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The joint approximate spectrum of
a finite system of elements of a (*-algebra

by
GI. MOCANTU (Bucharest)

Abstract. The aim of this paper is to study the joint upprbximate gpectrum
of a finite system of elements of a ("*-algebra 4. The main result states that the joint
approximate gpectrum of a finite system (@, ..., #,) of elements of A is exactly the sob

{(5 ()5 oien 8 (wn))i Se 'Sl(a:l,...,mn}} == {(P (@)5 cees D (”n))‘ Pe P{ml,...,m“}}

where S{hu--,-’vn} (rosp. P{ml,"_,m Y denotes the sot of all states s (vesp. pure states p)
whith satisfy the following relation

s(yag) == s (y)a(wy)  (rosp. p(yw;) = p(y)p (wy)

or any 4de{l, ..., n} and any yed.

Throughout this paper 4 is a (™-algebra with identity, § = §(4)
s the sot of all states on A and P == P(4) is the set of all pure states
on 4. The aim of this paper is to study the joint approximate spectrum
of a finite system of elements of A. A state se 8 is called left multiplicative
with respect to a subsct B of 4 if ‘

s(y2) = s(y)s(e)

for any yed and any we B. The set of all left multiplicative states (resp.
pure states) with respect to B will be denoted by Sp (resp. Pg).

The main result of this paper (Theorem 4) states that the joint approxi-
mate spectrum of a finite system (2, ..., @,) of A iy exactly the sot

{(‘9 (1) . y § (.mn))l 8e S(ml,,,..mn}} e {(27 (#1)y eees @ (‘x"n))' be P{wl,....m.n]} .

Using this theorem we obtain alse some results concerning the joint
approximate spectrunm of a finite system (@, ..., z,) of clements of A.
These rosults extend the similar resulty of Bunce ([4], Proposition 2 and
Proposition 3) or Arwerson ([1], Theorem 3.1.2).

Trmsorum L. Let (2, ..., x,) be a finile sysiem of dlements of A and
let (Ayy .oy Ay) Do a findte system of complew nmumbers, Then the following
assertions are equivalent:
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n
1) ) Al —k) # A.
1= 1 .
2) For any real number ¢ > 0 there exists a state s such that

> s (a4 (a— 1)) <o

s

%

3) For any real number &> 0 there cxists a pure state p such that

I

1

Dol — 2" (@ —A) <e

=1
4) There is no real number e > 0 such that
n
2
4\_, (i —2)" (s —2) = &
t=1

B) There ewisis a sequence (), of elements of A such that (ke N
= lug] = 1), and such that

lim 2 (s — 25) ) =

koo 330 . )
1) = 2). Suppose that there exists a real number > 0 such that
n
sef = S s{(a— )" (1, — 1)) = 6

i=1
and therefore

n
2 (s~ 2)" (0= 2) > &
it

Using a standard argument it follows that there exists an element weA
for which

[S’(w— Vlo—2)] =1

and therefore

j A(wy—2;) =
i=1

The relations 2) < 3) <-4) follows from the fact that an clement

acd is positive if and only if for any se 8 (resp. peP) we have s(a) = 0
(resp. p(a) = 0).
4) = B). Assume that there exists ¢ > 0 such that

wed, Jul =1 = (@ —2)u > e
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We have
te{ly oy my o [l — Al = |lu” (0, — 4)* (9, — A)) w]).

Hence, for any wed, {ju] = 1, and awy ie {1, ..., n}, we may find i e S
such that
80 (W7 (05 — 2% (3 — 2) ) == [|(@y — 25) |2

Since, for any wed, || =1,

STii—aate 2 ( 3 I

fral

n 2

2 &
(=2l >,

we may find 4,¢ {1, ..., n} such that
2~ &
g, — 2, > —-

Hence, for any wed, {u]] =1, we have

noo. n
sup (S(W' [ 2 (0, — As)" (2 “ﬂg)l’lé)) = sup S s (00" (st = 25" (a0 — 2g) 1)
ge8 fer) §e8 701

— 7 * - . o
2 Sty (0 (0, = 20" (@1, = K )] == oy, — )P >

G
H w,*[z (g — )™ (m; — Iqo“
i=1

Since Zf @y — ) (w; — A;) 18 a positive element of 4, the preceding rela-
(2=
tion implies the inequality

*

B) == 1). Assume that

)’ (g~ Ag) == A

‘L*l

and leb oy, ..., %, ¢4 e such that

n
Dy

e |

—Ag) =1


GUEST


256 Gh. Mocanu

We have, for any ued, |[ul| =1,
1= ”2 - ,)ul[ HmIHI 2= 1)

< all(@;— )l —= N e — 1))

x

Z-l

where
a = sup (gl ..., o,]l).

Remarks. a) Let S, be a subset of § such that for any zed we have
=0 (58, =s(z)> O).
Then each of the assertions 1)~ 5) is equivalent to the following one:

2') For any real number ¢> O there ewists se S, such that

n

D slm—2)" @ — )] <e.

i==1

In the case when 4 is equal to B(H), the algebra of all bounded
linear operators on a complex Hilbert space H, we may take instead of S,
the set of states p, on 4 defined by

Pu(@) = <ah, by
where he H, [ == 1. In this particular case the assertion . 2') is exactly
the following:
2y For amy real number & > 0 there emists he H, || = 1 such that

- M= R <.

b) In the case when A is a W*-algebra (in particular, if 4 = B(H))
each of the assertions 1) -5) is equivalent to the following:

5') There exists o sequence (). Of elements of A which are pro-
Jjections such that

lim (2 l1(; — ;) uk“) = 0.

f-roo N 5

The proof follows from the fact that if z is a positive clement of 4
and ¢ is a real number > 0 then the relation

luzw>=¢e for any projection wed

implies the relation z > e
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¢) The preceding theorem containg Theorems 1,4 from [9]. The
relations 1) < B) <= 5’) for the case 4 = B(H) is the solution of a problem
stated in [9]. .

DeriNitioN. Let (@, ...,%,) be a finite system of elements of 4.
A finite system (4, ..., 4,) of complex numbers is called a joint approwi-
mate proper value of (@, ..., ®,) if one of the assertions 1) — 5) of Theorem 1
holds. The set of all joint approximate proper values of a system (@, ..., #,)
is called the joint appromvimate spectrum and is denoted by

T g (Lyy nny By) = T(Byy ouvy X))

TemoreM 2 (Bunce [4]). Let (@4, ..., 5,) be a finite system of elements
of A such that a,@; = wyw; for amy i,je{l,...,n} and let (A,...,1,) be
an element of w(wy, ..., %,). Then there ewists A, e m(®,,,) such that

(Ags +evy Ay A1) € T{Byy oo ey Ty T 1) -

From this theorem follows the fact that for any finite system (24,...,,)
of elements of A4 with a;0; = a0, for 4,je {1, ..., n}, the joint a,pproxr
mate speetram of (zy, ..., ,) is non-empty.

We recall the following:

DeriNeeion. Lot (2, ..., @,) be a finite system of elements of A.
The set

Vi@ ooy ity) =2 {(8(25), ..., 8(®,))] seS}

is called the joint numerical range of (24, ..., @)
TunoReM 3. Let (A, ..., 4, eV (g, ..., 2,) be such that
de{l,...,m} = |4 == |lxl.

Then
Ay ooy M) em(wy, ..oy y,).

Assume that (A, ooy A) ¢ (g, .., @,). Then therve exists a real
number &> 0 for which

We have
7 n -
N - \ Wit = 3] (ko Bya) +e.

. ,,-,,_1‘ 7.\‘41 1".::11

Let us denote by ¢ o state such that

s(ag) = A
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We have
n
Zsm 1>+2w D (has (@) + Ags (@) -+ az A2+ e,
=1 i=1 =1 PR
n n Zl:7
2 % .
itz X aletn) > X lfte - D, P e
=1 =1 i=1 DAY

Remark. From this theorenm follows the following theorem of Winter—
Hildebrand [6], Orland [10]: If xe B(H), Ae W (2) where W () == {(wh, k)|
he Hy ||h]| =1} and [A| = [, then 1 iy an ‘mppro*cmmbe pw]wr value.
For the proof it is sufficient to see that W('v a V).

Let B be a subset of 4. A state s on A is called left B-multiplicative if

zeB,yed = s(yz) = s(y)s(x).

From [8], (Theorem 1) it follows that a state ¢ is left B-multiplicative
if and only if
ve B = s(w*x) = s(2¥)s ().

We denote by Sp (resp. Pp) the set of all states s (vesp. pure states p)
which are left B-multiplicative.

TuawoREM 4. For any finite system (@4, ...,x,) of A we have
T(Byyoeey By) = {(5‘('771): [ERY) 8(93,1))\ Se S{ml,..‘,m,,)}
= {(27 (“'1)7 ey P (mn))l » "-'-P{rcl,‘..,mn}}'

Let se Bz, a0d leb us denote, for any ie {1, ..., n}, A; = s(@).
We have immediately

» de{l, ..y m} = s{(m—A)*w—A)) = 0
and therefore
n
D) sl — ) (- 4) = 0.
=l
Henee, by Theorem 1, it follows that )
(Agy vevy A emm(my, ..y ).
Let now (Aq, ..., A e m(dy, ..., 2,). Since
7}_1
1¢ D Ay —2y),
=1
the set L = Z;A(m,; —7;) is a proper left ideal of 4. We doeduce that

a1, L) =
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o
o1
=

where
a1, L) 1n£||1.——a/1|

Using the Hahn-Banach theorem, we may find a state s such that s, = 0.
Let us denote by S, the set of all states s such that s, = 0. By the pre-
ceding observation, §, is a non-empty set. Obviously, S, is a compact
convex subset of 8. We are going to show that 8, is a face of §. Indeed,
ot 8ge Sy and 8,,85¢ 8, te (0,1) such that

8¢ == (L—1)8; 4-18,.
Since
de{l, ..,m} = (0 —N)*(w;—A)e L
and sye 8, we have, for any ¢¢ {1, ..., n},
0 = (1 ——t)sl((mi-Zi)*(‘:lri—l,))-{-ts (( e — Ag) ¥ (10, — Ay ))
and thus
"'1(({1‘45“)*1‘)*(""'@ —A)) = 8o —2e)* (@ — A)) = 0.
From the Schwarz inequality
18 (29) 2 < 8 (22%)s (y*9)
which iy satistied for any se§ and any 2, yed, we deduce that
Yed =8 (y (@ — 1) = sy(y(a,—4)) =0
and 80§y, 8¢ 8. It follows that §, containg an extremal pomt po of S.
We have, for any ie{1,...,n},
Pols—4;) =0,
po((mi_"}“t)*(mi *‘/17:)) =0
and thus
pﬂ(mi) m= Agy 1)0(.1’@ @) = Po mt)po('rm)
Hence .

(Aay vevy Ay)e {(1’(“(’1)7 Y (mnm be I){wl..“,n:n)}-
COROLTARY B, Fop any findte system (vy, ..., @,) of elemenis of A the
seb w(y, ooy iy,) 8 @ compact subset of G
COROLLARY 6. For any finite system (@, ..., @,) of pasrwise commuting
elements of A the set

‘ -P(:m,---,wnj # D, .
CoRrROLLARY 7. For any finite system (2., ..., a,) of A we have
: * *
SP (@1 corytly) == (g, 0ny ) VTR oy W),

§ ~ Studia Mathematica XLIX.3
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whm Sp (@, ..

) = Gy ees I) Gy ooy In) e TGy oeer Y-

, &, arve hyponormal elements then

T* Yy oeey

Moreover, if @y ...

* S,
SP (8 +eey B) = TFATy 200 Tn)

if @1y ...q @, ave normal cloments then
SD @1y veny @) == 7(Wyy .o o3 Wn)-

y &) Of hyponormal elements

THROREM 8. Hor any finite system (o, ..
o Ty}
Pt (3]

of A if s< 8y, an RO Slovgay,..m) 8 @ ('hcwacwr, where O ({@y, ..
is the OF algebm generated by 1, @y, .0, Ly,
Let se 8y, .z, and write
Ay = 8(m), tef{l, ..., n}.
We have
S((mi*li)*(mi“li)) ==

@, — Ay 8¢ Tryponormal

s(apm;) = s(af)s(m),

, &, are hyponormal, then &; —A;, ...,
and therefore, for any ie{l,...,n}, wo have

0< s (o —2) (g — Ag)*) < 8 (g —2)* (2 —Jg) =0,

af) = s (@;)s (@)

Since #, ...

s(w;
Hence

se S .
{@}, 0w}

Consequently for any ze C* ({2, ..., #,}) and any element y of A we have

s(zy) = s(yz) = s(2)s(y)
and thus the element

S, o))
is a character.

COROLLARY 9 (Bunce [4]). For any finile system (%, ...
normal elements of A we have

== {(P(ml)’ ---717(9%)” Pe Oa.r(()*({ml, ey mﬂ}))}

) B,})) ds the set of all characters on C*({wy, ...

) W) of Typo-

(B eney By)
» @n})-

s @) be a finite system of A and let spe Sz, m

where Car(C*({wy, ...
THROREM 10. Let (%4, ...
be such that

So(wy)e OV () for ie{l, ..., n}.

The joint approzimate spectrum

Then the restriction of s, to C*({wy, ..., @,}) 18 @ characier.
Write 2; == 84(;), 1€ {1, ..., n}. Since V(x;) is a compact convex subset
of € and A;e 0V (a;), there e\M.s a complex number a;, a; 5= 0 such that

se S = Reasdy < Reoays ().

From this fact we deduce that
Re(agm; —az ;) 2= 0.

For the proof of the fact that Solowey, ..., x 18 & character it is sufficient to
show that

Sol@ay) = 30(.“%')"‘0(“’:): ie{l, ..., n},

i.e. to show that

Sol(o@s — au ) (o0 — a; A)*) = 0, 4e{l,...,n}.

This assertion follows from the preceding considerations and from the
following lemma:
Let y be an element of A sueh that

Rey = 0
and let se § be such that s(y*y) = 0, s(y) = 0. l‘hm
. slyy*) = 0.
We have
g*-+-y = 2Rey,
yy* = 2y Rey —y?,
: s(yy*) < 2s(yRey)| + ls(y2)].
Since
ls (y*)|® << s (yy*) s (y*y) = 0
and
ls(y Rey)|* < s (yy*)s{(Rey)?),
we have
$((Rey)?) == ¢ ((Roy) Rey (Rey)t) < [Rey|s(Rey)
and

s(Rey) == Res(y) =

We deduce that
s(yy*) =
CoronrArY 11. Let (@q,..., 2,
and Tet (A, ..., Ay) e SP(2y, ...

A€ 017(:)%) y

) be a finite system of elements of A
, ®,) be such that

16 {1, ..., n}.
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Then there exists a character p on O ({®y, ..., @,}) such that
p(wg) =4, te{l,...,m}.

The assertion follows from the preceding theorem by Corollary 7
and Theorem 4.

Remark. The preceding corollary containg the following theorem
of Arwerson [1]: If ae B(H) and Ae 0W(x) nSp(x) then there oxigts
a character p on 0" ({#}) such that p(x) = 1. The proof follows from the
fact that W(z) = V(z) ([2], Theorem 3; [7], Theorem 11).
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Normally subregular systems in normed algebras

by
BELA BOLLOBAS (Cambridge, England)

Abstract. The main aim of this note is to give a nogative answer to a guestion
about ideals of normed algebras, raised by Arens [3].
Let A be a commutative coniplex unital normed algebra. {ai}{v < A is called
a normally subregular system if there is a commutative algebra B = A containing
N

elements {bi}ll" of norm at most 1 such that 3’ a;b; == 1. Wo show that for ¥ > 2 normal
1

subregularity is mof characterized by the condition
N
it 3 llagall: wed, ol = 1}> 1.
1

The algebras considered in this paper are commutative complex
unital normed algebras though our results also hold for real omes. If A
is a subalgebra of B(A < B), we call B an isomelric extension, shortly
emtension, of A. An clement aed is a topological divisor of wero if inf{[lax||:
@ed, || =1} = 0. A wellknown result of Shilov [5] states that aeA
has an inverse of norm at most 1 in some extension of 4 if and only if
int{laz||: wed, |@|| = 1} > L. The problem of adjoining inverses of a set
of elements was investigated by Arens in [1] and [2]. In [4] I proved
that one can always adjoin the inverses of countably many eclements
which are not topological divisors of zero but this is not necessarily true
for uncountably many elements. .

A seb {4y, ..., ay} = A is called a regular system it there exist byyoos

N

vovy byged such that M a;b; = L If the clements b; can be chosen to have
1

norm at most L then {ay, ..., ay) is normally regular. Finalty, {ay, ..., A
is subregulur and. normally subregular, vespectively, if A has an isometric
extension B for which thoe appropriate b's can be chosen. These eoncepts
wero introduced Dby Avens [3], mainly in order to pose the following
problem. Is normal subregularity characterized by the (obviously TNECessary)
condition

N
(1) i.m‘;;‘ lawl: med, fof = 1} 12
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