icm®

STUDIA MATHEMATICA, T.L. (1974)

A generalized contraction mapping theorem
in E-metric spaces

by
JAMES W. DANIEL (Austin, Texas)

Abstract. This paper addresses itself to general theorems on the convergence
of a séquence generated via zpy1 = Fap, to a fixed point of the operator F'; the best
known such theorem is the so-called contraction mapping theorem of Banach. Here
we prove two main theorems which include as special cases many previous general-
izations of Banach’s theorem.

1. Introduction. We consider the problem of locating a fixed point
of a nonlinear operator F' mapping a space X into itself; that is, we seek
2* satisfying o* = Fo*. Here we assume that X is a complete E-metrie
space with H-metric ‘d(+,). That is, B is a partially ordered vector space
in which the notion of convergence to zero is defined, with the usual
compatibility hypotheses among convergence, vector space operations,
and order being assumed, d maps X x X into {e|e<B,e> 0} = E* and
satisfies (1) d(z,y) = 0 if and only if # =y and (2) d(x, ) <d(z,?)+
+d(y, ) for all ,y,2in X;in X, a sequence {@,} converges to » if and
only if d(%,, x) converges to zero in F, and it is assumed that every Cauchy
sequence in X converges to a point of X. For a derivation of the properties
of H-metric spaces, called by some authors (Altman [3], Collatz [67)
“pseudometric” spaces, the reader is referred to [3].

Perhaps the best known fixed point theorem is the contraction
mapping theorem which asserts that it d(Fz, Fy) < cd(z,y) where ¢ <1
and ¥ is the real number system R, then there exists a unique fixed
point #* which may be computed -as the limit of the sequence defined
by @, = F=z,, with 2, arbitrary. We state two main theorems which
generalize these results in Section 2, and in Section 3 we show how many
previous generalizations are included in ours.

9. The main results. First we state a theorem which gives existence
and convergence but not necessarily uniqueness. Let Ay, for each k> 0,
be a mapping of B+ into B satistying A6 < Azés if 61 < 6. For non-
negative integers n, define F* via F° =TI (the identity mapping) and
g = T (Fx).
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THREOREM 1. Let F, X, B, d, and {4,}7 be as above. Suppose that there
exist operators G: X—~E' and P: X—X, and nonnegative integers v and
s such that o

(2.1) d(F* g, Pa) < A G(x)  for oll @ in X,
(2.2) G(Fg) < A, Q@) for all @ in X and all k=

(2.3) if @, converges to z* in X and d(Fw,, Fw,) converges to zero
in B, then B a* = Fp*,

o ) ' 21
(2.4) the series 3 AyAye converges in H, where ¢ = > G(u;).
k=1 j=1

Then, for any x, in X, the sequence generated by x,,, = I'w, converges to
a* satisfying FTlax = Fx%, so that y* = Fa* is o fived point of F. In
addition, G(x,) converges to zero in B. The following error estimate és valid:
N °
D - \7
(2.5) A(w*,w) <r > Agdye,
D=k

where k is the integer part of ifr and e is as defined in (2.4).

) Proof. We ghall show first that {u,}5° is a Cauchy sequence. We
‘.Wm% for iz s, d(@ip1, @) = ATy, POy ) < A6 (). Thus, for
i>s and 1= 0, we have

~

-1 i1
CEARS Zd($i+j+1’ Byy5) “QZADG(“’H]'—H)‘
=0 F=0

Now, we can write | uniquely as mr 4% with 0 < » < r—1 and ¢ uniquely
as kr-+h with s <h < s+7—1. Rearranging the sum in the above in-

equality yields ’
.m r m v
. \ !
A1, ) < 2 AyG (@ prygs) = ZZ-AOG(wkM—m+h+Q—8)
D=0g=1 P=0g=1
moor m T
- % N1 7
Z -AOG(]-W( o) "vh-l»q—s) \<\ 2 24 AOAk+pG(mIL+g—e)
P=0gq=1 Pe=) ==,
rrg1 r
< ) N Ay Ay,
D=0g=1

where
2r—1
€ = 2 G ().
Thus we have - )
Te+m
@iy ) <7 2 AgAye.

p=k

(2.6)
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oo
Sinee ) A,4 e converges, we can make d(2;,, ;) near zero by making
K=0

i, and hence &, large; thus {z,}7 is a Cauchy sequence. Let »* be its limit.
Since d(@y,, #;) converges to zero and d(#;.q, 7)) = AHF T oy_g, F0i,),
and since {z;_,}° converges to 4*, we conclude from (2.3) that F*+'a* = F°z"
and hence y* = F°z* iy a fixed point of #. The above inequalities show
that G(z,) converges to zero. The error estimate follows by letting 1, and
henee m, tend to infinity in (2.6).

Remarks. It is easy to modify the above theorem, using (2.6),

50 that the hypotheses need only hold in the “ball” of “radius” » DAz Aye
p=1

about the point x,. For most applications, the mapping & is given by
G(y) = d(Py, 2) for some fixed z in X; usually, in fact, one has z equal
to zero. Since we want to consider later several instances of this special
case and since our uniqueness result is related to this special case, we
now state it as a corollary. )

OROLLARY 2. Let F, X, B, d, and {4}y be as above. Suppose that
there ewists am operator P: X—X, an cdement z in X, and nonnegative
integers v ond s such that (2.3) and

2.1) AT, Fou) < Agd(Px,2)  for oll @ in X,
(2.27) A(PF™*g, 2) < Apd(Px,2)  for all @ in X and k=1,

(2.4') the series ZADAke converges in E, where

k=1
2r—1

e = Z d(Pu;, 2)
j=1

are all valid. Then, for any , in X, the sequence generated by x, ., = Fx,
converges to an x* satisfying F*T o = Fa*, so that y* = Féa* is a fived
point of F. In addition, Pu, converges to 2, and the error estimate of (2.B)
g valid with e defined in (2.4").

‘Under the hypotheses of Theorem 1 or its corollary, the fixed point
y* need not be unique; to give a uniqueness theorem, we thus need stronger
hypotheses. The reader should note the similarities of these hypotheses
with those of Corollary 2. ,

TumorEM 3. In addition lo the hypotheses of Corollary 2, assume that
for some fizmed operator Q: XX we have
(2.1) ATy, Fo) < A, d(Qy, Qo) for all z,y in X,
(2.2") A(QF™y, QFx) < A,d(Qy, @) for all @,y in X and all k=1,
(2.4") A A,e  converges to zero for every € in B,
Then the y* generated in Corollary 2 is the unique fized point of I.
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Proof. Suppose y is also a fixed point of F; then y and y* are both
fixed points of F® for all n>1. Thus d(y,y*) = d(F™y, FHmyx)
< A, d(QF ™y, QF™y*) < A, 4,d(Qy, Qy*) which converges to zero.

Remarks. As before, this result can be stated locally rather than
globally. Essentially the idea here is that we think of P in Corollary 2
as having the form P = QF —@; we see that (2.1”) and (2.2") essentially
give (2.1') and (2.2") then when we take y = Fa.

3. Some special cases. We now wish to show that many previous
fixed point theorems can be deduced from our general result in Theorem
1 and from its corollary. Since for this purpose Corollary 2 is sufficient,
in the interest of brevity we present only the special cases in that setting;
the more general results analogous to Theorem 1 are obvious extensions
of those we present.

Throughout this seetion, let I, X, B, d, and {4,}7 be as described
at the start of Section 2, and let X be a vector space. For our first special
case, we merely take P = Ftl_ e,

CoroLLARY 4. Suppose that there are nonnegative integers ¥ amd s and
2 in X such that (2.3') and (2.4) holds with P = F**'—F°, A, = I, and
suppose that

(31) @(FFHFIp Pty o) < A d(FH e —Fou, 2)

Then, the conclusion of Corollary 2 holds.
The corresponding uniqueness result is as follows.

COROLLARY 5. Suppose that there is z in X and nonnegative integers
7 and s such that (2.3), (2.4'), and (2.4"") hold with P = F*+*— F°, Suppose
also that

(3.2)

for all @ in X.

A(F™roy, o) < A d(F°y, Fn)  for all @,y in X.

Then the conclusions of Theorem 3 follow.
Proof. In Theorem 3, merely set @ = F°.
A further special case of the above situation is the following; for
brevity we hereafter refrain from stating the uniqueness results.
CoroLLARY 6. Suppose thui there is an operator B: BT—E* with

Be, << Be, whenever e, < ¢,, that there is a 2 in X and nonmegative integers
r and s such that (2.3) holds and

(3.3) AFH g —F g, 2) < BA(F g~ Fw, 2) for oll @ in X,
) 2r--1
(3.4) ZB"& converges in B, where ¢ = 2 A(F g — oy, 2).
i1 =

Then the conclusions of Corollary 2 follow.
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Proof. We merely use Corollary 4. We have &(F™+s+lg, Friteg)
= gErrert pl-trg prs pl-irgy L B (FrE-Dtetly pré-Dtsg) By simple
induction, we deduce that (3.2) and (2.4') hold with 4, =I, 4, = B~

The corresponding uniqueness result simply requires d(F +y—
—Fg,2) < BA(F'y — Fw, 2).

Tn the case of B = R, Corollary 6 with s = 0, 2 = 0, and v = 1 gives
the iterated contraction theorem of Ortega—Rheinboldt (1970), [7] p. 401;
the version of the theorem giving uniqueness yields the original con-
traction theorem of Banach (1922), [4]. Corollary 6 with s =0, 2 =0,
and » =1 for arbitrary F-metric spaces is mentioned in [7], p. 440;
these results are important for deriving global convergence theorems
for nonlinear Jacobi and SOR methods ([7], Ch. 13). Corollary 5 with
s =0, 2 =0, and r = 1 first appeared in [9]. The uniqueness theorem
corresponding to Corollary 6 with B = R, z = 0, and s = 0 first appeared
in [6]. Corollary 5 with B = R and s = 0 first appeared in [6], p. 388.

These theorems can be used to apply to the problem of solving general
nonlineatr equations; we give one simple example of a very special case.
Suppose that X, and X, ave linear By-metric and linear FE,-metric spaces
with metries d, and d, respectively; suppose that, for ¢ =1, 2, d; (@, y)
= d;(z—y, 0). We seek to solve Pz =0, where P: X,—~X,. Suppose
that for each x in X; we have a mapping H,: X,—~X,. We shall try 1:.0
solve our problem via the iteration #,., = @, —Hz Pr,; clearly this is
related to seeking fixed points of Fo = z—H, Pa.

COROLLARY 7. Suppose that there are mappings B: Bf B and C:
Bf B such that ¢ < ¢ implies Be < Be' and Ce < C¢’, such that 4, (H,y, 0)
< Ody(y, 0) for all @ in X, and y in X,, and such that &, (P (2 — H,Pa), 0)

< Bd,y(Pw, 0) for all w in X,. Suppose that the series kZUBkdz(P%: 0) con-
=1

wverges in Hy. Then the sequence generated by By, = @y —H, P, converges
to an a* and P, converges to zero. If P is closed or continuous af z*, then
Po* = 0.

Proof. Defining ¥o = »—H, Pz, we see that d,(Fux, o) <£’d2(1’m, 0)
and dy(PFs, 0) < Bdy(Pa, 0). It follows that dy(PF*z, 0) < B*d,(Pa, 0).
The result then follows from Theorem 1, with G(y) = da(Py, 0), Ay =0,
and 4, = B~ ' , ‘

This theorem extends results in [1], [2], [3]; further extensions can
easily be made via Theorem 1.
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Received December 22, 1972 (624) Abstract. This paper presents the fundamentals of the basis theory for bornological

spaces. The attention is restricted to complete and regular spaces with a bornology
which is either topological or of countable type. Spaces of the latter type are called
T (LB)-spaces. Wo begin by introducing the notions of separability and local separability
in a bornological space and by showing that they agree for (LB)-spaces, which enables
us to give representation theorems for such spaces which are separable. Next, bases
“ and Schauder bases are introduced and a basié lemma which states that a basis of
an (LB)-space is also a ‘local’ basis is proved. Among the many consequences of this
fundamental lemma the most important is that every basis of an (LB)-space is
a Schauder basis. 'We then investigate the relationship botween bornological and
topological Schauder bases and study the properties of a Schauder basis in terms
of the dual sequence of bounded linear functionals. Finally, the connection between
Schauder bases and reflexivity is given and various types of Schauder bages are
analysed. i :

Introduction. The purpose of this paper is to present the fundamentals
of the basis theory for bornological spaces. Attempts have only recently
been made to extend to locally convex spaces the classical basis theory
for Banach spaces. Here we are concerned with developing a similar
theory for regular bornological spaces, the assumption of regularity being
imposed by the central role played by duality. We deal essentially with
Schauder bases and the fact that bornological spaces with such bases
abound in analysis is perhaps motivation enough for a systematic study.
Towever, we make no claim as to the completeness of our discussion.

All nmotions are used in the bornological sense, unless otherwise
gpecitiod. For the notions that are not defined here, we refer to [4]. By
b.e.s. (Le.s.) we mean & hornological space (locally convex space) and
by (LB)-space a complete b.c.s. with a countable base. We are mainly
conecrned, with (IB)-spaces but most of the results obtained can easily
be generalized to b.c.s. for which the homomorphism or closed graph
theorems hold. Tf B is a vegular b.c.s. with dual B, the familiar symbols
o and 7 are used for the weak and Mackey topologies with respect to
the duality ¢E, E*>, unless otherwise stated, and we write then B, and
B, with obvious meaning. Finally, following Kothe, we denote by o the
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