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On control submeasures and measures

by
L. DREWNOWSKI (Poznai)

Abstract. Lot # be a o-ring of sets, X a locally convex space, u: #->X a c-ad-
ditive set function. Lot I'(u) denote the coarsest of the go-called Fréchet—Nikodym
topologies on # making ux continnous. The following question is considered: Under
which conditions there exists a control measure for g, i.e. an additive funection
v: A—>[0, co) such that I'(u) = I'(»)? It iz proved (Theorem 2.4) that a necessary
and sufficient condition is that every family of mutually disjoint non u-zero sets
is at most countable. This iz a consequence of Theorem 1.2 concerning semimetriz-
ability of order continuous Fréchet-Nikodym topologies, and evidently constitutes
a genera.hza,tmn of a well-known theorem of Bartle, Dunford and Schwartz. In the
cage X is a normed space, a8 was first shown by Rybakov, there exists o« X’ such
that the variation v () u) of @) 4 is a control measure for u. By a theorem of B. Walsh,
the set of all z; with that property is norm-dense and G, in X', A part of the present
paper is devoted to some generalizations of their results. The above question is dis-
cussed also for # being a ring and u an exhaustive (= strongly bounded) additive
set function (u(H,)—0 if H, are disjoint). In particular, a direct proof of a result due
to Brooks and Hoffmann-Jergensen is given. There are also some results on the
existenice of a control submeasure for group-valued set functions.

Introduction. Suppose that p is an additive function from a ring of
sets Z into a topological abelian group G. We ask if there exists an additive
non-negative measure » on % which is equivalent in a sense with u.

The well-known theorem of Bartle, Dunford and Schwartz [2] states
that: If & is a o-field, X a normed linear space and u: #—X is o-additive,
then a o-additive measure v: #->[0, oo) exists such that »(#,)—>0 iff
|zl (B,)—>0, where []|(:) denotes the semivariation of 4. In this statement
the function [u||(:) can be replaced by ﬁ() the submeasure majorant
for p with respect to ||+, defined by u(E) = sup{|u(F)|: F = B, Fe2};
in fact, u(:) < [lullG:) < 4u(:)-

Although the theorem is almost classm, it geems necessary to clarify
its “topological’ contents, all the more since we wish to motivate here our
approach to the question posed above. In order to do this one should
tirst generalize the concept of a space of measurable sets, introduced
over forty years ago by M. Fréchet and O. Nikodym (see e.g. [10; IIL. 7]).
This is realized by considering, instead of the Fréchet—Nikodym semimetric
generated by a measure on &, an ‘abstract’ topology I', satisfying certain
natural conditions, called an FN-topology on %. Then it is easy to observe
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that for every additive function u: #->G there exists the weakest FN-to-
pology on £, I'(u), under which u is continuous. If @ is semimetrizable
then so is I'(u). In particular, in the setting of the Bartle—Dunford—
Schwartz theorem, it is the subadditive function u that through the
Fréchet-Nikodym type semimetric o(4,B) = z(AAB) semimetrizes the
topology I'(x). This explains the role of u(:) or |ju|(:) in the theorem.
It is now clear that the theorem asserts the existence of a finite o-additive
measure » which also semimetrizes I'(u), ie. I'(u) = I'(»). Following
Brooks [3] we shall call such a measure » a control measute for u (and
u a control submeasure for u). We shall also say that » controls p.

Now we are in a position to make precise the question stated at
the beginning. Actually, we should ask two questions:

1° Under which conditions the topology I'(u) is semimetrizable?
And, if we know that for some u the answer is affirmative,

2° does there exist an additive non-negative measure. » on % which
controls u?

But while the first question seems to be sensible for u taking values
In an arbitrary group @, there is no reason —in such a general setting —to
expect any valuable answer for the second question. In fact, it is rather
hardly to imagine another way of obtaining an additive measure » required
in 2° than by constructing » from scalar valued additive functions which
in some natural manner may be associated with u. (See however [22].)
Therefore, as concerns 2°, we restrict ourselves to the case where G is
a Hausdorif locally eonvex space X, since then we have a bijective cor-
respondence between additive functions u: %#—X and families {#' u: o' X'}
of scalar additive functions. Nevertheless, it turns out that a condition
both necessary and sufficient for semimetrizability of I'(u) and for the
existence of a control measure for u is the same:

(cce) every family of pairwise disjoint mon-u-zero sets from & should
be at most countable,
provided £ is a o-ring and u is o-additive. This condition is due to
Dubrovskii [9].

The contents of the present paper can be roughly described as follows.
Section 0 is preliminary. ITn Section 1 we consider the question of semimet-
rizability of order continuous FN-topologies on o-rings. Then in Section
2 we give complete angwers for the questions 1° and 2° in the cagse 2 is
a o-ring and u is c-additive. Here it is also obseived that a measure or
submeagure which controls x does not depend on the particular choice
of & topology on X or ¢ under which u is o-additive. Section 3 is devobed
to some generalizations or improvements of recent results of Rybakov
[25] and Walsh [29]. Finally, in Section 4 we deal with the problem of
the existence of a cortrol measute for exhaustive additive set funchions.
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A number of results analogous to those in Sections 2 and 8 is presented,
but neither 1° nor 2° is solved in a satisfactory manner. Section 4 con-
tains also & direct proof of a theorem obtained via the Stone representation
theorem by Hoffman-Jergensen [15] and Brooks [3]. (1)

The author is indebted to the referee for a number of very useful
remarks on this paper.

0. Terminology and motation used in this paper is in principle that
of [4], [7]. A brief description of such notions as Fréchet-Nikodym (FN-)
topologies, exhaustive (exh.) and order continuous (o.c.) FN-topologies
or set functions ete. is given in [6].

Everywhere in the sequel 2 denotes a ring of sets (o-ring if explicitely
stated), ¢ a Hausdorff topological abelian group, X a Hausdorff locally
convex vector space.

A set function u on £ is called in this paper:

1) a submeasure it u: A—~E, and w(@) =0, Bc F implies u(E)
S u(l), p(BUF)< p(B)+-u(F) for any B, Fe X;

2) a measure if p: AR, or u: #—-G and u is finitely additive.
A o-measure is a c-additive measure. .

We say that u is eshaustive (exh.) (resp., order continuous, 0.¢.)
if p(B,)->0 whenever H, are disjoint (vesp., B, x@). Evidently, a G-valued
measure is o.c. iff it is c-additive. A sealar valued measure is exh. iff it
is bounded. '

Let M be a family of set functions on £, each ue M being a submea-
sure or a topologieal group valued measure. Then I'(M) denotes the
weakest FN-topology on £ under which every ue M is continuous; if
M = {u}, we write simply I'(x). If I"is an FN-topology then » < I’ means
that » is I-continuous; i.e. I'(») = I'; we write » < g if I' = I'(u). We
say that submeasures or measures u, v are equivalent, in symbols u ~,
it u <vandy <y, e I'(g) = I'(v). & (I') denotes the ideal of all Izero
sets Be &, that is A7 (I") = the closuve of {8} in (£, I'). It M is as above,.
we write (M) instead of A (I(IM)); in particular A (u) = 4 (I(u).
Sets Bet (u) are called u-zero. Clearly, B is u-zero iff u(F) = 0 for every
FclB, e (@ is supposed Hausdorft). 4 (M) = q/tf(p).

pe

Remark. Let us note that every FN-topology I on # can be re-
presented as I'(u), where u is a measure. Indeed, the canonical mapping
of # onto the quotient topological group G = (&, 4)/4 (') can serve
as such u.

Everywhere below countable means the same as at most countable.

(*) The main results of Scctions 1, 2 and 4 were presented at the meeting of
the Polish Mathematical Society, Poznaid Branch, held at 1 February 1972, and
then at Professor Orlicz’s geminar.
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1. Semimetrizability of FN-topologies. Let I' be an FN-topology on
a ring #. It is known that the properties (i) I"has a countable base at @,
(ii) I' is semimetrizable and (iii) there exists a submeasure % such that
I' = I'(n), are equivalent [4]. (Recall that if I" is exh. or o.c., then so is
7 in (iii), and conversely.)

In this section we give another condition assuring semimetriz-
ability of I

DerinrrioN. ‘We say that I' satisfies the countable chain condition,
(cce), if every family of pairwise disjoint sets from Z\./(I") is (at most)
countable.

The name for this property is motivated by the fact that I' satisfies
(cce) iff the quotient Boolean ring 2/47(I') does so. A family M of sub-
measures or measures is said to satisfy (cce) iff the corresponding FN-
topology I'(M) satisfies (cce).

In the remainder of this section we shall assume that 22 is & o-ring
and I, Iy, I'y are FN-topologies on 2.

1.1. TEBOREM. If I' is o0.c., Iy is semimetrizable and N (I'y) = #(TY),
then I'y = Ty, | .

In view of Remark in Section 0, this is simply a reformulation of
theorem 2.9(¢) in [6].

The next is the main theorem of this section; it is clogely related to
some results of Vladimirov ([28]; IIL 4).

1.2. TemoreM. Suppose that I' is o.c., and let M be any family of
(mecessarily o.c.) submeasures on & such that I' = I'(M). Then the following
are equivalent: )

(a) I' satisfies (cec).

(b) There emists a countable subfamily H of M with I'(H) = I'(M).

(¢) I' is semimetrizable, i.e. there exists am o.c. submeasure A such
that I' = I'(2).

Proof. (a)=(b): Evidently A e4 (I") iff A et (M) iff y (4) = sup{n(4):
ne M} = 0. Let a‘f’ be the family of all sets Ee®\4 (M) for which there
is a submeasure 7z M such that

(%) if 4 cF and ng(4) =0, then p(4) = 0.

We first prove that every set FeZ\A (M) contains a set Hed.
Indeed, choose ne M so that #(¥F) > 0. Then, applying the Kuratowski-
Zorn Principle, we find a maximal disjoint family @ of subsets D of
F guch that #(D) =0 but »(D) > 0. P is countable by (cee) and it is
readily seen that B =F\|J 2 and 5z = n are as needed. -

Now, again by the Kuratowski-Zorn Principle, we find a maximal
disjoint family ¢ = #; % is countable by (cce). By choosing for each
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Be% a submeasure nge M satisfying (x) we form a family H, which ig
as required in (b). In fact, otherwise we find a set F et (H)\A" (M) which
can be made disjoint with | %, and then application of what was proved
in the precedlng paragraph yields a contradiction with the maXImallty
of %.

(b)=(e): Let H be as in (b). Then the FN-topology I'(H) is semimet-
rizable and H < M implies I'(H) = I'. Since /V(I’(H)) < & (I'), we have
I' e I'(H) by 1.1. Let H = {5, 75, ...}. Then a submeasure A for which
I' = I'(1) can be defined for example thus:

(+) A(B) = > 27" min{l, 7, (B)}

or
—n_n(B)

(++) 22 Tom

where m, = sup{n,(4): Ae?Z and #,(4)<co}; m, <oco by [4]; 4£.10.

Note that if all 7, are additive then so is 2 defined by the second
equality.

(e)=(a) is trivial.

1.3. CoroLLARY. If Iy and Iy are o.c., I'y satisfies (cce) and A (I7)
= A (I%), then these topologies are semimetrizable and I'y = I%.

In the implication (c)=(b) above only semimetrizabiliby -of I' is
essential. Actunally the following more general statement holds:

1.4. ProrosITION. If a family (I});.; of FN-topologies on a ring R
is such that I' = sup {I;: ieI} is semimetrizable, then there exists a countable
subset J of I such that I' = sup{lj: jed}.

Proof. Let (#%,) be a countable base of I'neighbourhoods of @.
Since I' = sup I;, every %, contains a I™neighbourhood 77, of @ of the
size ¥, = ";fl.(n,nn...nfi(n,kn), where ¥,z i8 & Ijyx-neighbourhood
of @ (k=1,...,k,). It suffices to set J = |J {i(n, k): 1<k <Ky}

b. CorOLLARY. Let M be o family of ;measwes on & o-ring &,
taking values in (possibly different) topological abelian groups. If M satisfies
(cce) then I'(M) is semimetrizable and, moreover, there ewists a countable
My M such that I'(M) = I'(M,).

Indeed, I'(M) is o.c., satisfies (cce) and I'(M) = sup{l'(u): pe M}.
‘We can apply 1.2 and 1.4.

1.6. COROLLARY. If a submeasure u on % satisfies (ccc), then there
ewists- an o.c. A (resp., a finite positive o-measure v) on R_such that

n<itpy (n<y <y
for every o.c. submeasure (resp., finite positive o-measure) 1 on X.
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Obviously, v < 1 < u.

Proof. Set I' = I'(M), where M is the family of o.c. submeasures
7 on # with 5 € p. Then apply Theorem 1.2 and define A by the formula
(+) or (++). The alternative statement is treated similarly.

1.7. COROLLARY. Let u be an o.c. submeasure on A. Then there ewists
@ finite positive o-measure v and an o.c. submeaswre y such that

vty
and the only finite positive o-measure ¢ <y is ¢ = 0. Moreover, if vy, y,
is amother pair possessing all these properties, then vy ~v and y, ~ y.

Proof. Choose as » any of the finite positive c-measures whose
existence is guaranteed by 1.6. Let Z he the union of a maximal disjoint
family of sets 4 et (v)\A"(u). Then v is equivalent with the submeasure
E—+u(B\Z), so that if y denotes the submeasure E—u(BnZ), we have
# ~v+y. The “uniqueness” of this decomposition is easy to be shown.
Let us note that the above decomposition of u is nothing else but its
Lebesgue decomposition with respect to » (see [6]; Section 4).

There is an old problem [19] whether it is possible to find an o.c.
submeasure z on a o-ring #, which is not equivalent with any finite
positive o-measure. In view of Theorem 1.7 the question reduces to.the
following one: Does there exist an o.c. submeasure 4 on a o-ring # such
that the only finite positive o-measure » on # with » < uis » = 09

We are going to show that such u could not be strongly subadditive:
#AUB)+u(ANB) < p(4)+u(B), 4, Bed (see e.g. [20]).

1.9. THEOREM. For every strongly subadditive.o.c. submeasure uw on
@ o-ring Z theve exists o finite positive o-measure vy such that v, ~

Proof. We can assume that £ is a s-algebra on a set ReZ and also
that u(R) <oo ([4]; 4.8). By a result of Kelley ([16]; Theorem 14) we
easily see that for each A< there exists a finite positive o-measure
vy on # such that v, < pu and v,(4) = u(A4). Let M be the set of all
finite positive ¢-measures » on % with » < u. By 1.5 there is a séquence
(vs) = M such that the s-measure v, = 2277 9, is equivalent with » and
Vo < U .

‘We close this section with a result whose “s-additive” part is due
to Dub.rovskii [9] (ef. also [10]; IV. 9.2 and [12]; 3.10), and that
concerning submeasures to Aleksiuk [1] (another proof can be found
in [47).

1.10. TemOREM. Let M be o family of uniformly o-additive scalor
valued o-measures (resp., o family of uniformly o.c. submeasures) on A.
Then I'(M) = I'(uy), where w48 the o.c. submeasure defined by
,uM.(E) =sup{v(u, B): pe M} (resp., up(B) = sup{n(H): 5e M}), and if
o 48 a submeasure on & such that u < a for every ue M, then all the
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Functions ue M are equi-continuous with respect to o. (Hence uy < a.)
Moreover, there exists a countable subfamily H of M such that I'(M)
= [(H) = I'(ug) = I'(2), where A 1is the finite o-measure (resp., the
o.c. submeasure) defined by the formula (+ +).

(Apply suitable results from this section and from [4]; §§ 4 and 5.)

Remark. In an earlier draft of this paper the proof of the implica-
tion (a)=(b) in Theorem 1.2 was modelled on that of Theorem 3.3 in
[23] and used a version of the Lebesgue decomposition for submeasures
(cf. [23]; 1.5, 1.6, [11] and [4]). The present proof seems to be more
elegant. It is essentially identical with the proofs of [28]; Theorem III.
4.5 and [21]; Theorem 1 (this result corresponds to our 1.5), and
has many common points also with those of [9]; Theorem 3 and [13];
Lemma 7.

2. Control submeasures and control measures for o-measures on
o-rings. Let u: #—@ be a measure, finitely additive in general. We say
that a submeasure (resp., 2 nonnegative measure) » on £ is a control
submeasure (vesp., a control measure) for y iff v ~u, that is I'(») = I'(u)-
(The term control is borrowed from [3].) Thus the existence of a control
submeasure for x means exactly that I'(x) is semimetrizable. If pis o-addi-
tive or exhaustive then I'(x) is o.c. or exh. and therefore a control sub-
measure (measure) v for w, if exists, must be necessarily o.c. or exh.,
respectively [4]. Further, let us observe that such a control measure
v can be assumed bounded if a) ¥ is o.c. and £ is a o-ring, or b) » is exh.
(% arbitrary). Indeed, in the case a) there is a set R, % such that »(R,) < oo
and »(4) = 0 or co for each set 4% which is disjoint with R, ([4]; 5.5)
and, moreover, as easily seen, there is only a finite number of disjoint
atoms 4y, ..., A, with ¥(4;) = oo. Then a finite ¢c-measure »' equivalent
with » can be define as follows: set » (E) = »(B) if »(B) < oo, =1 if
B < A; for some i and »(H) = oo, and then extend » by additivity on
the whole ¢-ring #. The case b) can be reduced to a) via the Stone repre-
sentation theorem (see Section 4).

TFrom now on we shall assume in the present section that £ is a o-ring of
sets, @ a Hausdorff topological abelian group, X a locally convex topological
vector space; ca(#, @) denotes the set of all o-measures u: £->G-

Our first results follow immediately from 1.2 and 1.3.

2.1. THUROREM. If peca (R, @) then a comtrol submeasure for u ewisis
iff u satisfies (cec).

2.2. TEROREM. Let I, and T, be two Hausdorff group topologies on G.
Suppose that u: R—G is o-additive under T4 ond T o. Then I'(u; T4) = I'(p;
T,) provided u satisfies (ccc). Hence if v is . control submeasure (resp.,
measure) for u: R—(Q, T ) then v is also a control submeasure (resp., MoasUre)
Jor u: B—(Q,T,).
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Thus the existence of @& comtrol submeasure (or measure) for u does not
depend on the particular choice of o Hausdorff group topology on G under
which u s o-additive.

2.3. TEBOREM. If ueca(®, X) then a control measure for u emists iff
u satisfies (cee).

Proof. Suppose that u satisties (cee). Then, by the preceding theorem,
I'(p) = I(p; o(X, X')). Farther, since I'(u) = I'(2' u: o' e X') = Io(z u):
@'« X’), by Theorem 1.2 or Corrollary 1.5 we can find & sequence () < X"
such that I'(x) = I'(v(a,u): neN). Then

11 (@, B)

B) = b, B)
v o 1+m,

Lea,

N=1

where m,, = sup{v(a,u, B): BeaZ},is a control (o-additive) measure for p.

DerrNirion. We say that a Hausdorff topological abelian group
G (or its topology) satisfies countable summability condition, (cse), iff
every family (2;);.; of non-zero elements of ¢ such that every its countable
subfamily (2;);.; (J < I) is summable, is countable, that is, card I<N,.

This property was considered by I. Kluvének [17] under the name
of “property (X)”. Kluvének has shown ([17]; Theorems 3.1, 3.2) that (esc)
is necessary and sufficient in order that any o-measure defined on any
oring and taking on values in G be coneentrated on a set belonging to
this  o-ting. The role (cse) plays in this statement becomes more -clear
if one observes that (csc) can be equivalently formulated as follows:
If o(I) is the o-ring of all countable subsets of @ set I and p: o(l)->G
is & o-measure, then {iel: u({i}) = 0}eo(I).

Evidently, if ¢ is metrizable then (cse) is fulfilled. By the Orliez—
Pettis-theorem (see [8] or [27]) all locally convex topologies lying between
o(X, X') and (X, X’) satisty (cse) or none of them does. This shows
in particular that there are nonmetrizable locally convex topologies which
satisfy - (ese).

Let us note also that if I' is an o.c. FN -topology on a ¢-ring £ then
I saitisties (cce) iff the quotient topological group /A" (I") satisfies (cse).

The following proposition gathers a few rather simple cases where
(cse) appears.

2.4. PROPOSITION. A Hausdorff locally convex vector space (X,T7) = X
satisfies (csc) on each of the following cases:

(a) There emists a metrizable (not necessarily linear or group) topology
a on X such that for every sequence (x,) = X if ©,—0in I then x, -0 in a.
(b) There exists a linear Hausdorff topology o on X satisfying (csc)

and such that every subseriesly I -convergent series > m, of elements of X
18 a-convergent.
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(e} X s the strict inductive imit of a sequence (X,,) of locally conves
spaces such that
(¢') each X, 48 metrizable, or
(¢”) each X, satisfies (cse) and is dosed in X, .
(d) Xisthelocally convex direct sum of locally convex spaces satisfying (csc).
(e) X is the product of a sequence (X,) of spaces satisfying (csc).
Proof. We prove for example (c). Leb (2;);.; be as required in the
definition of (cse). Denote I, = {iel: #;¢X,}. Then for every sequence
() of distinet elements from I, we have 7, —~0 in X, in the case (c'),
and. (z;) is summable in X, in the case (¢’’). It follows that I, is countable,
hence also I = [ I,,. In the case (¢”’) we ean reason in another way also:

n
Consider the o-measure u: ¢(I)>X defined by u(B) = Y ;. Since u is
: ek

ie
bounded (see e.g. [4]; 4.12), by Theorem II. 6.5 in [26] there is neN
such that u: o(I)—>X,. Since X, satisfies (csc), I is countable.

2.5. TeworEM. Let X be a Hausdorff locally convex space. Any o-measure
u defined on any o-ring & and taking on values in X has a control measure
iff X satisfies (cse). ‘

‘Proof. Sufficiency: (esc) implies that u satisfies (cce), 50 we can
apply 2.3.

Necessity: Let I be a set and let u: o(I)—X be a o-measure. Since
by assumption there exists a control measure » for p, the set {i: u({i})
# 0} = {i: »({i}) > 0} is countable. Thus X satisfies (csc).

An immediate consequence of 2.4 and 2.5 is the following

2.6. COROLLARY. If there exists a metrizable topology on X which is coarser
than the original topology, then every o-measure u: X has & control measure,

In the case X is a normed linear space this result is due to Bartle,
Dunford and Schwartz ([2]; 2.4, [10]; IV. 10. 5) (cf. also [12]); extension
to metrizable locally convex spaces is rather obvious. In a less general
form 2.6 has been obtained by Labuda ([18]; 2.2). A little earlier result
of Hoffmann~Jergensen ([15]; 4.4) is very close to 2.6, namely it asserts
the existence of a finite positive o-measure » with x < » and, as the author
observes ([15]; p. 7), this » can be chosen so that 4" (v) = A4 (u). In the
form: u < v and A (u) = A (») also our general Theorem 2.3 was obtained
(independently and simultaneously) by Musiat [21] (cf. also [22]). The
reader should however note that neither the result of Hoffmann—Jergensen
nor that of Musiat contains the relation » < w.

Labuda derives his version of 2.6 from a lemama ([18]; 2.1) which
says that a control measure exists if X satisfies the following condition:

(») X’ is the union of a sequence (K,) of ¢(X’, X)-compact sets.
(This condition is used also by Tweddle [27].)
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In view of 2.5, if X has property (») then X satisfies (ese). This follows
also directly from that the topology (om X) of uniform convergence on
the sets K, is metrizable and lies between o(X, X') and »(X, X’), and
from the Orlicz-Pettis theorem ([8]; 1.6).

3. On the Rybakov and Walsh theorems. We assume everywhere
below that £ is a o-ring. An excellent refinement of the Bartle, Dunford
and Schwartz theorem was obtained recently by Rybakov [257:

3.1. TumoreM. If X is a normed lincar space and peca (&, X), then
there exists my e X' such that ayu ~ p, i.e. v(@u) is o control measure for p.

Proofs of this result, which simplify that of Rybakov, were given
also in [4] and [29]. In partieular, in [4] Theorem 3.1 was derived from
@ special case of the following theorem (namely, M was supposed in [4];
10.7 uniformly o-additive).

3.2. TeROREM. Let X be a Banach space and let M < ca (9%, X). If M

satisfies (cee) then there exists a sequence of numbers (c,) and a sequence
{un) = M such that

(+) Dlal< oo, Seull< oo
Ne=1 =1
and the o-measure uy: A—>X defined by the equality

MO(E) = ‘ch/u'n(ﬁj).

n=1

(++)

s equivalent with M, i.e. I'(M) = I'(u,) or, what is the same here, & (M)
= A" (u)-

One obtains the previous theorem by setting M = {ou: [2']| < 1};

then g, = z,4 and the #; required in 3.1 can be defined as z, = D en .
N=1
Proof of 3.2 (sketch). Since M satisfies (cee), by 1.5 we can find
a sequence (u,) = M such that I'(M) = I"(u,: neN). Then the family
P = .{(wﬂ//,n!])‘l/zn: neN} is uniformly o-additive and I'(M) = I'(P); here
and in the sequel [ = sup||u(B)| is the usual norm in ca(#, X). It is
Ee®R

easy .to check that the coefficients which oceur in the proof of theorem
10.7 in [4] can be selected so that the resulting ¢, satisfy ().

‘We show below that Theorem 3.2 is a consequence of the generalized
‘Walsh theorem 3.6. »

Applications of 3.2 give. the following two generalizations of the

Rybakov theorem :

3.3. TeBOREM. Let X, ¥ be Banach spaces, L(X , Y) the Banach space
{usual norm) of continuous linear maps of Ximto ¥, and let u: A—L(X, Y)
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be a o-measure. Then there exists xye X and yye Y’ such that
Yoo u(:)y ~ p(2)y ~ .

Proof. Sinee g is o-additive, the family M = {u(:)x: zeX, |z <1}
is uniformly o-additive (u(:)@: #—Y). Let ¢, and p, = u(:)a, (o) <1)

o0

be chosen according to the assertion of 3.2. Then for z, = } ¢, we
n=1

have u(:)@y ~ u. Now it suffices to apply 3.1 to u(:)xy: #—Y in order
to complete the proof.

3.4. THEOREM. Let X be a normed linear space and let, for each neN,
1y be a o-measure from a o-ring &, into the space X. Then there exists xye X'
such that Tyu, ~ u, for every neN.

Proof. As easily ﬁeen, we can assume that X is complete as well
ag that ENF = @ whenever He#,, Fe#, and k = n. Let £ be the o-ring

generated by U £,. It is clear that every sct E e Z is uniquely represented
n=1

n=1
where a, = (2% |lu,[)"", defines a o-measure pu: #—+X (the series is uniformly
convergent on #). By 3.1 there exists e X’ with zpu ~ p. Then evidently
Ly pty, ~ 1, Tor every melN.

Recently B. Walsh [29] established a theorem from which follows
not only the Rybakov theorem 3.1 but also the fact that the zye X’ with
@y i~ pform a norm-dense G, subset of X’. Below we considerably generalize
Walsh’s theorem; our proof, though exploiting some ideas due to Walsh,
seems to be more direct.

We Dbegin with a lemma which is evidently a particular case of our
generalized Walsh theorem; a similar lemma was used in [4].

3.5. LeMMa. Let X be an arbitrary Hausdorff topological vector space,
and lot toy peca(#, X). If u, and p satisfy (cce) then the set of those scalars
t for which the equality Af(tyn-}— (1—t)/1) =" (o) NA (u) does not hold
is at most countable.

(The equality is equivalent with I'(tuo+ (1 —1t) ) = sup{I'(uo), I'(w)}.)

Proof. From 2.1 we deduce easily the existence of an o.c. submeasure
7 on # such that A () = A& (u) A (u). Denote A7 (1) = ‘/V(t,uo—{—(l—‘t)[,t).
Let us first observe that t, =i, implies A (1;)NA (1) = A (). In fact,
if Be N () OA (L) then g po(F) + (1 —3) u(F) = 0 = touo(F) + (1 —1g) u(F)
and hence uo(F) = u(F) for every F < E. It follows that uo(F) = u(F)
= by F) o+ (L= 1) p(F) = ty o (F) + (1 — 1;) 5o (F) = O for every F = B, that
is B et (n). Now let us note that the set of those t such that there is a set
FBe #(t) with 5(B) > 0 is at most countable. For, otherwise, we can find
an infinite sequence (%,) of scalars and sets H, ¢ 4" (t,) such that o = infy(H,)

n

intheform ¥ = | J E,, where E,<®,. Then the formula u(B) = > a,u, (E,),
ne=1
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n—1

> 0. Then the sets F, = E,\NJ E; are disjoint and 9(F,) = n(F,) >«
k=1

for every neN. But this is impossible because 5 is o.c. Thus A (f) = A (n)
holds for all, with exception of at most countably many, scalars ¢. Since
the converse inclusion holds for all #, the proof is completed.

In our next theorem we assume that X and Y are topological vector
spaces and the topology of X is metrizable. The space ca(Z, X) is end-
owed with the topology of uniform convergence on #; this topology is det-
ermined by the paranorm g = ;ug la ()], where |-| is & paranorm

defining the topology of the space X.

3.6. THROREM. Let W be a convex subset of ¥ and a: W-»ca(f, X)
a continuous affine mapping. If W is of the sacon’gi Baire category in itself
and M = a(W) satisfies (cec), then ‘

W = {woeW: afw) < afw) for every weW} = {woeW: I'(M)=I'(a(w,)}

48 @ dense @5 subset of W (hence W\ Wn zs of the f'wsl,‘ Baire category in W).

Proof. a is affine means that a(Zt w) = Zt a(w;) whenever w;eW,

>0 and Vti = 1.
i=1
Since M satisties (cee), there exists a sequence (w,) « W such that,

for every weW, a(w) € A = 327" min{1, 4,}, where g, = a(w,) and g, is
n=1

.the submeasure majorant for w, with respect to the given paranorm
in X. Let us take an arbitrary sequence of positive reals (r,) such that
7, % 0, and set ’

M, ={ucca(®,X): 3 Yu(B) <s=n,(B)<n),

>0 HeR
where 9, = g, +...+u, (neN). Consider the set W, = a~*(I,).

1° W, # @: In fact, from the p‘recedmg lemma we easily deduce
the ex_lstenee of a convex comblnatlon v, of Wy, ..., w, such that a(v,) ~ n,.
Evidently »,eW,.

2° W,Lls open in W: Let puge I, and let s > 0 be such that %, (B) < 7,
whenever u,(B) < s. Then if |ju,— ul| < /2, we see that 4 (B) < s/2 implies
N(B) <r,, so that pe M,. Thus M, is open in ea(®, X), hence also
W, in W.

3° W, is dense in W: Let weW be arbitrary. Then using again our
lemma we see that for every & >0 there is te[0, ) such that ta(v,) +
+ (1 —t)a(w) ~a@ Since 7, < a(v,)-+a(w), it follows that

) +a{w) (2).
10, + (1 —t)weW,,. Thus on the segment joining v, and w there are points
from W, as close to w as we wish. Therefore W, is dense in W.

(*) Where a(vy),

a(v) are, of course, submeasur jorants £
Tespectively. e majorants for a(v,) and a(w),
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- .
M W, satisties the assertion

N=1

of the theorem. Since W is of the second category in itself, W, = @. Let
woeWo. If a(Wo) (B) = 0, then 1, (E) = 0 for every neN. Hence a(w) <€ a(w,)
for each weW, Let us observe that W, = {w,eW: a(w,) ~ a(w,)}. Now,
again by our lemma, if w W then all the points of the segment joining the
points w, and w, with exception of at most countable many of them,
belong to W,. It follows that W, is dense in W.

It is obvious that Theorems 3.1, 3.3 and 3.4 can be derived from
the Walsh Theorem. What is less obvious, the same is with Theorem 3.2.
This can be shown as follows: Let (u,) = M be chosen as in the proof
of 3.2, and let b, = max{l, ||u,|}, neN. Further, let ¥ be the linear

4° Now we are going to show that W, =

space of all scalar sequences ¥ = (¢,) such that Jyll = 3 b,e,] < oo. It is
* n=1

evident that ¥ is a Banach space under the norm defined by the last
equality (¥ is isomorphic with I'). Now we define a linear mapping

a: Y—ca(, X) bythefmmulaa y) = ch,un,y = (¢,) e Y ; since ca(Z%, X)

is a Banach space, the series on the r1ght %1(16 of the equality is cohvergent
in ca(%, X). Since ||a((¢,)|| < ll(¢))ll, the mapping a is continuous. Since
¥) < Y27 min{l, u,} for every y< ¥, the range () of a satisties (cce).

By Theorem 3.6 there exists y, = ()Y such that a(y) < a(y) = ue
for every ¥ ¢ ¥, and all those ¥, form a dense G, subset of Y. Since u,<a(Y)
for each neN, we see that u < p, for all ue M, and this completes the
present proof of 3.2.

An examination of the way Lemma 3.5 is used in the proof of 3.6
shows that it suffices to impose, instead of convexity, the following con-
dition on W: If w,, w < W then there exists & > 0 such that twe-+ (1 —t)weW
for every te[0, g).

As concerns_ the topology on W, only the continuity of mappings
[0, 172 t—>tw, + (1 — 1w, (wy, woeW) was used in the proof of Theorem 3.6
(steps 3° and 4°).

Tet us note also that (in the notation of 3.6) if we kmnow a priori
that W, 5= @, then the assumption that W is of the second category is
guperfluous in order to prove that W, is dense and G, in W. (Take veW,
and replace 7, by a{v); only 2° and 4° are to be verified.)

The Rybakov theorem fails to be true, in general, if X is a locally
convex non-normed vector space. Indeed, let X be the space of all scalar
sequences & = (&,) endowed with the (metrizable) topology of pointwise
convergence on N, and let p: 2(N)—~X be defined by u(E) = the charac-
teristic funetlon of B in N. Then g is a o-measure and for every o'eX’
the set {n eN: # u({n}). 5 0}is finite. Hence there is no #' ¢ X' with &' u ~ .

rd
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In despite of this example, it is not difficult to find conditions which
assure validity of the ‘individual’ or ‘global’ Rybakov type theorem in
non-normed Spaces.

First we show however how the existence of a “Rybakov functional”
for x can be used to obtain a kind of

3.7. HAIIN DECOMPOSITION FOR VECTOR MEASURES. Let X be a Haus-
dorff locally convex space and let ueca(#, X). Suppose that there is
@y e X' such that oy u ~ p. First consider the case X is a real veetor space.
By the usual Hahn decomposition theorem [10], we can find a set He%
sueh that 9{";//,(]5)20 it BcH, and mu(B) <0 if BEnH =@, He.
(In view of [4]; 4.8, # can be assumed & o-algebra.) Hence it B <« H,
u(B) =0 and F c B, then u(F) = 0, that is B is a g-zcro set. Similarly,
it EnH =@ and p(B) =0, then F is a p-zero set. Thus we see that H
has the property that a set B e 2 is y-zero iff y(EnH) = 0and u(ENH) = 0.
In particular, if % is a o-algebra on a set R, R can be split into two disjoint
sets H and K = RE\H so that a set He# is p-zero iff u(HNH) =0
= p(ENK). It follows that it B, F' are subsets of H (or K) and u(H) 5= 0
# p(F), then also u(BUF) 0. For this reason the decomposition
R = HUK may be treated as an analogue of the clagsical Hahn deeom-
position. (Note however that even in the case X = R the classical decom-
position and that with the above property can be essentially different.)

Now it is quite evident that if X is complex, there exists a decom-
position of R with properties similar to those desceribed above and consisting
of at most four disjoint sets.

A general Hahn decomposition theorem for group valued o-measures
was recently obtained by Herer [14]. (Let us notice that the theorem of
Herer, as its proof shows, is valid for an arbitrary Hausdorff topological
abelian group @ provided u satisties (cece).)

3.8. PROPOSITION. Suppose that X is locally convex and let peca (R, X).
Then wye X' such that o,u ~ u exists iff there is a sequence (H,,),.x of disjoint
sets in & and a conver o(X’, X)-compact subset K of X' such that the fol-
lowing condition is satisfied:

if BeR, u(B) %0 and B < H, for some neN or En C} H, =@,
then &' u(EB) # 0 for some ' K. =

Proof. ‘Only if': We apply the Hahn decomposition from 3.7 and
put K = {ax;: |a] <1}

If’: 'We shall assume, for notational simplicity only, that # is
a cr-algebr@ on a set B and CJ H, = R. For each neN let tneca (R, X)

n=1
be defined by u,(B) = u(EnH,). We can suppose that K is absolutely
convex. Let Y’ be the linear subspace of X’ spanned by K, and let

W

icm®

On control sub;neasu-res and measures 217

Y = X/(Y')°. Denoting by 4 the natural homomorphisim of X onto ¥
we see that each v, = ¢o u,: #—Y is a o-measure in the topology o(¥, ¥')
of the space ¥. Now consider ¥ as a normed space, with K being the
closed unit ball in its dual ¥’. By the Orlicz—Pettis theorem each w, is
g-additive in the norm topology of ¥. By Theorem 3.4 we can find z e K
such that v, ~ v, for every neN. We claim that zypu ~ u. Since
zop < p is obvious, we have to prove that u < w,u. Suppose that a set
EeR is wyp-zero but p(B) # 0. Let ke N be such that u(EnH,) #0.
Then also v, (ENH,) % 0, hence a subset I of EnH, exists such that
0 = 2oy, (F) = zyu(F). It follows that F is not z,u-zero, a contradiction.

3.9. TuEOREM. Let umeca(®, X). Then myeX' with agp ~ u exists
provided X satisfies one of the following conditions.

(a) X is a strict (LB)-space or, more generally, X is the strict inductive
limit of an increasing sequence (X,,) of locally conver spaces such that X, is
closed in X, ., and the Rybakov theorem holds for functions in ca(Z%, X,),
neN.

(b) X is the locally convex direct sum of spaces for which the Rybakov
theorem is valid.

() There exists a continuous (homogeneous!) norm on X.

Proof. (a) Since the range of x is bounded, we can find keN such
that p maps £ into X, and is o-additive in the topology of X,. By
assumption there exists @)Xy, such that @ u ~ u. (b) is similarly treated.

(c) Apply 3.1 and 2.2.

We give below a simple example showing how the Rybakov theorem
can be applied in the theory of integration.

3.10. Let X be a normed space and let weca(#, X). Without loss
of generality we shall assume that 2 is a o-algebra on a set R. Let us fix
an #yeX’ with zyu ~ u. By L(u) we denote the space of all u-integrable
scalar valued functions defined on R; we shall freely use some facts from
the theory of veetorial integration presented in [10]. The most natural
topology on IL(u) is that determined by the morm

sl = sup | [ 52

(It is clear that if X is the gpace of real or complex numbers, the norm
11]*]l} is equivalent with the standard IL,-norm ||f| = [ifidv(u); in fact,
R

WA <A < 41171
We are going to prove that

a) it f, f,eL(p) and |||f,—flll—0, then f,—f in u-measure and

b) if X is a Banach space, then also L(ux) is a Banach space.

a) Letb ||| f,]l|->0. Then oy( [ frdp) = [fnd(@su)—0 uniformly for FeZ.
o) i
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Hence f [ful )] o () u)—>0. Tt follows that f,~0 in the measure v(w,u),

what is equlvalent to the convergence in u-measure because v (wou) ~ .

b) Let f,eL(p) and suppose that |[||f,—fnll[—~0 a8 n, m—>oco. Then
arguing as in a) we see that the sequence (f,) satisfies the Cauchy condition
with respect to the convergence in the measure o(w,u). Therefore there
exists a function f such that f,—f in y-measure. On the other hand, com-
pleteness of X assures the existence of a o-measure y: #—X such that
Eff,,d,u»y(E) uniformly for He#. It follows that feL(u), y = [fdp and

f = falll=0.
Let us still note that if feL(u) and » = [ fdu, then » ~ zy» (compare
with 8.4). Only » < @yvneeds aproof. Solet v(z;y, B) f [F() @ (mep) =0.

Then f(r) = 0 for u-almost all 7eH. Hence »(E) = 0. Thus every “Rybakov
funetional” for x is also a Rybakov functional for each indefinite integral
with respect to u.

(A theory of integration of the Bartle-Dunford-Schwartz type,
where no control measures for vector meagsures are used, is presented
in [5].)

4. Control measures for exhaustive measuares on rings. In this section
'we always assume, unless otherwise is explicitely stated, that £ is a ring
of sets, X a Hausdorff locally convex vector space and u: #->X is an
exhaustive (finitely additive) measure. As in Section 2, we ask about
conditions under which there exists a control measure for u. To give
a satisfactory and complete angwer for this question seems to be much
more difficult than it was in the setting of Section 2, where # was a o-ring
and g a o-measure. I was unable to find such an answer. The results we
are to state below are more or less immediate consequences of suitable
results from Section 2. We shall obtain them by application of the Stone
representation theorem (see for example [28]) and the following extension
theorem (see [4] for this result and further references).

4.1. TEmoREM. Let # be a ring of sets, R, the o-ring generated by R and
G o sequentially complete Hausdorff topological abeliam group. Let an additive
SJunction p: G be ewh. and o-additive (vesp., let u be an exh. and o.c.
submeasure on ). Then there exists a unique d-measwe w: Rg—G (resp.,
o unigue o.c. submeasure fi on R,) such that p(E) = u(B) for every Be.

First let us.obsetve that # can be supposed & fleld of sets. Indeed,
let # consists of subsets of a set R, and let & be an additive set function
of submeasure on %. Then % = %u{R\E : Eed)} is the field on B gener-
a.tec} by £, and we can extend u in the following way: for Fe#\Z& we
set u (F) = 0if pis additive, and 4 (F) = ooif uis a submeasure. EBvidently,
such an extension of u preserves exhaustivity.
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Thus we ghall assume that £ is a field of sets on R. Let § be the Stone
space for 2 and let s denote an isomorphism from the field & of closed-open
subsets of § onto £. Define the function us on & by the formula us(4)
= u(s(4)). It is clear that us is o.c. (if &> 4,0 then 4, = @ for large n).
Now assume that u is exh.; then so is us. Therefore, if X is sequentially
complete (or at least that the range of u is contained in a sequentially
complete subset of X), then from 4.1 we get the existence of a unique
o-measure g: #—>X (vesp., of a unique o.c. submeasure z on %) such
that %|¥ = ps. Here £ denotes the o-field generated by &, that is the
Baire field on §. Similarly, if I"is an exh. FN-topology on £ and I'; denetes
its image on &, then by [4]; 8.3 there exists a unique o.c. FN-topology
I"on # such that J"induces I',on &. When X is not sequentially complete,
use of the extension z: #—X of 4 leads sometimes to desired results
also; X is the completion of X.

The following observation is crucial for us: Suppose I' is an exh.
FN-topology on # and ux is an exh. submeasure or exh. measure. Then
u < I'ift 4 < I Tt follows that if ¢ is a control submeasure (or measure)
for u, then » = pos™* is & control submeasure (resp., a conirol measure)
for u. (It should be however remembered that in general » is merely exh.
though ¢ is o.c.!) As concerns the existence of such g, it is clear by thc
results of Section 2 that we can prove it if we are able to show that P
satisfies (cee).

4.2. ExAMPLES. 1) Let # = #(N), X = the space of bounded scalar
sequences % = (&,) endowed with the weak topology with respect to
the standard norm || = sup|&,|, and let u: #—X be defined by the
formula u(F) = the characteristic function of B < N. Then X has the
property (ese), u is exh. and satisfies (cce), and yet there is no exh. sub-

_measure n with x4 < %. For, otherwise there exists by ([7]; Lemma) an
"infinite subset M of N such that n is o.c. on the o-ring # = 2 (M). It fol-

lows that z is o-additive on #. Hence, by the Orlicz—Pettis theorem u is
o-additive on £ in the norm topology of X. This however is evidently
false.

2) Let % be the Borel o-field on [0, 1], X the space of bounded scalar
functions on [0,1] endowed with the weak topology with respect to
the sup-norm, and let u: #—~X be defined similarly as in 1). Then X
has the property (ese), u is exh. and u does not satisfy (cce).

Thus even if # is a o-field, the condition (ccc) though necessary
i not always sufficient for the existence of a control submeasure.

4.3. PROPOSITION. A conirol measure for u ewisis iff there exists an
exh. submeasure n on R such that g < 7.

Proof. “If”: The c-additive extension ji: #->X of u satisfies (cco)
because i < 5. It suffices to apply 2.3 and retwrn to #.

. H
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4.4. THEOREM. Suppose that X is a subspace of a sequentially complete
locally convez space Y. If Y satisfies (ese), then u has a control measure.

Indeed, u: #—Y satisfies (cce). We apply 2.3 or 2.5. From this
theorem and 2.4 we get immediately

4.5. CoroLLARY. If X is metrizable or X is a strict (LF)-space, then
© has a conirol measure ».

For metrizable X this result in the form u < » has been obtained by
Hoffmann—Jergensen ([15]; Proposition 3), and in the case X is normed
by Brooks [3]. Since these authors do not use o-additive extensions of
vector measures, their reasonings are unnecessarily complicated.

It seems to be worth while to give here a direct proof of Corollary
4.5. Of course, it suffices o consider only the case where X is a normed
linear space. We ghall need two lemmas on exhaugtive submeasures.
The first of them was already stated in [4] and can be easily verified
by an indirect argument. The proof of the second one i similar in part
to that of the Bartle-Dunford-Schwartz theorem [10].

4.6. LEMMA. Let  be an exh. submeasure on R. Let (A,) be an arbitrary
sequence of sets from #. Then for every & >0 there s meN such that
m
y(d,\ U 4y) < & for every m = m.
B=1

4.7. LEMmA. Let H be a family of uniformly exhaustive submeasures
on R. Then for every ¢ >0 there is 6 >0 and a finite sequence 1y, .., N,
in H such that

if BeZ and sup 7;(E) < d then n(B) < e for all neH.

1I<i<n
Proof. It is obvious that H can be replaced by the family H' of
all submeasures of the form sup #;, where 7y,..., n,<H.

Iin
Then our lemms says that:
(x) For every & >0 there is 6 >0 and nycH' such that if 7,(B)< &
then n(B) < & for all neH".
Suppose that (*) fails to be true for some & > 0. Then, as easily seen,
there is & sequence (7,) = H' and a sequence (F,) = 2 such that 7, < 7.1,
N (Bp) < /2™ but .

() My (Bn) >e, mneN.

Let an exh. submeasure y be defined by the formula y(H) = sup {5(H):

neH}, He. By the preceding lemma we can define a sequence 0 = m,
< My < ... S0 that

My
(:) Y(En\i 1U +1E¢)< g2k +1, n=my; keN.
. =my_y
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Set
n m;
F n = U B,

and A, = %41, e N. We have F; = F,o ...,

Mp41
Mn(Fop) < D) milB) < ef2"
d=mp+1

and, by (-) and (:),

A (F) 3 2By, NFp) = DBy \ (Bip, \Fy))
n

™ & £
>8—27/(Emn\' U Ei)>§'+‘27; neN.

= i=my_1+1

Hence A,(F,\F,,,) >¢e/4 (neN) what contradicts the agsumption
that H (and H’) is uniformly exhaustive.

4.8. THEOREM. Every uniformly ewhaustive family H of submeasures
on a ring & contains a countable subfamily K such that the exhaustive sub-
measures Ng = supyn and Ng = su}]{gn are equivalent, henoe I'(H) = I'(K).

neH ne

Proof. For each neN let 8, >0 and K, = {1}, ..., 1%} < H be
chosen so that 5y (B) < 1/n whenever nf(B)< 8, for i =1,2,...,k,.
Set K = | K, If ng(H) < 6, then ng(H) <1/n. Hence g < g < Ik

so that nx ~ ng. ‘
A submeasure 1 which is equivalent with ny can be defined also by

the formula A = ) (2"k,a) (4% +... 7k ), where a = sup{ng(H): He,
ne(B) < o} (a 2 1cc: by [4]; 4.10). In fact, since #f <1, we have
g <€ A< 7y, hence A ~ngy ([4]; 6.2 is used here). It follows that
LK) = I'(A) = I'(H). . :

4.9. COROLLARY. If & is a ring, X a normed linear space and p: R—+~X
an ewh. measure, then there exists a bounded additive measure v on & such
that @ ~ . B

Proof. For every o' e X’ with o] < 1 let n, = (@ p). Since 9, < 4u
(& = the submeasure majorant for x with respect to a fixed norm of X),
the family {7, || < 1} is uniformly exh. By 4.8 there exists a sequence
(w) = X' such that [z,]<1 and Slipn”;‘ ~ ”5’1”121 Ny ~ #. Then the
required » can be obtained by the formula » = ¥ 27" (w,u). Indeed,
/'2 <r< ‘ZZ n=1

'We formulate now a theorem of the Rybakow type:
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4.'10. TrEOREM. If X is normed or a strict (LB)-space, or if X is
sequentially complete and there is a continuous norm on it, then exists x'e X'
such that z'pu ~ p.

The next results are analogues of Theorem 2.2, Phrases like
“p;77) is exh.” are used instead of “u is exh. under the topology
g on X7

4.11. PROPOSITION. Suppose that X = (X,T) is sequentially complete
and let a be another topology.on X as in 2.4-(b), but (cse) being not assumed.
If there exists o control measure v for (p; T) then v is also a control measure
Jor (u; a), and conversely.

In fact, the extension z of (u;7) is c-additive under 7 and a, s0
our result follows from 2.2. '

4.12. PROPOSITION. Let a be a locally convex topology on X such that
o(X,X') ca e f(X,X'). Suppose that not only u = (u;7) but also
(@5 a) is exh. Then: if there exists a control measure v for (u; 7°), then v is
also a control measure for (u; a), and conversely.

The assumption that (u; «) is exh. can be omitted if X is sequentially
complete and a < t(X, X').

Proof. Let X, ¥,(= X* and X, denote the completions of the
spaces X, X, = (X, ¢(X, X)) and X, = (X, ¢), respectively. Then by
a known theorem on completions we have X < X, and X, = X, the
{nclusiong being continuous. Therefore the o-additive extensions (,: #—X,,
B B—X and p;: B-X, of p A-X,, u: F->X and p, A->X,,
respectively, exist and coincide. Hence, using the extension % of ‘», the
first assertion follows easily from 2.2. The second assertion is a conse-
quence of the first one and the Orlicz—Pettis theorem.

4.13. PROPOSITION. Suppose that & is a o-ring. If there emists a control

© measure v for u, then (u; v(X, X)) is exh. and v is its control measure,
and conversely.

It suffices to prove that (u; =(X, X)) is exh., but this easily follows
from Proposition 1 in [7] and the Orlicz—Pettis theorem. ‘

We close this section with a decomposition theorem being an im-
mediate consequence of [6]; 3.12 (b).

4.14. THEOREM. Suppose that X is a complete metrizable locally conves
vecior space, p: A—X an exh. measure, and let v be a conirol measure for u.
If w=p+p, ond v =v,+v, are the Hewiti-Yosida decompositions of
u and v, where u,, v, are o-additive and Uns vp are purely finitely additive,
then v, and v, are control measures for u, and Hyy TesPectively.

An analogous sfatement can be also formulated for the Lebesgue
decomposition.
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Nuclear spaces on a locally compact group

by
T. PYTLIK (Wroctaw)

Abstract. This paper is devoted o a construction of two types of nuclear spaces
@ and ¥ consisting of functions on a locally compact group. These spaces resemble
the spaces D and § of Schwartz, regpectively, although the construction does not
depend on any differential structure on @ and no approximation by Lie groups is
used. The role of differential operators is played by (unbounded) operators which
are the inverse operators to convolution operators by appropriately chosen non-
negative I,-functions. Thus both spaces & and ¥ consists of infinitely regularized
functions.

1. Introduction. The idea of the construction of a nueclear space of
functions on a locally compaet. group by an infinite process of regulariza-
tion by “good” functions is due to A. Hulanicki. We would also like
to express our gratitude to him for many useful suggestions and the
help while this paper was written.

The main idea of the construction of the space @ was published in [5].
The spaces of the type @ and ¥ are not unique —they depend on the
selection of the sequence of regularizing functions which shall be chosen
once for all. Therefore we shall say the space @ or ¥ rather than a space
of the type @ or ¥. On the few ocagions will be imposed, this will be clearly
stated.

Among the main properties of the spaces @ and ¥ are the following.
Both are non-trivial subspaces of L,(G) and ¥ is dense in L,(@). Both
are invariant under the left regular representation of @ which is jointly
continuous on @ and ¥. Following [5] Aarnes [1] constructed a space
which ig invariant under left and right reqular representation of @ —
a simplification of his construction is given here.

There are many gquestions which should perhaps be asked about
the spaces @ and ¥ which are not answered in this paper. We would
rather postpone considering them to the time when these spaces shall
prove (or disprove) to be of any use in harmonic analysis on non-Lie
non-commutative locally compact groups. '

2. The convolution operator and its inverse. Let & be a locally compact
group and let u be a left invariant Haar measure on it. If feI,(d) and
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