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Nuclear spaces on a locally compact group

by
T. PYTLIK (Wroctaw)

Abstract. This paper is devoted o a construction of two types of nuclear spaces
@ and ¥ consisting of functions on a locally compact group. These spaces resemble
the spaces D and § of Schwartz, regpectively, although the construction does not
depend on any differential structure on @ and no approximation by Lie groups is
used. The role of differential operators is played by (unbounded) operators which
are the inverse operators to convolution operators by appropriately chosen non-
negative I,-functions. Thus both spaces & and ¥ consists of infinitely regularized
functions.

1. Introduction. The idea of the construction of a nueclear space of
functions on a locally compaet. group by an infinite process of regulariza-
tion by “good” functions is due to A. Hulanicki. We would also like
to express our gratitude to him for many useful suggestions and the
help while this paper was written.

The main idea of the construction of the space @ was published in [5].
The spaces of the type @ and ¥ are not unique —they depend on the
selection of the sequence of regularizing functions which shall be chosen
once for all. Therefore we shall say the space @ or ¥ rather than a space
of the type @ or ¥. On the few ocagions will be imposed, this will be clearly
stated.

Among the main properties of the spaces @ and ¥ are the following.
Both are non-trivial subspaces of L,(G) and ¥ is dense in L,(@). Both
are invariant under the left regular representation of @ which is jointly
continuous on @ and ¥. Following [5] Aarnes [1] constructed a space
which ig invariant under left and right reqular representation of @ —
a simplification of his construction is given here.

There are many gquestions which should perhaps be asked about
the spaces @ and ¥ which are not answered in this paper. We would
rather postpone considering them to the time when these spaces shall
prove (or disprove) to be of any use in harmonic analysis on non-Lie
non-commutative locally compact groups. '

2. The convolution operator and its inverse. Let & be a locally compact
group and let u be a left invariant Haar measure on it. If feI,(d) and
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geLy (@), then the convolution

(1) frg(s) = ff(u) s)du = ff S) ¢ Y dw
e

defines a fonction in L,(@) for which
(@) 7% glle << 112 llglls-

' Moreover, if feL,(G) and g satisfies the inequality

3) J A lg(s)lds < o0
G

then fxgel, (@) and
(4) If #glls < IFlle- 1472 gl

Convolution fxg is linear with respeet to each of its factors and,
if feL,(G) and ¢, b satisfy (3), then (fxg)xh = f=(g*h). If for a fixed
element se@, fo(u) = f(us), of (w) = f(su) are the left and right tramslates
of f by s, then

(f*g)s = f*%0s,
(5) s(f*g ) = of*g,
fs*g = A(s f"sg

It f, g «L,(@), where §(s) = g( ') then fxg is continuous. For any
function g such that 4~2- ge L, () the relation T,f = f#g defines a bounded
operator T, on the Hilbert space L, (). The adjoint T’y of T/, is the operator
Tof = Tif =fg.

The operator T;' inverse to 7', can of course be defined only for
some functions g¢.

A bounded, continuous and integrable function g on @ we call an
admissible function if it satysties (3) and if kerT, = kerT; = {0}.

2.1 LeMMA. Let g be an admissible function on @, then T,(L,(@)) is
dense in Ly(G). If G is a non-discrete group then T,(Ly(G)) # Ly(G).

Proof. The first statement follows from the fact that if an feL,(G)
is orthogonal to T,(L,(&)), then fekerT) and kerTh = kerT; = {0}.

To prove the second part of the lemma we suppose that T, (L, (&)
= L,(@). T, is then a continuous one-to-one map of Ly(G) onto Ly(F). It
follows there is & constant m such that

Ifle<m|Tflley  Felal@)
In particular, for any felL; (GYNL,(G),
(6) Iflle < m[1f = glle << |1l gl

Nuclear spaces on a locally compact group 227

Let U,,n=1,2,..., be a family of open sets such that 0 # u(U,) < 1/n2
If f, (u) = {p(U,)} " for we U, and £, () = 0 otherwise, then f, e L, (G) NLy (@),
no=1,2,..., and |[foll. =1, |Ifulle >n. But this contradicts (6).

Lemma 2.1 shows that if g admissible then an operator T;' inverse
to T, LXIStS, but is unbounded.

9 THEOREM. let g be admissible and let s<@, then .9, gs and § are
ad'nnsnble If g4, g, are admissible then g,%g, is admissible.

This is an immediate consequence of (5) and the equality (g,%g.)"
= o%f:-

The following theorem gives a construction of a large class of admissible:
functions.

2.3 THEOREM ([5), 1). Let @ be a metrizable group and let U be a neigh-
bourhood of the unit of G. There is an admissible function g on G which is
real, nonnegative, symmetric (i.e. g = g), vanishes outside U, and f g =1.

The idea of this proof is due to C. Ryll-Nardzewski.

Proof. Let {U,}>., be a family of symmetric, precompact neigh-
bourhoods of ¢ (ie. U;'=70U,, »n=0,1,2,...) such that U, < U,

U:cU,, for n=1,2,... and (M U, = {e}.
n=0

‘We consider the funection

oo

1
g = 72%(%*%):

k=1

where @ (u) = {u(T)}"" for ue Uy, ¢p(u) = 0 otherwise and a is a se-
quence of positive numbers such that :

Dl (U} < + oo
n=1
and ¢ = ) ay.

k=1

The function ¢ is a limit of a uniformly convergent series of con-
tinnous functions g, *¢, and hence it is continuous, is non-negative and
vapishes outside U, < U. Symmetiy follows from the observation that

U, are symmetric sets.
Now

f(Pk*ka(S)dS =ff9°lc(“)fpk s)duds = (f% ) =1,
& &

hence fg(s)ds = J?Z oy = 1.
&
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To prove that ¢ is an admissible function we note that U, is a basis
at ¢ for the topology of &, hence for any feL,(@) we have

Timi[f — eyl = 0.

Let feLo(6) and fxg = 0. Since ¢, = ¢, we have

o|m

o0 =]
O 1\
= (fra, > = ])J ulf ey, £ = 7%2 W g TP
o= =1
hence fxg, =0 for b =1,2,..., and so f=limf*gp, =0.
Terco
The assumption of metrizability of the group @ is clearly essential even
for abelian groups. In fact, if g is admissible then ﬁeLg((;‘) and it iy dif-
ferent from zero almost everywhere on . This means that Gisa o-compact
group and hence ¢ must be metrizable.
From now on the group G is always assumed to be metrizable. For
an admissible g we write <, for T,
It is easy to prove that
fﬂl*”z = TgyToyr
{7 v Lty = 7,1,
lrﬂ(f*h) = fx,h,

where ¢, g; and g, are admissible functions on @, feL, (@), heTg(LE(G)),

and Ly (Lf = _,f) is the left reqular representation of ¢ on L, (&).
2.4 ExAvpiE. Let G = R and let g be the characteristic function

of the interval (0,1). If feO'(R) has compact support and satisfies

o0
;’ F'(s+mn)=0 for 0<<s <1 (the sum has only finitely many elements

different from zero) then f is in the range Dz, = T',(L,(®)) of the operator
7, and

wfu) = D) f (u—n).

Indeed, the function h(u) = 3 f'(#—n) is a bounded continuous
n=_ »

function with compact support and

+o0 8
T,h(s) = [ h(u)gls—u)du = [ h(uyau
—co 81

= Z [f(s—n)—f(s —n—1)] = f(s).
Hence & = 7,f. |
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For an integer & let g* = gxg#...%g. If feD(r,)* then

o«

73 f () = (7p)"f(u) = Z (”',;k) F®s—m).

n=0
This example shows that, for some admissible g, v, need not be local.
Now we give an example of an admissible function g, 7, being local.
2.5 Exampre. Let G = B" and let g(u) = ¢ ™. If feC*(R™ and
fy Af Lo (R™) then feDw, and

7f = $(f—4f),

. . o2 a2 o2
where 4 is the Laplacian (A =—a§§—+6—wg+...+a—m’a). In fact,: for

yeR™ we have

(1,f+9)" () = 2@ — (4N )13) = 307w+ wEf ()] =f)-

2
14yl

3. The space ®. In this section we are going to construct a nuclear
space of functions @ = @(G) on a first countable locally compact group.
This space resembles D (R") —the space of infinitely differentiable functions
with compact: supports. The differential operators are replaced by the
operators v, with suitably chosen admissible functions g. Unfortunately
we were unable to select the ¢’s in such a way to make the 7, local, the
posgibility of such a choiee remaining an open problem. The lack of
locality of the 7,’s we use is responsible for several imperfections of our
& as compaired to the space D(R™), e.g. we do not know whether @ is
an algebra under multiplication.

Throughout this section, G will always denote a o¢-compact and
metrizable locally compact group. Let U be a precompact neighbourhood
of the unit ¢ in @ and {U,}>, & family of symmetric neighbourhoods of
¢ for which Uy c U, U2 = U,_1,n =1,2,... and MU, ={¢}. We {ix

n=0
a sequence {g,}<., of admissible functions as in Theorem 2.3 with
supp ¢, = U,. We will write

Tn = Ty Ty Ty = Topstpyeeresty’

3.1 DmrNITION. Lot & denote the space of all funclions f on G such
that ©,f is continuous for m =0,1,2, ..., (v,f = f) and the set

K, =\ suppr.f
n=0

s precompact.
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Let & be the family of all compact subsets of ¢. For an integer n, ¢ > ¢
and Keé we put

WK, ) = {he®: K, = K, suplv,h(s)] < e}
8cG

We equip the space @ with the locally convex topology for which
the sets
(8) conv [KUE W (K, ny, &), )

where n; are integers and e, >0, form a base of neighbourhoods of zero.
3.2 TuEOREM. A sequence f;je® converges to zero in @ if and only if
there is a compact set K < G such that suppr,fyc K forn,j=1,2,..., and
7,f; tends to zero wniformly for all m.
To prove that @ is a nontrivial space we use the following
3.3 LEMMA. For any Veé and n =1,2,..., the operator I, = T””
maps the space L,(VU,) into Ly(VU,_,) and is of the Hilbert—Schmidt type.
Proof. Let T,: L,(G)—L,(G) denote the operator

Tof(s) = [ Huls, w)f(u)du,
G

where #,(s, u) = g,(u"'s) for ueVU, and .fn(s, u) == 0 otherwise.
Since

[ [1otats, mirdsan = [ ([ews)ds)au = [ (fgf,(s)ds)dza
¢ G vU, & YUp Up

we sce that T, is a Hilbert-Schmidt operator. If P, is the orthogonal
projection of L,(G) onto L,(VU,), then T, =P, T, P, and so it is also
of Hilbert—Sehmidt type. :

3.4 THEOREM. The space @ is non-zero. :
Proof. First we shall prove (by induction) that for felL,(U,)

(9) [Ty Ty Tuf(s)ds = [f(s)ds.
Q@ G

Indeed, applying Fubini’s theorem to [Tyh(s)ds, where heL,(U,), we
& :
obtain [Tph(s)ds = [h(s)ds. Thus
¢ &

Gf T Tisr oo Tuf)(8)ds = [ Tppr .. Tof(s)ds,
G

whence, by induction, (9) follows. N
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Tor cach k =1,2,..., the sequence f£ = Ty ... Tpnrr, = k+1,
k+2,..., is bounded in the space L,(Uj). Indeed,

1 5lle << 1o (e T} < g alon T T}
because

I

190 == H'LIE !(Tkr\-lTI:—er see Tngn—m) (S)l
se@

~'=‘r"'u(1.) } f O 1 (07 8) Ty - T Gngr () d’“’} L9 lles f (Tiyz -+ Tufnia) (w)due
ge I3 e

= ”.(]Is»}-luoo fgn-}-l(“)du = Hglc—H“m'
&3

Since T, is compact, the sequence f, = T f+ has a convergent subse-
quence, and for simplicity without any loss of generality we may
denote it by f,. We shall prove that the limit f, of it belongs to D.

For a & let ff denote a convergent subscquence of the sequence
FE = Tprfo+" (Tpyr is compaet) and let f% =1limf¥ . Since T2T, ... T; i
a continuous operator, we have »

T, T, ... Tof' =VmT, T, ... Toft =fu-

Hence, f& = wfo 80 fope®. Finally, fo # 0 a5 [fo(s)ds =1, the proof
is complete. ¢
. For a compact set V = @& let

@V,az = T1T2 e Tn(Lz(Iflfn)) ’
Py = Ol¢1’,7b'

3.5 LmmMa. If Vy = V,,then &y < Oy, and for any se@ the left
translation L, maps Py onto Ogp.

Proof. I V, = V,, then Ly(V,T,) = Ly(V,0,) for n =1,2,...,
hence @y, = Py,. The map L, is an isomorphism of L, (V U,) onto Ly (sVU,):
Sinece

(10) LT, = Toly, sc6, n=1,2,..,

L, maps Py, onto Pyp p-
3.6 THEOREM. Pp equipped with the lopology induced by o system
of morms
flra =1 [ lflertas)™.
v,
18 a nuclear space.
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Prootf. First we note that the space Py, with the scalar product

obon = [ af(8)7,0(s)ds
vU,
is isomotrphie to Ly(VU,), =, being an isometry.

To prove the theorem, it suffices to show that for any n there exists
an m such that the natural embedding of &, into Py, iy nuclear.
By Lemmsa 3.3 the embedding s, = 75" Lptpyr of Ppup into Py, is of
Hilbert-Schmidt type. Thus s,,.4, is nuclear, and it suffices to pub
m = n+2.

3.7 LA, Let & be the family of all compact subsets of G. The space
& is a strict inductive limit of the spaces Dy, Ved.

¢ =limind @yp.
Fed

Proof. It is clear that fe® if and only if fe®d, for some Ved. We
shall prove that the topology of the space @ coincide with limind @y .

If K; « K then fePr and Vved

flen = lTaflle < sup [z (8) {u (B}
8¢,
On the other hand, if fe®,, then K, c VU and

SlEIT,,,f(S)I = Su_P_l(Tn+1f) *gn+1(s)[
se VU seVU

< lflV,n+lsu£ [9n41(8) {u( VUn+1)}1/2 .

Hence # is a neighbourhood of zero in @ if and only if #'Nd; is a neigh-
bourhood of zero in @ for each Ve &, this means that the topologies
coincidies.

By 3.7 we have at once:

3.8 TEEOREM. @ 15 a complele loca,lly conwex space; it is barreled and
bornological.

This and 3.6 together give
3.9 THEOREM. The space D is reflexive.
Finally we give the principal theorem of this section.
3.10 TEEOREM. The space @ has the following properties:
(i) @ is @ nuclear strict &£ F-space.
(ii) @ is closed under complew conjugation.
(iif) The mapping A (G)X DP>(h, f)—-hxfed is continuous.
(iv) The left regular representation L of G on P is jointly contimuous.

icm
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Proof. Since ¢ is a o-compact group, @ is countable strict inductive
limit of Fréchet nuclear spaces @y (i.e. strict F#-space), henee nuclear.
To prove (iii) we note that

TTy... T (hep) = hx(T Ty ... T,p)

hence for ¢ = 1v,f we get hx(r,f) = 7,(h*f) and
thflapn = Irn(hefla < Al loafls
< sup B ()l 1 (E) If 1y

where K = supph.

To prove (iv) it suffices to show that for any Ve & the map
Dy X G2 (f, 8)>L,fe® is continuous. Let fe Dy, se@ and let #” be a neigh-
bourhood of L.f. The definition of the topology in & shows that for an
integer # and ¢ >0 we have

W o {ge@sﬁ?: lLaf_glsﬁﬁn < 2¢}

(U is a conditionally compaect neighbourhood of e).
Since the map s—L,g is a uniformly continuous map of & inte Ly (&),
there is a neighbourhood W < U such that [ |(L,9— L,g)@)*dt < & for
@

s"tueW. Replacing ¢ by z,f and applying (10) we obtain L,fe® — and

| Lsf —I’uflw—v,n< e. Let 7 be a neighbouthood of f in &, of the form
¥ = {heDp: |f—hlp, < &}.

¥ hey then |L,f—ZL,hlgp, <& hence |Lf—IL,hlg <2 This
means that L,he?” for all he " and uesW.

4. Density of @ in L,(G). Pursuing the analogy between @ and D,
one would conjecture that @ (@) is dense in L,(@) and in fact it is the case
when @ is abelian or compaet. In general this remains a conjecture of
an utmost importance to any further developement of the theory of the
spaces @. Whatever we can prove towards this aim depends on the
following

4.1 LeMMA. Let @ be a compact or abelian group and let for a ge A (G)
kerT, = {0}, Then kerT;; = {0}.

Proof. If G is an abelian group and if kerT, = {0} then § = 0 almost
everywhere on é, thus §= g #0 almost everywhere and so kerT; = {0}.

It @ is a compact group then L,(@) is the direct sum Y’ @ H’ of finite-

dimensional subspaces, each of H° being invariant under every T,
ge A (@). Since kerT, = {0} hence ker(Z;|zs) = {0}, and so the operator
T,lge is non-singular and consequently Tj|gs == (T,|go)* is non-singular,
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i.e. ker(Ts|ye) = {0} for all . But since the projections on H° commute
with T, ker Ty = {0}.

4.2 LEMMA. If ® contains an admissible function f, then @ is dense
in Ly(@).

Proot. If fe® iz admissible, then Tf((%f(G)) is dense in Ly (@), but
by Theorem 3.9 T/ (&) = D

4.3 THEOREM. If @ is a compact or abelian group then © is dense in
Ly (@),

! i)’roof. ‘We shall prove that the funetion f,, (ef. the proof of Theorem

3.4)is an admissible function. By 4.1 it is sufficient to show that ker T,
= {0}. Let hekerTy . Then -

0 =T b =hufy =T:Ts... Tp(hsr,fs),

Since ker(T,T,...T,) = {0} thus h=7,f, =0 for n =1,2,... but the
sequence 7,f., is an approximate identity for L,(G) (indeed, suppz,f.
< Un—l? rnfoo = lll]flf;; =0, f T‘lb.fm = ffoa = l) hence

k (e (4]

n=212,..

h =limhx*t,f, =0
n
4.4 Remark. If the group ¢ has an commutative, symmetric ap-
proximate identity {u;} such that suppu, tend to {e} (for example if ¢
is an [SIN] group), then we can choose ¢, in such a way that @ is dense
in L,(@). '
In fact, we may suppose that suppu, = U and we define

o0
1 q
In. = — a’la(“k*“lﬁ):
Gn k=n+41

o
> . The functions g, com-
k=n+1
mute and consequently the function f,, = limg,*g,.; *...*g, i symmetric.
n

‘where a;, are as in Theorem 2.3 and ¢, =

Thus f, is admissible and by 4.2 our statement follows.

The sequence f, = g,* ... #g,*g, bas a subsequence which converges
in I,(@) (benee also in L (@) to f (cf. Theorem 3.4). We use this fact
to characterize the set of all functions he® such that sup|lz,kll; < ce.

n
4.5 TEBOREM. Let he®. Then the inequality suplr,h|, < oo holds if
n

and only if there exist a measure ue M(G) with compact support such that
b= pxfy. If he®Dy, then suppu < V.
Proof. Since 7,% can be regarded as functionals on Cy(@), in virtue
of the assumption supljz,hl, < co, we may assume that the sequence
n

7, h tends *-weakly to a measure ye M (G). We shall p'rbve that supppu = V.

icm
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If a function ¢<Cy(@) vanishes in a neighbourhood of V, then since V
is ecompact, suppquUnu =@ for some %, which for n>mn, gives
{p, T,h> =0 and so {g, u> =0.

To prove that h = pxf, it is sufficient to show that for any ¢eCy (&)
the equality ’ :

$py uxfoy =<p, by
holds.
For any integer n we have
$ps by =Ly talosfyy = pfu, Tl
Since qv*fn—%qwfw uniformly on @, we have

gy by = Hmlgxfy, 1,h> =g #fwy g =g, p5fr-
no,
The converse implication is obvious.
4.6 COROLLARY. The set @, = {heD: suplr,hll, < oo} is dense in L,(G)
n

if and only if f, is an admissible function.

Proof. Tf f, is admissible then &, > T, (A (), which is dense
in Ly(G). On the other hand, if @, is dense in L,(G) then, since ker Ty = {0},
it suffices to show that kerT; = {0}. Let hekerT; =kerTz then

Chy pafey = hrfo,pp =0
for any measure ye M(G) with compact support. Hence % is orthogonal
to @, and s0 b = 0.
4.7 ExAveLe. For a non-discrete group G there is a function he®
such that sup|z,hf; = oo. ‘
n

In @ we choose a convergent sequence s, of distinet elements such
that '

HLsnTnfoo_‘Lsn_,_l'tnfoeHz < 7-
Then for & <n
”Lsnrlcfoo _Ls”+17kfmllz = ”Tk+1 L Tn (Tannfoo;— TnLan_i_lfoo)Il&

1
< anLenfoo - Tann+1fooll2 < ?,,‘-

2N
hy = D =1Ly fuo-
n=1
2N )
Obviously, hye® and vhy= 3 (—1)"Ly vfe (5, N =1,2,...). Bince

n=1
for k< 2N

Put

1
(1= bl = Inhavsr — Tehnlls = gy Tofoo = Lsgpry T ool <G

3 — Studia Mathematica L.3
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where V = {8y, 83, ...}U{lims,}, is a compact set, hy converges in &
and limhy = he®.

N

‘We aie going to prove that [lzzh]; is an unbounded sequence. By the
Schwartz inequality we get

7l — bl < [M(VUk)]”z'mN—h]V,k, k,N=1,2,...,
hence
bl = anUTkhN”u b=1,2,..
For an integer M we can find a % such that the sets §; Uy, 85 Uy, ...
vy 837 U (V— {8y, 85y ..., 831}) Uy, are pairwise disjoint, hence for N> M
M

bl = D) 1T folls = M

- =1
and so [lvhll, > M.

5. The construction of a bi-invariant space. Let @ = {f
where f(
map f~>f

The bilinear map ¥: & x & — (@) defined by Y(f,g )y =fxg” is
obviously separately continuous, hence by Proposition 13 ([2], §3n%)
it determines the unique continuous linear map ¥: dQ D -4 (@) (if B
and F are locally convex linear spaces, then BQF and F®F denote the
completion of E@F in the projective or the inductive topology, respec-
tively, cf. [2]). We define # to be the space ¥ (P® D) equipped with the.
quotient topology.

5.1 LevmA ([1], 3.6). Pach function fe® is a sum of an absolutely
convergent ser’ s

(11) f= D hfohi,

i=1

"y fe®},
=f(s™Y). In @ we transfere the topology from @ by the

where {i;} 15 @ sequence of scalars such that 2, 41 <1 and the sequenées»

{f} and {h;} converge to zero in . 00m)ersely, every fumction of the form.
(11) belongs to ¥.

Proof. Let G = U V; where V,, i =1,2,

sequence of compact subsets of G If @V is the i image of @y Dby the map
f—f", then, by proposition 14, [2], §3 n°l, PP = hmlnd@,,@diyi,

but the spaces Py, ¢ =1,2,..., and consequently EDV are nuclear
Fréchet spaces so ¢V®®V = t.DV ®d’>7 and, hence

(12) PP = limind &, & &y,

., I8 an increasing

icm
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Now let fe®, then f = Y (&) for some £ePRP . But £OD B if

and only if for some %, £ <0y, & Py, and hence by Theorem 1 ([2], § 2 n°1)

it is of the form ¢ = 3 2,f,@h; where 3 |2,/ <1 and {f}, {h;} are con-
=1 =1

vergent to zero in @, .

On the other hand, if f; and h; converge to zero in @, then for a % they
converge to zero in @, . Hence, passing to the quotient space, the lemma
follows.

5.2 TEmOREM ([1], 3.9). The space ¥ (G) is a complete nuclear
ZF-space. ¥ is a two-sided ideal (with respect o the comvolution) in 4 (G)

and i closed with respect to taking of complex conjugates and the operation” .
The operation ~ and the mapping

H(6) X U>(f, p)>frpe®

are continuous. The left and vight regular representation of G on ¥ are jointly
CONLImUOUs.

Proof. In virtue of (12) SR @ is a nuclear L#-space, consequently
¥, as a quotient space is.a complete nuclear Z%-space.

I ge A (@) and fe@, is of the form (11), then, since (f;*%; )xgp
= fie(hg %) = f;*(p *k, and (fixh; )" = hyxf;, we see that

oxf = D dilp*f)*h;

i=1

Fap = D dfixlp” wh)”

and

o

= 2 lihi*f;

i=1

are in #. Moreover, if se@, then L (fixh; )= Lf;*h; and R,(fi*h;)

= fixRyh; = fi=(Lsh;)", thus
Lf = D ALfxhi
i=1
Bof = D) Afyx(Lhy)”
=1
are in #.

The map P: @ x @ ~>PRD  defined by -
P(f,g7) =g9Qf
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is a separately continuous bilinear map, so we may extend it to a con-
tinuous linear opeirator P in ©®®® . Since P? is the identity opecrator,
we see that P is an isomorphism “onto”. Moreover,

(Y& = YP¢
hence = is continuous.
To prove that the left regular representation L of the group G on
% is jointly continuous, it is sufficient to show that
(a) Ly: ¥~ iy continuous,
(b) G>s—L,f is continnous.
(a) fo]lows from the observation that

(13) ; LY = Y(L,®I)

(1 is the identity operator on @) is continuous and that ¥ is an open map.
To prove (b) we observe first that, by (13), it suffices to show that
—-+(L,®I)&, se@, is continuous for all £cPR P .

Let & = Y A:f;®h; (note that for a k we have £gePp, R Dy,). et
=1 e

se@ and let # be a neighbourhood of (L,®I)&,. Let finally U be a con-
ditionally compact neighbourhood of ¢ and I such that sUV, < V,; (then
(L. M®I ) Eoe Dy, ®‘-DV; for all uesU). The definition of the topology in
RD" shows that for a pair of integers m,n and & >0

W o {§€¢;rl ® (D;;z: p®q[£”(Ls®I)§0] < 8}?

where p(f) = |flp,, and ¢ f) |f|ylm, feqﬁyl Since limf; = lim#; = 0,
there is an .M such that for ¢ > M p(f,)-q(h; ) < ¢/2; then for uesU
(Luf'i sfi < €.

Next, by Theorem 3.9, there exists a neighbourhood W < U such that

P(Lyfi—Lef;) < e[g(h )"
for 4 =1,2,..., M and s~'e W. Hence
PRIULBI) & — (L@ D) &] = p@q[(L, — L) ®IE,]

o

< 3 1p(Lufi— Lof-a(hy < ¢ i <e

i=1 i=1

This means that (L,®I)&e#  for all uesW and thus (b) is proved.

The joint continuity of the right regular representation follows
immediately from the continuity of operation ~

icm
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6. The space . Now we are going to construct another nuclear space
consisting of rapidly decreasing functions on a locally compact group G-
As the space @ is similar to Schwartz’s space D, the new space ¥ resembles
the space 8, and, accordingly, it is a nuclear Fréchet space. The most
important feature of ¥ is that it is dense in L, (@) (the fact which we were
unable to prove for @). The construction of ¥ is analogous to that of
& —this also consists of infinitely regularized functions, but as the fune-
tions in @ have compact support, the behavior of a function in ¥ at in-
finity is measured by submultiplicative functions (in the case of 8 it
is done by the funetions p,(z) = (1 |z*)™™).

A non-negative, continuous function ¢ on & is called submultipli-
cative if

p(su) < pS)p(uw) for all s, uel.

A continuous function is called rapidly decreasing if the product of it

and any submultiplicative function is a bounded function. Let & (@) denote
the space of all rapidly decreasing functions. The set of pseudo-norms

171, = sup IF(8)p(s)l

define a locally convex topology in &(G).

6.1 Levwma ([4], 1.1). For a compactly genemted group G there exisis
o submultiplicative function g, on G such that 5 el (G) and for any sub-
multiplicative function ¢ there ewist integers M and k such that ¢ < Mgk,

For the proof see [4].

‘We now suppose that @ is a compactly generated metrizable group
and we fix a sequence {g,} of admissible functions which are symmetrie
and rapidly decreasing. We write T), for T, and also 7, for 75, 7, ... 7y

6.2 DEFINITION. Let ¥ denote the space of all fumctions f on G such
that v, f is rapidly decreasing for all n. The topology in ¥ is defined by the
set of norms

pqa,'n(f) = §up ](P(S)Tnf“)l'
Eed

The space ¥ is metrizable and a sequence f;e¥ converges to zero
in ¥ if and ouly if for any fixed n» and submultiplicative function ¢ the
sequence gt,f; converges uniformly to zero.

If g, are the same as in Section 3, then ¥ o &.

6.3 Luvma. Let g be a rapidly decreasing admissible function and
let a=0. The mappmg L (G)Bh—MpO L (hpy * %) e Ly (@) is a Hilbert-Schmidi
operator.

Proof. Wehave g2 T, (hgy ) (s) = f&if (w, 8)h(w)du where X, (u,;)‘
= gf(s)py® P (w)g(uts). Tt suffices to show that o ,(u,s) is square
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sum mable on GXG We have

ff[;if %, 8)Pduds = ffqa s)qp“za’ w)lg(u~rs) 2 dsdu
ff% (us) gy "M (w)lg(s)*dsdu < [ [ o5 (w) g (s)lg(s)*ds du
G G

= H<Po'lllzéf9’o“1( Yo (s) g (s)17du < llpy 1[11511P g+ () g ()P

. b6.4 COROLLARY. The operator 8,: Ly(G)—~Ly (&), n =1,2,..., defin-
ea oy

Snf = ‘P?Tn(fqﬂ{"'l)
s of Hilbert—Schmidt type.
Now we give a simple characterization of the space Y.

6.5 PROPOSITION. 4 function f belongs to ¥ if and only if ¢, feLy (@)
Jor n=1,2,... The topology of ¥ coincides with the topology given by

the set of norms
Fla = 165 %F -
Proof. The first part of the proposition follows from the inequality

126 Tafll = llog 90" vuflle < 5" 1IIsSHP I#y ™ (8) 7 f ()]

To prove the second patt, we first show that for any two integers =
~and m there is a constant ¢,,, such that

(14) 126" Tuflls < Cnmll @y ™ Tn s fla-
By Lemma 6.2 the mapping
h__)(pg-ﬁm [Tn+1Tn+2' . Tn+2m(h‘7’—-(n+zm))]7 heL (G)

is continuous. Letting % to be ¢*+¥™ and ¢, ,, th
e no
mapping we get (14). Rieid o ot i
Now, if ¢ is a submultiplicative function on @, then

Ponlf) = SUp Ip(s)f(5)] = sup | [ () Ty af () gy (0728 | s

<sup f PP (U778) T (U) G i1 (™ T8) A < lgnsallolp Zasall

but, by Lemma 6.1 and by the Schwartz inequality, we have
”‘7"‘n+1f|]1\M”% Tpaflh < Moy ”2”‘Fk+l Tpprfllz-
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This together with (14) shows that there is an integer m and a constant
N such that ‘

Ponl) SN |fln
6.6 LEvMMA. Let ¢ be o submultiplicative function. If @-feL,(G) and
@-heLly (@), then ¢-(f+h)eLy(@) and the inequality

(15) g (F 22l < llge* Fll lep - Bl
holds.

Proof. We may suppose that f and b are non-negative. Since for
s, ue@, we have @(s) < p(u) p(u~'s), therefore

P& (Fxh)(s) = [pf(wh(us)du
(=3

< [ofw)gws)hu™ s)du = (gf) *(ph)(s)
G

and by (2), inequality (15) follows.

6.7 COROLLARY. If he¥ and f is a rapidly decreasing function, then
frheW.

6.8 THEOREM. Let G be a compactly generated, metrizable group. The
space W is a nuclear By-space; it is invariant under left regular representation
L, and closed under convolution from the left by functions of €(@). Both
operations

(16) GX W (8, f)>Lfe¥W
and
an &(@)x > (h, f)>hafel

are continuous.
Proof. Let ¥, be the completion of ¥ in the morm | |,; then

S¥,>... and ¥ = ﬂ!l’n, thus ¥ is a complete space.

If 0,.f = gitnf denotes the isometric map of ¥, into L,(G) then by
6.4 the natural embedding t, = 05" 8,0n4 0f ¥y, into ¥, is of Hilbert—
Schmidt type, which proves that ¥ is a nuclear space.

Continuity of the map (17) follows by the inequality

\Fehly < log Sl 1Bly, —» =1,2,...
which is an immediate consequence of (15).
To prove (16) we apply the inequality
[Lghl, < @5 (8) bl =1,2;..., 8¢, he¥?
which is obtained by replacing the function f in Lemma 6.6 by 2 measure
concentrated at a point s.
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7. Density of ¥ in L,(¢). We shall prove that it is possible to obtain
a space ¥ which is dense in L,(@). The proof is based on the following
7.1 TEEOREM ([4], 2.1). Let G be compacily generated melric group.
There exists ¢ sequence of functions p;, j =1, 2, ... in &(G) which has the
following properties:
i) py(s) >0, L
(i) pf =p; (ie A(8)pi(s7") = p;(s),
(i) pyxp; = pyuep; for all 4, —=1,2,...,
(iv) for every submultiplicative function ¢ on G there is @ constani
C,p such that fip;=fil, < Cyllfll, for all fin &(@) and j = 1,2, ...,
(v) for every f in &(Q) the sequence p;=f is convergent to f in the to-
pology of &(G).
For the proof see [4].
7.2 COROLLARY. Let G be compactly generated metric group. There exists
a sequence g;, j=1, 2,...of admissible rapidly decreasing functions such that
(i) g5 = gy (i-e. g;(s™) = g;(s)),
(ii) gsxg; = g;*g; for all i,j =1,2,...,
. (i) for every submultiplicative fumetion @ on G there is a constant
C, such that |lg;#flly < C,llfll, for all fin 8(@) and § =1,2,...,

Y )
(l'V') ”gn*gn-i«l—gn“ n < (;'"Cm,n w7’th 2 ‘c-:n < “gl“rpn'
%0 %0 n=1

Proof. First we observe that, by using the trick from remark 4.4
(the sequence @; being such that 3 ajllpj*pjﬂwf < ©0), We may suppose
j=1 0 :

that the sequence p;, j =1, 2, ..., consists of admissible functions.
It is easy to prove that the functions

g5 =A47"p;

are admissible and satisfy (i)-(ili). The property (iv) is obtained by
applying 7.1 (v) to seleet a suitable subsequence of {g;}.
' 7.3 THEOREM. Let G be a compactly generated metric group. There
8 a space ¥ which is dense in Ly(G).

Proof. First we prove that for any integer & the sequence hE
= Gpr1%fppa® - %G, 0 =k+1, k+2,..., iy convergent in &(.

Let ¢ be any submultiplicative function on @. In virtue of 6.1 for
sufficiently large n we have ¢ < MoP. Hence

Wofe s~ Billy < Mg .o % Gy (G gy — Inllgn

< Mczzbllgn*gn—\-l "“gn”q;n < M“-‘n-
N 0
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Since Y &, < + oo, the sequence bE is convergent. Let hy, = HmAl;
n=1
then 7yh, = limA¥ is a rapidly decreasing function for % =0,1,2,...,

n
thus hee¥?. The function %, I8 non-zero because

)

Wrcallpg> 192llgy —1im lgs — Rillgy = galloy — ) & >0-

n=1

Since ¢, commute and are admissible, therefore ke, is admissible too,
and consequently T, (o (@) is dense in I,(&), but by 6.7 T, (# (&) = ¥.
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