U_n, s > 0) \) be a family of open subsets of \(\mathbb{R}^n \) whose closure is compact.

Definition. \((U_n, s > 0) \) is a Vitali family with constant \(A \) if and only if

(i) for \(s_1 < s_2 \), \(U_{s_1} \subset U_{s_2} \) and \(\bigcup_{s > 0} U_s = \{0\} \),

(ii) \(|U_s - U_{-s}| \leq A |U_s| \) for all \(s \), where \(U_s - U_{-s} \) denotes \(\{x : x = y - z \) where \(y \) and \(z \) are both in \(U_s \} \),

(iii) \(U_s \) is a left continuous function of \(s \).

Theorem 1. Suppose \(\Omega \) is a measurable set in \(\mathbb{R}^n \) and let \(x \rightarrow (x) \) be a mapping of \(\Omega \) into \(\mathbb{R}^n \) satisfying:

(i) \((r(x)) \) is bounded and for every \(r_0 > 0 \) the set \(\{x : x \in \Omega, (x) > r_0 \} \) is a bounded subset of \(\mathbb{R}^n \).

(ii) If \((x) \) is a sequence which converges to \(x_0 \) and \((x_0) \rightarrow r_0 \) then \(x_0 \in \Omega \) and \((x_0) \geq r_0 \).
If \(\{U_t, t > 0\} \) is a Vitali family with constant \(A \), then there exists a sequence \(\{x_0\} \subset \Omega \) such that

1) \((x_0 + U_{t_0}) \) is disjoint,
2) \(\Omega = \bigcup_{t \in \mathbb{R}} (x_0 + (U_{t_0} - U_{t_0})) \),
3) \(|\Omega| \leq A \sum_{t \in \mathbb{R}} |U_{t_0}| \).

Theorem 2. Let \(\{U_t, t > 0\} \) be a Vitali family with constant \(A \). For \(f \in L^p \), define

\[
Mf(x) = \sup_{t > 0} \frac{1}{|U_t|} \int_{U_t} |f(x - z)| \, dz.
\]

Then

(i) \(\|f(z) Mf(z) > 1\| \leq A \|f\|_p \),
(ii) \(\|Mf\|_p \leq C\|f\|_p \) for \(1 < p \leq \infty \), where \(C \) is a constant depending only on \(A \) and \(p \).

For proofs of the above theorems, see Rivero [8].

In the statements of the next two theorems, we take \(a = 1 \) to be reasonable.

Theorem 3. Suppose \(H \in L^1 \) and \(H(tz) = h(ta(t)) \) where \(h(t) \) is a decreasing function on \(R^+ \), and \(|h'(a(t))| \, da \leq C \) constant.

Consider the transformation \(f \rightarrow M_{H^*}f \) where

\[
M_{H^*}f(x) = \sup_{t > 0} \left| \int t^{-n/2} H(t^{-r/2})f(x - z) \, dz \right|.
\]

If \(b \) is reasonable and commutes with \(a \), then

\[
|M_{H^*}f|_p \leq C\|f\|_p \quad \text{for} \quad 1 < p \leq \infty,
\]

where \(C \) is a constant which depends only on \(H, p, \) and \(n \).

Proof. Write

\[
\left| \int t^{-n/2} H(t^{-r/2})f(x - z) \, dz \right|
\leq \sum_{b = 0}^{\infty} 2^{b}\|H(2^{a(t)} - 2^{b})\| \left| \int t^{-n/2} f(x - z) \, dz \right|
\leq \sum_{b = 0}^{\infty} 2^{b(2^{a(t)} - 1)} 2^{b t r} \left| \int f(x - z) \, dz \right|
\]

Taking the sup over \(t > 0 \), we get

\[
M_{H^*}f(x) \leq \sum_{b = 0}^{\infty} 2^{b(2^{a(t)} - 1)} 2^{b t r} M_{H}f(x)
\]

where

\[
M_{H}f(x) = \sup_{t > 0} \frac{1}{2^{b t r} 2^{b t r}} \int_{t b^{t r} 2^{b t r}} f(x - z) \, dz.
\]

Let \(\{U_{t}^2, t > 0\} \) be the family of open subsets of \(R^2 \) defined by \(U_{t}^2 \)

\[
= \{z : d(x, y) < 1\}.
\]

Clearly \(\{U_{t}^2, t > 0\} \) is a Vitali family with constant \(2^2 \). Observing that \(|U_{t}^2| = \frac{2^{2t/2} 2^{t r}}{t r} \) and applying Theorem 2, it follows that \(\|M_{H^*}f\|_p \leq C\|f\|_p \) for \(1 < p \leq \infty \), where \(C \) is a constant depending only on \(n \) and \(p \). Since this is true for each \(n = 0, 1, 2, \ldots \), we conclude that

\[
\|M_{H^*}f\|_p \leq \sum_{b = 0}^{\infty} 2^{b(2^{a(t)} - 1)} 2^{b t r} \|f\|_p \leq [C \int h(a(t)) \, da] \|f\|_p.
\]

The next theorem is a quasi-homogeneous version of a classical result generally referred to as Sobolev's imbedding theorem. For a proof in the case \(a = I \), see Stein [11].

Theorem 4. Suppose \(H \) is locally integrable on \(R^n \) and \(|H(x)| \leq C\|f\|_n \), where \(0 < a < \text{tr}a \). If \(p \) and \(q \) satisfy \(1 < p < \frac{\text{tr}a}{a} \) and \(\frac{1}{q} = \frac{1}{p} - \frac{a}{\text{tr}a} \), then for \(f \in L^p \) the transformation \(f \rightarrow H^*f \) is well defined and \(\|H^*f\|_q \leq C\|f\|_p \), where \(C \) depends on \(H, a, p, \) and \(q \).

4. **Distributions whose Fourier transforms are in \(L^p \).**

Proposition 3. Let \(\beta_1, \ldots, \beta_n \) be positive integers such that \(\sum_{1}^{n} \frac{1}{\beta_i} < 2 \).

Suppose that \(f \in L^p \) satisfies

(i) \(\|f\|_b \leq B \),
(ii) \(\|H f\|_1 \leq B, \quad j = 1, \ldots, n; \)
then \(f \in L^p \) and \(\|f\|_p \leq CB \), where \(C \) is a constant which depends only on \(\beta_1, \ldots, \beta_n \).

Proof. From (i) it is clear that \(f \) is a function in \(L^p \). To compute the \(L^p \) norm of \(f \), let \(b \) be the linear transformation defined by \(b = \left(\frac{1}{\beta_1}, x_1, \ldots, \frac{1}{\beta_n}, x_n \right) \) and write

\[
\left| \int \int f(x) \, dx \right| \leq \left(\int |1 + \varphi_b(x)|^2 \, dx \right)^{1/2} \left(\int |1 + \varphi_b(x)|^{-1} \, dx \right)^{1/2}
\]

where \(\varphi_b(x) \) is the quasi-homogeneous "metric" with respect to \(b \). Recalling
that \(\varphi_k(x) \leq C \sum_{j=1}^{n} |x_j|^{\delta_j} \) and applying Plancherel's formula we have

\[
\left\{ \int |(1 + \varphi_k(x)) f(x)|^p dx \right\}^{1/p} \leq C \left\{ \|f\|_1 + \sum_{j=1}^{n} \|D_j f(x)\|_1 \right\}^{1/p}.
\]

Using the polar change of variables we have

\[
\left\{ \int |(1 + \varphi_k(x)) f(x)|^2 dx \right\}^{1/2} = C \left\{ \sum_{j=1}^{n} (1 + r_j)^{-r_j} \sum_{k=1}^{n} d_k \right\}^{1/2} = C
\]

since \(r_j > 2 \) and \(\beta_j < 2 \). Slipping the last two estimates into (3) gives us the desired result.

Theorem 5. Suppose \(a \) is reasonable and let \(\beta_1, \ldots, \beta_n \) be positive integers such that \(\sum_{j=1}^{n} \frac{1}{\beta_j} < 2 \). If \(f \) is in \(L^p \) such that

\[
(1) \quad \int_{\mathbb{R}^n} |D_j f_k(x)|^2 dx \leq B_k^2
\]

for all \(k = 0, \pm 1, \pm 2, \ldots \), and integers \(y_j, 0 \leq y_j \leq \beta_j, j = 1, \ldots, n \), where \(f_k(x) = f(x) \) and the \(B_k \)'s are positive numbers with \(\sum_{k=0}^{n} B_k < \infty \), then \(f \) is in \(L^p \) and the \(L^p \) norm of \(f \) is bounded by a constant which depends only on \(\beta_1, \ldots, \beta_n \) and \(\sum_{k=0}^{n} B_k \).

Proof. Let \(\psi \) be a positive function in \(G^\infty(\mathcal{R}) \) with support in \(\{ \mathbb{R} \} \) and such that \(\psi(t) > 0 \) for \(\frac{1}{2} < t < V \). Set \(\varphi(t) = \psi(t) / \sum_{m} \psi(2^{-m} t) \) and \(\varphi(x) = \Phi(x) \). Observe that \(\psi \in G^\infty, \varphi(2^{-m} x) \) has support in \(\{ x : 2^{-m} \leq \varphi(x) \leq 2^{m+1} \} \) and \(\sum_{m} \varphi(2^{-m} x) = 1 \) for \(x \neq 0 \). Write

\[
(2) \quad f(x) = \sum_{m} \varphi(2^{-m} x) f(x) - \sum_{m} \varphi(2^{-m} x) \delta(x).
\]

It is clear that the \(\varphi_k \)'s are in \(L^p \). To obtain an estimate on their \(L^p \) norms, using the same method as in proof of Proposition 3, write

\[
(3) \quad \int |\varphi(x)|^p dx \leq \int \left\{ (1 + \varphi(x)) |\varphi(x)|^p dy \right\}^{1/p} \left\{ (1 + \varphi(x))^{-1} dx \right\}^{1/p} \leq C 2^{-1/p}.
\]

Now, using Plancherel's formula and (1), we have

\[
\left\| \varphi \right\|_p = \left\{ \int |f(\xi)|^p d\xi \right\}^{1/p} \leq 2^{1/p} B_k
\]

and

\[
\left\| \varphi(x) \right\|_p = \left\{ \int |g(\xi)|^p d\xi \right\}^{1/p} \leq C \left\{ \int \left| \varphi(x) \right| f(x) \right\}^{1/p} \leq C 2^{-1/p} \sum_{j=1}^{n} \left\| D_j f_j(x) \right\|_1 \leq C 2^{-1/p} \sum_{j=1}^{n} \left\| D_j f_k(x) \right\|_1 \leq C 2^{-1/p} B_k.
\]

Slipping the last two estimates into (4), we conclude that

\[
(4) \quad \int |\varphi(x)|^p dx \leq \int \left\{ (1 + \varphi(x)) |\varphi(x)|^p dy \right\}^{1/p} \left\{ (1 + \varphi(x))^{-1} dx \right\}^{1/p} \leq C 2^{-1/p}.
\]

Since \(\sum_{k=0}^{n} B_k < \infty \), it follows from (5) that there is an \(F \) in \(L^p \) such that \(\lim_{k} \left\| f_k \right\|_p = 0 \) and whose \(L^p \) norm is bounded by \(C \sum_{k=0}^{n} B_k \). Observe that (3) implies that \(\lim \sum_{k=0}^{n} \left\| f_k \right\|_p = \left\| f \right\|_p \) in \(L^p \), and using the fact that the Fourier transform is continuous on \(L^p \), we conclude that \(\hat{f} = F \).

The following corollary of Theorem 5 can be used for most applications.

Corollary. Suppose \(a \) is diagonal (i.e. \(a = (a_1, \ldots, a_n) \)) and \(a_j > 0, j = 1, \ldots, n \), and let \(\beta_1, \ldots, \beta_n \) be as in Theorem 5.

If \(f \) is in \(L^p \) and sufficiently smooth with

\[
\sup_{\mathbb{R}^n} \left| \frac{d^n f(x)}{dx^n} \right| \leq B_k
\]

for \(k = 0, \pm 1, \pm 2, \ldots \), and integers \(y_j, 0 \leq y_j \leq \beta_j, j = 1, \ldots, n \), where the \(B_k \)'s are positive numbers with \(\sum_{k=0}^{n} B_k < \infty \), then \(f \) is in \(L^p \) and \(L^q \) norm of \(f \) depends only on \(\beta_1, \ldots, \beta_n \) and \(\sum_{k=0}^{n} B_k \).

5. Vector valued singular integrals. In this section we assume that \(a \) is a good linear transformation on \(\mathbb{R}^n \). In this case, the function \((x, a) \rightarrow \varphi_k(x, a) = x \) is a metric on \(\mathbb{R}^n \).

If \(\mathcal{H} \) is a Hilbert space, then \(|\cdot|_\mathcal{H} \) denotes the norm of the element \(u \in \mathcal{H} \) and \(L^p(\mathcal{H}) \), \(1 \leq p < \infty \), denotes the space of strongly measurable
\mathcal{X} valued functions defined on \mathbb{R}^n such that $f(x)|_{\mathcal{X}}$ belongs to L^p with norm $\|f\|_{L^p(\mathcal{X})} = L^p$ norm of $f(x)|_{\mathcal{X}}$. If \mathcal{X} and \mathcal{Y} are two Hilbert spaces, then $L^p(\mathcal{X}, \mathcal{Y})$ denotes the space of bounded linear operators from \mathcal{X} to \mathcal{Y} and if L is in $L^p(\mathcal{X}, \mathcal{Y})$ then $\|L\|_{L^p(\mathcal{X}, \mathcal{Y})} = \sup\{\|Lx\|_{\mathcal{Y}} : x \in \mathcal{X}, \|x\|_{\mathcal{X}} \leq 1\}$.

The following theorem is a generalization of the Calderón– Zygmund inequality and its proof can be found in Rivière [6].

Theorem 6. Let $\mathcal{X}(\delta)$ be a function on \mathbb{R}^n with values in $L^p(\mathcal{X}, \mathcal{Y})$ such that \mathcal{X} is measurable and integrable on compact subsets of $\mathbb{R}^n \setminus \{0\}$. Suppose \mathcal{X} has the following properties:

(i) $\lim_{\epsilon \to 0} \int_{\epsilon < \|x\| < \delta} \mathcal{X}(x)dx \|\mathcal{X}(x)\|_{L^p(\mathcal{X})} \leq C_1$, where C_1 is independent of δ and ϵ, $0 < \epsilon < \delta < \infty$, and for each $x \in \mathcal{X}$, $C_1 \mathcal{X}(x)dx$ exists.

(ii) For $x \in \mathcal{X}$, $\int_{\epsilon < \|x\| < \delta} \mathcal{X}(x)dx \|\mathcal{X}(x)\|_{L^p(\mathcal{X})} \leq C_2$, where C_2 is independent of δ and ϵ, $0 < \epsilon < \delta < \infty$, and for each $x \in \mathcal{X}$, $C_2 \mathcal{X}(x)dx$ exists.

(iii) For $x \in \mathcal{X}$, $\int_{\epsilon < \|x\| < \delta} \mathcal{X}(x)dx \|\mathcal{X}(x)\|_{L^p(\mathcal{X})} \leq C_3$, where C_3 is independent of δ and ϵ, $0 < \epsilon < \delta < \infty$, and for each $x \in \mathcal{X}$, $C_3 \mathcal{X}(x)dx$ exists.

Also assume that $\mathcal{X}^*(x)$ enjoys the same properties as $\mathcal{X}(x)$.

Under these conditions, the transformation $f \mapsto \mathcal{X}$ given by $\mathcal{X}(f) = \lim_{\epsilon \to 0} \int \mathcal{X}(x)f(x)dx$ is well defined on $L^p(\mathcal{X})$ to $L^p(\mathcal{X})$ for $1 < p < \infty$ and $\|\mathcal{X}(f)\|_{L^p(\mathcal{X})} \leq C\|f\|_{L^p(\mathcal{X})}$, where C depends only on C_1, C_2, C_3 and p.

CHAPTER II

LITTLEWOOD–PALEY FUNCTIONS

1. $g_{\mathcal{K}}$. Suppose that K is in L^1 and a is good; then for $f \in L^p$, $1 \leq p < \infty$, the Littlewood–Paley function $g_{\mathcal{K}}(f)$ is defined by the formula

$$g_{\mathcal{K}}(f, x) = \int_0^\infty |K_{\mathcal{K}}(x)|^2dt \frac{dt}{t^{1/2}}$$

where $K_{\mathcal{K}}(x) = t^{-a}K(tx/a)$.

The following theorem gives some conditions on K which imply that the semi-linear transformation, $f \mapsto g_{\mathcal{K}}(f)$, maps L^p boundedly into L^p.

Theorem 7. Suppose K has the following properties:

(i) $|K(x)| \leq h(|x|)$ where $h(t)$ is a decreasing function on R_+ and $h(t) \leq C_1t^{-\alpha} + |t|^\alpha$ for some $\delta > 0$.

(ii) $K(x)dx = 0$.

(iii) $|K(x) - K(x)|dx \leq C_2|x|^\alpha$ for some $\alpha > 0$.

Under these conditions it follows that

$$\|g_{\mathcal{K}}(f)\|_p \leq C\|f\|_p, \quad 1 < p < \infty,$$

where C depends only on C_1, C_2, δ, α, and p.

Proof. This result is an easy consequence of Theorem 5. To see this, let \mathcal{X} be the complex numbers and let

$$\mathcal{X} = \{x \in \mathbb{C} : \psi \text{ measurable on } R_+ \text{ with } \int \frac{|\psi(t)|^2}{t} \frac{dt}{t} < \infty\}.$$

Let $\mathcal{X}(x)$ be the linear operator transforming the complex number ξ into the element $K_{\mathcal{K}}(x)\xi$ of \mathcal{X}. Now, if \mathcal{X} satisfies the hypothesis of Theorem 5, observe that $\mathcal{K}_{\mathcal{K}}(f) = \mathcal{X}(f)|_{\mathcal{X}}$ and hence

$$\|g_{\mathcal{K}}(f)\|_p = \|\mathcal{X}(f)\|_{L^p(\mathcal{X})} \leq C\|f\|_{L^p(\mathcal{X})} = C\|f\|_p.$$

The calculations showing that $\mathcal{X}(x)$ and $\mathcal{X}^*(x)$ satisfy (i), (ii), and (iii) are analogous to those in Benedek, Calderón, and Panzone [1], so we omit them.

Observe that if K satisfies the hypothesis of Theorem 6, then

$$\int \frac{|K_{\mathcal{K}}(x)|^2}{t} \frac{dt}{t} < \infty$$

and recall that $K_{\mathcal{K}}(x) = K(tx/a)$. Now, if K is a function which depends only on $a_\theta(x)$ (i.e., $K_{\mathcal{K}} = a_\theta(x)$ where a_θ is a function on R_+), then

$$\int \frac{|K_{\mathcal{K}}(x)|^2}{t} \frac{dt}{t} = \int |\mathcal{K}_{\mathcal{K}}(t)|^2 \frac{dt}{t} = C = \text{constant independent of } \delta.$$

In this case, for f_1 and f_2 in \mathcal{X}, we have

$$\int \frac{|K_{\mathcal{K}}(x)f_1(x)|^2}{t} \frac{dt}{t} = \int \frac{|K_{\mathcal{K}}(x)f_1(x)f_2(x)|^2}{t} \frac{dt}{t} = C\int \frac{|f_1(x)f_2(x)|^2}{t} \frac{dt}{t}.$$

Applying Hölder’s inequality to the last formula results in

$$\|f_1\|_p \leq C\|g_{\mathcal{K}}(f_1)\|_p.$$

The last inequality together with Riesz representation and a simple limiting argument give us the following:

Corollary. Suppose K satisfies the hypothesis of Theorem 6 and $K_{\mathcal{K}}$ depends only on $a_\theta(x)$, then if K is not identically zero

$$\|f\|_p \leq C\|g_{\mathcal{K}}(f)\|_p, \quad 1 < p < \infty,$$

where C is a constant depending only on K and p.

2. Suppose H is a non-negative function in L^1 and b is reasonable, if K and a satisfy the hypothesis of Theorem 7 and f is in L^p, $1 \leq p < \infty$, the Littlewood-Paley function $g_{K,a}(f)$ is defined by the formula

$$
(7) \quad g_{K,a}(f, x) = \left\{ \int \left(\int_{\mathbb{R}} H_{b}(x - z) K_a f(z) \right)^2 dz \right\}^{1/2} d\mu(z)
$$

where $H_b(x) = \int_{\mathbb{R}} H(t - b) dt$. Observe that if f is in L^2 then

$$
(8) \quad \|g_{K,a}(f)\|_2 \leq C \|f\|_2
$$

where $C = \left\{ \|H\|_1 \right\} \left\{ \|K_a f\|_2 \right\}^{1/2}$. The following theorems show that with somewhat better H, the semi-linear operator $f \mapsto g_{K,a}(f)$ maps L^p boundedly into L^p for other values of p also.

Consider the transformation $f \mapsto M_{K,a} f$ defined by the formula $M_{K,a} f(x) = \sup \{H_{b}(x - z) \mid f(z)\}^{1/2}$, clearly this operation maps L^p boundedly into L^p and recall that Theorem 3 gives conditions on H which insure that it maps L^p boundedly into L^p for $p > 0$, less than 1.

Theorem 8. Suppose $f \mapsto M_{K,a} f$ maps L^p boundedly into L^p for $1 < p < \infty$, then there is a constant, C_p, independent of f, such that

$$
\|g_{K,a}(f)\|_p \leq C_p \|f\|_p
$$

for $2 \leq p < \infty$.

Proof. Since we already have the result for $p = 2$, assume that $2 < p < \infty$. Let g be any function in L^q, where $q = \left(\frac{p}{2} \right)$, and write

$$
\left\{ \|\varphi(\cdot) g_{K,a}(f, \cdot)\|_2 \right\}^{1/2} \leq \left\{ \int \left(\int_{\mathbb{R}} H_{b}(x - z) \varphi(z) \right)^2 dz \right\}^{1/2} \leq \int M_{K,a} \varphi(x) \langle g_{K,a}(f, \cdot) \rangle^2 dz
$$

where $\varphi(x) = |\varphi(-x)|$. Applying the hypothesis and Hölder’s inequality to the right-hand side of the last estimate we get

$$
\left\{ \|\varphi(\cdot) g_{K,a}(f, \cdot)\|_2 \right\}^{1/2} \leq C \|g\|_p \|g_{K,a}(f)\|_p.
$$

The desired result now follows from Riesz representation and Theorem 7. ■

Theorem 9. Suppose H is a non-negative function on the open interval, $\varphi_0(x)$ is in L^1, and $\varphi(t) \leq C\langle t \rangle^{\gamma - 1}$ for $\gamma > \frac{1}{2}$, then there is a constant, C_p, independent of f such that $\|g_{K,a}(f)\|_p \leq C_p \|f\|_p$ for $1 \leq p < \infty$.

This theorem is a simple corollary of the following lemma and the Marcinkiewicz interpolation theorem. The proof presented here is a modification of the calculation used by Fefferman, [3], in obtaining the corresponding estimate for \mathcal{G}_1.

Lemma 1. Suppose H and K satisfy the hypothesis of Theorem 9 and γ satisfies $0 < \gamma < \alpha$. Then, for $p = \frac{2 \alpha x}{\gamma + x - a}$ and any f in L^p,

$$
\left\{ \{x : g_{K,a}(f, x) > \delta\} \right\} \leq C \alpha^{-\gamma} \|f\|_p^p
$$

for each $\delta > 0$, where C is a constant dependent of f and a.

Proof. Let f be a function in L^p, $p = \frac{2 \alpha x}{\gamma + x - a}$. To prove the lemma it suffices to show that

$$
\left\{ \{x : g_{K,a}(f, x) > 1\} \right\} \leq C \|f\|_p^p
$$

where C is a constant independent of f.

Let $B(x, s) = \{z : \varphi_0(x - z) < s\}$ and observe that $\{B(0, s), s > 0\}$ is a Vitali family with constant 2^γ. Now set

$$
F(x) = \frac{1}{\mu(B(0, s))} \int_B \left| f(z) \right|^p dz
$$

and define a mapping of B into B_0 defined by $r(x) = \frac{1}{\delta^\gamma} \mu(B(x, \delta))$. Since δ is open and of finite measure, $r(x)$ satisfies the hypothesis of Theorem 1 and hence there exists a sequence in Ω such that $B(x, r(x))$ is disjoint and $\bigcup B(x, 2r(x)) \supseteq \Omega$. Let $\{V_j\}$ be a disjoint family of measurable sets such that $B(x, r(x)) \subseteq V_j \subseteq B(x, 2r(x))$, $j = 1, 2, \ldots$, $\infty \in V_j = \Omega$. Define the functions f' and f'' by

$$
\begin{cases}
 f'(x) = \frac{1}{|V_j|} \int_{V_j} f(z) dx, & x \in V_j;
 \quad \text{and} \quad f''(x) = f(x) - f'(x), \quad x \in \Omega
\end{cases}
$$

and observe that the estimates

$$
\left\{ \{x : g_{K,a}(f', x) > \frac{1}{2}\} \right\} \leq C \|f\|_p^p
$$

and

$$
\left\{ \{x : g_{K,a}(f'', x) > \frac{1}{2}\} \right\} \leq C \|f\|_p^p
$$

imply (9).
To see (10), note that, by definition, \(|f'(x)| \leq C'\) for almost all \(x\), where \(C'\) is independent of \(f\). This together with the fact that \(|f'|_p \leq ||f||_p\) imply that \(f'\) is in \(L^2\) and \(||f'||_p \leq C||f||_p\). Hence, applying (8), we have

\[|\{x : g_{\nu_{\nu_{\nu_{\nu}}}}(f', x) > \frac{1}{2}\}| \leq 4||g_{\nu_{\nu_{\nu_{\nu}}}}(f', x)||_p \leq C||f||_p,\]

which proves (10).

Let \(B_j = B_{\nu_{\nu_{\nu_{\nu}}}}(\nu_{\nu_{\nu_{\nu}}})\), \(f_j(x) = f'(x)\chi_{\nu_{\nu_{\nu_{\nu}}}}(x)\), and write \(K_{\nu_{\nu_{\nu_{\nu}}}f_j}(x) = \sum_{\nu_{\nu_{\nu_{\nu}}}} K_{\nu_{\nu_{\nu_{\nu}}}f_j}(x) = A_1(x) + A_2(x)\), where

\[A_1(x, t) = \sum_{\nu_{\nu_{\nu_{\nu}}}} [K_{\nu_{\nu_{\nu_{\nu}}}f_j}(x)] \chi_{\nu_{\nu_{\nu_{\nu}}}}(x), \quad A_2(x, t) = \sum_{\nu_{\nu_{\nu_{\nu}}}} [K_{\nu_{\nu_{\nu_{\nu}}}f_j}(x)] \chi_{\nu_{\nu_{\nu_{\nu}}}}(x),\]

and \(\chi_{\nu_{\nu_{\nu_{\nu}}}}\) always denotes the characteristic function of the set \(E\). Now, if

\[g_1(x) = \left\{ \int_0^x H_{\nu_{\nu_{\nu_{\nu}}}}(x-s)|A_1(x, t)|^2 ds \frac{dt}{t} \right\}^{1/2},\]

and

\[g_2(x) = \left\{ \int_0^x H_{\nu_{\nu_{\nu_{\nu}}}}(x-s)|A_2(x, t)|^2 ds \frac{dt}{t} \right\}^{1/2},\]

then

\[\|g_{\nu_{\nu_{\nu_{\nu}}}}(f', x) \| = g_1(x) + g_2(x) \]

and it is clear that (11) will follow if we can show

\[|\{x : g_1(x) > \frac{1}{2}\}| \leq C||f||_p^2\]

and

\[|\{x : g_2(x) > \frac{1}{2}\}| \leq C||f||_p.\]

To see (12), write

\[|\{x : g_1(x) > \frac{1}{2}\}| \leq 16||g_{\nu_{\nu_{\nu_{\nu}}}}||_p = 16 \int_0^\infty \int_0^x |A_1(x, t)|^2 ds \frac{dt}{t}.\]

To obtain an estimate on \(|A_1(x, t)|\), recall that \(|K(x)| \leq h_{\nu_{\nu_{\nu}}}(x)|\), where \(h(x)\) is a decreasing function on \(R_+\) and \(\int h_{\nu_{\nu_{\nu}}}(x)dx < \infty\), and observe that

\[\chi_{\nu_{\nu_{\nu}}}(x) \sup_{\nu_{\nu_{\nu_{\nu}}}} |K_{\nu_{\nu_{\nu}}}(-y)| \leq \frac{1}{|\nu_{\nu_{\nu_{\nu}}}|} \int_{\nu_{\nu_{\nu_{\nu}}}} \nu_{\nu_{\nu_{\nu}}} e^{-\nu_{\nu_{\nu}}(x-s-y)} ds.\]

Also note that

\[\int_{\nu_{\nu_{\nu}}}|f'(y)|dy \leq C|\nu_{\nu_{\nu_{\nu}}}|,\]

where \(C\) is a constant depending only on \(a\). Using (15) and (16), we have

\[A_1(x, t) \leq \sum_{\nu_{\nu_{\nu_{\nu}}}} [K_{\nu_{\nu_{\nu}}}f_j(x)] |\chi_{\nu_{\nu_{\nu}}}(x)| \]

\[\leq \sum_{\nu_{\nu_{\nu_{\nu}}}} |\chi_{\nu_{\nu_{\nu}}}(x)| \sup_{\nu_{\nu_{\nu_{\nu}}}} |K_{\nu_{\nu_{\nu}}}(-y)| \int_{\nu_{\nu_{\nu}}}|f'(y)|dy \]

\[\leq C \int_{\nu_{\nu_{\nu}}} h_{\nu_{\nu_{\nu}}}(x)dx.\]

To obtain an estimate on \(|A_2(x, t)|\), use (17) and write

\[\int_0^\infty \int_{\nu_{\nu_{\nu_{\nu}}}} |A_2(x, t)|^2 ds \frac{dt}{t} \leq C \int_{\nu_{\nu_{\nu}}} \int_{\nu_{\nu_{\nu}}} |K_{\nu_{\nu_{\nu}}}f_j(x)|^2 dx \frac{dt}{t}.\]

Since \(K\) satisfies the hypothesis of Theorem 7, it is easy to see that

\[\int_{\nu_{\nu_{\nu}}} \int_{\nu_{\nu_{\nu}}}|K_{\nu_{\nu_{\nu}}}(-y)| \chi_{\nu_{\nu_{\nu}}}(x)dx \frac{dt}{t} \leq C\]

for any \(y \in V_j\),

where \(x_j\) is the center of \(B_j\). Hence, using the fact that \(\int f'(-y)dy = 0\) and (16) we have

\[\int_{\nu_{\nu_{\nu}}} \int_{\nu_{\nu_{\nu}}}|K_{\nu_{\nu_{\nu}}}f_j(x)|^2 dx \frac{dt}{t} \leq C.\]

Slipping (19) into (18) results in

\[\int_{\nu_{\nu_{\nu}}} \int_{\nu_{\nu_{\nu}}}|A_2(x, t)|^2 ds \frac{dt}{t} \leq C \sum_{\nu_{\nu_{\nu_{\nu}}}} |V_j| = C|\nu_{\nu_{\nu_{\nu}}}|.\]

Estimate (12) now follows from (14) and (20).

To complete the proof of the lemma, it remains to show (13). Since \(|\nu_{\nu_{\nu}}| \leq C||f||_p\), (13) will follow from

\[|\{x : g_2(x) > \frac{1}{2}\}| \leq C||f||_p.\]
Recall that
\[g_t(x) = \left\{ \begin{array}{ll} \int_0^t H_\mu(x-s) |A_\lambda(x,t)|^2 \frac{dt}{t} & \text{for} \ x \neq 0 \\ \frac{t^\nu}{\nu} & \text{for} \ x = 0 \end{array} \right. \]
and observe that
\[A_\lambda(t) = \sum_{j=1}^\infty (K_\mu \ast f_j)(x) I_B_j(x) \]
is identically zero for \(x \in \Omega' \), since \(B_j \subset \Omega \) for all \(j \). It follows that
\[[g_t(x)]^2 = \sum_{n=1}^\infty \int_\Omega \int_\Omega \chi_{n}(x \cdot x_n) H_\mu(x-x_n) |A_\lambda(x,t)|^2 \frac{dt}{t} \frac{dx}{x} \]
Now, if \(x_n \) is the center of \(B_n \) and \(x \in \Omega' \), then for any \(x \in V_n \), \(\phi_n(x-x_n) \leq \frac{1}{2} \tilde{\phi}(x-x_n) \) and hence, since \(H_\mu(x) \leq C \phi_n(x-x_n)^{-\frac{1}{2} - \frac{1}{2}} \), \(H_\mu(x-x_n) \leq C \phi_n(x-x_n)^{-\frac{1}{2} - \frac{1}{2}} \). Using this fact together with the last formula for \(g_t(x) \) gives us
\[[g_t(x)]^2 \leq \sum_{n=1}^\infty \phi_n(x-x_n)^{-\frac{1}{2} - \frac{1}{2}} \int_\Omega \int_\Omega \chi_{n}(x \cdot x_n) |A_\lambda(x,t)|^2 \frac{dt}{t} \frac{dx}{x} \]
for all \(x \in \Omega' \).

To obtain an estimate on \(\int_\Omega \int_\Omega \chi_{n}(x \cdot x_n) |A_\lambda(x,t)|^2 \frac{dt}{t} \frac{dx}{x} \), first observe that the integrand can be non-zero only if \(x \) is contained in \(V_n \cap B_j \) for some \(j \). Now recall that \(B_j(x) = V_j \cap B_j(x) \cdot 2\mu(x) \) and \(B_j = B_j(x) \cdot 2\mu(x) \cdot r_j \) where \(r_j = \frac{1}{2} \inf_{x \in V_n \cap B_j} \phi_n(x-x_n) \). It is easy to see that if \(B_j \cap V_n \neq \emptyset \) then \(B_j \subset B_{n_j} \), where \(B_{n_j} = B_j(x) \cdot 2\mu(x) \cdot 3 \) and if \(N \) denotes the number of \(B_j \)'s whose intersection with \(V_n \) is non-empty then \(N \leq 44 \). Hence if \(\sum_{j < n} \) denotes the sum of those \(j \)'s where \(B_j \cap V_n \neq \emptyset \), then
\[\chi_{n}(x \cdot x_n) |A_\lambda(x,t)|^2 \leq N \sum_{j < n} |K_\mu \ast f_j(x)|^2 \]
Using the last inequality, we have
\[\int_\Omega \int_\Omega \chi_{n}(x \cdot x_n) |A_\lambda(x,t)|^2 \frac{dt}{t} \frac{dx}{x} \leq N \sum_{j < n} \int \int |K_\mu \ast f_j(x)|^2 \frac{dt}{t} \frac{dx}{x} \]
Now, using Plancherel, Fubini, and the fact that \(\hat{K}(\xi) \leq C (1 + \xi^\gamma) \) for \(\gamma > \frac{1}{2} \), write
\[\int_\Omega \int_\Omega \int_{\Omega} |K_\mu \ast f_j(x)|^2 \frac{dt}{t} \frac{dx}{x} \]
\[\leq C \int \int |(\hat{f}_j(x))/|(|\xi|)|^2 \frac{dt}{t} \frac{dx}{x} \]
\[\leq C \int \int |(\hat{f}_j(x))/|(|\xi|)|^2 \frac{dt}{t} \frac{dx}{x} \]
\[\leq C \int \int |(\hat{f}_j(x))/|(|\xi|)|^2 \frac{dt}{t} \frac{dx}{x} \]
where \(R \) is the inverse Fourier transform of \(\phi_\mu(\cdot)^{-1} \). Applying Prop..
Slipping the last two estimates into (31) gives us
\[\int_0^\infty \frac{\|\mathcal{F}_p \Phi R_* T_0 f(x)\|_t}{t} dt \leq C \int_0^\infty \int_0^\infty \left(\frac{1}{|x-y|^{m-1}} + 1 \right) \Phi_{p} \Phi R_* f(x-y)^2 |x-y|^2 d\beta d\lambda, \]
which is the desired result. \(\square \)

As an immediate corollary, we see that if \(h \) satisfies the hypothesis of Proposition 2 then the transformation \(f \rightarrow T_0 f \) maps \(L^p \) boundedly into \(L^q \) for \(1 < p < \infty \).

Let \(P_j, j = 0, 1, \ldots, n \), be the \(L^2 \) functions whose Fourier transform is given by \(\hat{P}_j(\xi) = [\xi_j e^{-|\xi_j|}, \hat{P}_j(\xi) = e^{i\xi_j}, j = 0, 1, \ldots, n \) and \(f \) for \(\lambda > 0 \).

The Littlewood–Paley function introduced by Stein is simply \(g^j(f, x) = \left(\sum_{|j| < \lambda} g_{p_j}^j(f, x) \right)^{1/2} \).

Let \(\rho^u \) be the function whose Fourier transform is given by
\[\hat{\rho}^u(\xi) = \left(\sum_{|j| < \lambda} |\xi_j|^2 + i \xi_j \right)^{1/2} \exp \left\{ -\left(\sum_{|j| < \lambda} |\xi_j|^2 + i \xi_j \right)^{1/2} \right\}, \]
where the principal determinant of the square root is indicated. If \(a \) is the linear transformation given by \(x = (x_1, \ldots, x_n, 2\pi) \) and \(H^u(x) = (1 + \omega_{\infty})^{-u-1} \), then \(g_{p_j}^j(f, x) \) and \(g_{p_j}^j(f, x) \) are the Littlewood–Paley functions studied by Jones [5] and Segovia and Wheeden [8].

More generally, suppose \(a \) is symmetric and let \(K \) be a function whose Fourier transform is given by
\[\hat{K}(\xi) = h(|\xi|) e^{-\omega_{\infty}|\xi|} \]
where \(h \) is continuous on \(\mathbb{R}^n \), in \(C^m(\mathbb{R}^n \setminus \{0\}) \), and quasi-homogeneous of degree \(\alpha > 0 \) with respect to \(a \). The following proposition together with the mean value theorem shows that \(K \) satisfies the hypothesis of Theorem 7.

Proposition 5. If \(\hat{K} \) satisfies (32) then \(K(x) \leq (1 + \omega_{\infty})^{-u-1} \).

Proof. Without loss of generality we can assume that \(a \) is diagonal (i.e. \(a = (a_1, 0, \ldots, 0, a_n) \)). Since \(K \) is bounded, it suffices to obtain an estimate for \(\omega_{\infty}(x) > 1 \). Write
\[K(x) = (2\pi)^{-n/2} \int h(\xi) e^{i\xi x} d\xi, \]
where \(\omega_{\infty}(x) = \left(\sum_{|j| < \lambda} |\xi_j|^2 + i \xi_j \right)^{1/2} \) is on the unit sphere. The last formula implies that it is enough to show that the inverse Fourier transform of \(h(\xi) e^{i\xi x} \) is bounded on the unit sphere independent of \(r > 1 \). To see this, let \(\varphi(\xi) \)
be a function in $C^n_0(\mathbb{R}^n)$ such that $\varphi(\xi) = 1$ for $\varphi_a(\xi) \leq 1$, $\varphi(\xi) = 0$ for $\varphi_a(\xi) \geq 2$ and observe that the inverse Fourier transform of $f(\xi, r) = h(\xi)e^{-i\varphi(\xi) + \varphi_a(\xi)}$ is equal to $f_1(\xi, r) + f_2(\xi, r)$ where $f_1(\xi, r) = f(\xi, r)\varphi(\xi)$ and $f_2(\xi, r) = f(\xi, r)(1 - \varphi(\xi))$. Clearly $f_1(\xi, r)$ is bounded independent of x and r. To obtain an estimate on $f_2(\xi, r)$, observe that

$$DF_0^{\alpha}[f_2(\xi, r)] = \sum_{k=0}^m \frac{\partial^n}{\partial \xi_1^{m-k}}[\varphi(\xi)\xi^n - \varphi_a(\xi)](1 + \varphi(\xi))] + u(\xi, r),$$

where $h_{m-n+\alpha}$ is in $C^m(\mathbb{R}^n \setminus \{\theta\})$ and quasi-homogeneous of degree $\alpha - m\varphi_a + \varepsilon$ with respect to α and $u(\xi, r)$ is supported in $1 \leq \varphi_a(\xi) \leq 2$ and bounded independent of $r > 1$. From this we see that

$$|DF_0^{\alpha}[f_2(\xi, r)]| \leq C[(\varphi_a(\xi))^{-m\varphi_a 1 - \varphi(\xi))],$$

and hence, if m is large enough, $|DF_0^{\alpha}[f_2(\xi, r)]| |dr|$ is bounded independent of $r > 1$. It follows that for sufficiently large m, $|f_2(\xi, r)|$ is bounded independent of x and $r > 1$ and we conclude that $f_2(\xi, r)$ is bounded independent of $r > 1$ for $|x| = 1$.

Littlewood–Paley functions constructed with kernels of type (32) have applications analogous to that of g^i_λ. Suppose n is even and let $\mathcal{K}^j(\xi) = \alpha_0(\xi)\varphi(\xi)$ and $\mathcal{K}^j(\xi) = \beta_0(\xi)\varphi(\xi)$, $j = 1, \ldots, m$. For $\lambda > 0$ set $H(\lambda) = (1 + \alpha_0(\xi))^{-m\varphi_a - \varepsilon}$, for $\alpha > 0$ define the transformation $f \rightarrow f_a$ by $f_a(x) = \varphi(x)^{-m\varphi_a}(\xi^j)$. And for $m = 1, 2, \ldots$ define $DF_0^{\alpha}[f_a(\xi)] = \varphi_a(\xi)^{-m\varphi_a}(\xi^j)$ where $A_{\alpha}(f) = f(x - x) - f(x)$. Finally for $0 < \alpha < \varepsilon$ and $a < \xi$, a_ξ is least eigenvalue of a, define $\mathcal{A}_{\alpha}(f, x)$ for f in \mathcal{A} by

$$\mathcal{A}_{\alpha}(f, x) = \left\{ \int |A_{\alpha}(f, x)|^2 \varphi_a(\xi)^{m\varphi_a - \varepsilon} d\xi \right\}^{1/2}.$$

As in [10], it is not difficult to see that

$$\mathcal{A}_{\alpha}(f, x) \leq C_{\alpha, \varphi_a}(f, x)$$

for $0 < \lambda < 2a$

where

$$g_{\alpha, \lambda}(f, x) = \left\{ \frac{\int |A_{\alpha}(f, x)|^2 \varphi_a(\xi)^{m\varphi_a - \varepsilon} d\xi}{} \right\}^{1/2}.$$

Estimate (33) together with Theorems 5 and 9, imply a characterization of the quasi-homogeneous Lebesgue spaces introduced by Sadosky and Cotlar [7]. The details will appear elsewhere.