

The joint approximate spectrum of a finite system of elements of a C^* -algebra

by

GH. MOCANU (Bucharest)

Abstract. The aim of this paper is to study the joint approximate spectrum of a finite system of elements of a O^* -algebra A. The main result states that the joint approximate spectrum of a finite system (x_1, \ldots, x_n) of elements of A is exactly the set

$$\left\{\left(s\left(x_{1}\right),\, \ldots,\, s\left(x_{n}\right)\right) \middle| \ s\epsilon \ S_{\left\{x_{1},\ldots,\, x_{n}\right\}}\right\} \ = \ \left\{\left(p\left(x_{1}\right),\, \ldots,\, p\left(x_{n}\right)\right) \middle| \ p\epsilon \ P_{\left\{x_{1},\ldots,\, x_{n}\right\}}\right\}$$

where $S_{\{x_1,\dots,x_n\}}$ (resp. $P_{\{x_1,\dots,x_n\}}$) denotes the set of all states s (resp. pure states p) whith satisfy the following relation

$$s(yx_i) = s(y)s(x_i) \quad (resp. \ p(yx_i) = p(y)p(x_i))$$

or any $i \in \{1, ..., n\}$ and any $y \in A$.

Throughout this paper A is a C^* -algebra with identity, S = S(A) s the set of all states on A and P = P(A) is the set of all pure states on A. The aim of this paper is to study the joint approximate spectrum of a finite system of elements of A. A state $s \in S$ is called left multiplicative with respect to a subset B of A if

$$s(yx) = s(y)s(x)$$

for any $y \in A$ and any $x \in B$. The set of all left multiplicative states (resp. pure states) with respect to B will be denoted by S_B (resp. P_B).

The main result of this paper (Theorem 4) states that the joint approximate spectrum of a finite system (x_1, \ldots, x_n) of A is exactly the set

$$\left\{\left(s\left(x_{1}\right),\, \ldots,\, s\left(x_{n}\right)\right)\middle|\;\;s\in S_{\left\{x_{1},\ldots,\,x_{n}\right\}}\right\} = \left\{\left(p\left(x_{1}\right),\, \ldots,\, p\left(x_{n}\right)\right)\middle|\;\;p\in P_{\left\{x_{1},\ldots,\,x_{n}\right\}}\right\}.$$

Using this theorem we obtain also some results concerning the joint approximate spectrum of a finite system (x_1, \ldots, x_n) of elements of A. These results extend the similar results of Bunce ([4], Proposition 2 and Proposition 3) or Arwerson ([1], Theorem 3.1.2).

THISOREM 1. Let (x_1, \ldots, x_n) be a finite system of elements of A and let $(\lambda_1, \ldots, \lambda_n)$ be a finite system of complex numbers. Then the following assertions are equivalent:

1)
$$\sum_{i=1}^{n} A(x_i - \lambda_i) \neq A.$$

2) For any real number $\varepsilon > 0$ there exists a state s such that

$$\sum_{i=1}^{n} s\left((x_{i} - \lambda_{i})^{*}(x_{i} - \lambda_{i})\right) < \varepsilon.$$

3) For any real number $\varepsilon > 0$ there exists a pure state p such that

$$\sum_{i=1}^{n} p\left((x_i - \lambda_i)^* (x_i - \lambda_i)\right) < \varepsilon.$$

4) There is no real number $\varepsilon > 0$ such that

$$\sum_{i=1}^{n} (x_i - \lambda_i)^* (x_i - \lambda_i) \geqslant \varepsilon.$$

5) There exists a sequence $(u_k)_{k\in\mathbb{N}}$ of elements of A such that $(k\in\mathbb{N})$ $\Rightarrow ||u_k|| = 1$, and such that

$$\lim_{k\to\infty} \left(\sum_{i=1}^n \|(x_i - \lambda_i) u_k\| \right) = 0.$$

1) \Rightarrow 2). Suppose that there exists a real number $\varepsilon > 0$ such that

$$s \in S \Rightarrow \sum_{i=1}^{n} s\left(\left(x_{i} - \lambda_{i}\right)^{*}\left(x_{i} - \lambda_{i}\right)\right) \geqslant \varepsilon$$

and therefore

$$\sum_{i=1}^{n} (x_i - \lambda_i)^* (x_i - \lambda_i) \geqslant \varepsilon.$$

Using a standard argument it follows that there exists an element $u \in A$ for which

$$u\left[\sum_{i=1}^{n} (x_i - \lambda_i)^* (x_i - \lambda_i)\right] = 1$$

and therefore

$$\sum_{i=1}^{n} A(x_i - \lambda_i) = A.$$

The relations $2) \Leftrightarrow 3 \Leftrightarrow 4$ follows from the fact that an element $a \in A$ is positive if and only if for any $s \in S$ (resp. $p \in P$) we have $s(a) \ge 0$ (resp. $p(a) \ge 0$).

4) \Rightarrow 5). Assume that there exists $\varepsilon > 0$ such that

$$u \in A, \|u\| = 1 \Rightarrow \sum_{i=1}^{n} \|(x_i - \lambda_i)u\| \geqslant \varepsilon.$$

$$i \in \{1, \ldots, n\} \Rightarrow \|(x_i - \lambda_i)u\|^2 = \|u^*(x_i - \lambda_i)^*(x_i - \lambda_i)u\|$$

Hence, for any $u \in A$, ||u|| = 1, and any $i \in \{1, ..., n\}$, we may find $s_{i,u} \in S$ such that

$$s_{i,u}(u^*(x_i - \lambda_i)^*(x_i - \lambda_i)u) = ||(x_i - \lambda_i)u||^2$$

Since, for any $u \in A$, ||u|| = 1,

$$\sum_{i=1}^n \, \|(x_i-\lambda_i)\,u\|^2 \geqslant \frac{1}{n} \, \Big(\, \sum_{i=1}^n \, \|(x_i-\lambda_i)\,u\| \Big)^2 \geqslant \frac{\varepsilon^2}{n},$$

we may find $i_n \in \{1, ..., n\}$ such that

$$\|(x_{i_u}-\lambda_{i_u})\,u\|^2\geqslant \frac{\varepsilon^2}{n^2}.$$

Hence, for any $u \in A$, ||u|| = 1, we have

$$\sup_{s \in S} \left(s \left(u^* \left[\sum_{i=1}^n (x_i - \lambda_i)^* (x_i - \lambda_i) \right] u \right) \right) = \sup_{s \in S} \sum_{i=1}^n s \left(u^* (x_i - \lambda_i)^* (x_i - \lambda_i) u \right)$$

$$\geqslant s_{i_{t_t}, u} \left(u^* (x_{i_t} - \lambda_{i_t})^* (x_{i_t} - \lambda_{i_t}) u \right) = \| (x_{i_t} - \lambda_{i_t}) u \|^2 \geqslant \frac{\varepsilon^2}{n^2},$$

$$\left\| u^* \left[\sum_{i=1}^n (x_i - \lambda_i)^* (x_i - \lambda_i) \right] u \right\| \geqslant \frac{\varepsilon^2}{n^2}.$$

Since $\sum_{i=1}^{n} (x_i - \lambda_i)^* (x_i - \lambda_i)$ is a positive element of A, the preceding relation implies the inequality

$$\sum_{i=1}^{n} (x_i - \lambda_i)^* (x_i - \lambda_i) \geqslant \frac{\varepsilon^2}{n^2}.$$

5) => 1). Assume that

$$\sum_{i=1}^{n} A(x_i - \lambda_i) = A$$

and let $u_1, \ldots, u_n \in A$ be such that

$$\sum_{i=1}^n u_i(x_i - \lambda_i) = 1.$$

We have, for any $u \in A$, ||u|| = 1,

$$1 = \left\| \sum_{i=1}^{n} u_i(x_i - \lambda_i) u \right\| \leqslant \sum_{i=1}^{n} \|u_i\| \|(x_i - \lambda_i) u\|$$
$$\leqslant a \|(x_i - \lambda_i) u\|, \quad \frac{1}{a} \leqslant \sum_{i=1}^{n} \|(x_i - \lambda_i) u\|$$

where

$$a = \sup(||u_1||, \ldots, ||u_n||).$$

Remarks. a) Let S_0 be a subset of S such that for any $x \in A$ we have

$$x \geqslant 0 \Leftrightarrow (s \in S_0 \Rightarrow s(x) \geqslant 0).$$

Then each of the assertions 1)-5) is equivalent to the following one:

2') For any real number $\varepsilon > 0$ there exists $s \in S_0$ such that

$$\sum_{i=1}^{n} s \left[(x_i - \lambda_i)^* (x_i - \lambda_i) \right] < \varepsilon.$$

In the case when A is equal to B(H), the algebra of all bounded linear operators on a complex Hilbert space H, we may take instead of S_0 the set of states p_h on A defined by

$$p_h(x) = \langle xh, h \rangle$$

where $h \in \mathcal{H}$, ||h|| = 1. In this particular case the assertion 2') is exactly the following:

2'') For any real number $\varepsilon > 0$ there exists $h \in H$, ||h|| = 1 such that

$$\sum_{i=1}^n \|(x_i - \lambda_i) h\|^2 < \varepsilon.$$

- b) In the case when A is a W^* -algebra (in particular, if A = B(H)) each of the assertions 1) 5) is equivalent to the following:
- 5') There exists a sequence $(u_k)_{k\in\mathbb{N}}$ of elements of A which are projections such that

$$\lim_{k\to\infty} \Big(\sum_{i=1}^n \|(x_i - \lambda_i) u_k\| \Big) = 0.$$

The proof follows from the fact that if x is a positive element of A and ε is a real number > 0 then the relation

 $||uxu|| \ge \varepsilon$ for any projection $u \in A$

implies the relation $x \ge \varepsilon$.

c) The preceding theorem contains Theorems 1,4 from [9]. The relations 1) \Leftrightarrow 5) \Leftrightarrow 5') for the case A=B(H) is the solution of a problem stated in [9].

DEFINITION. Let (x_1, \ldots, x_n) be a finite system of elements of A. A finite system $(\lambda_1, \ldots, \lambda_n)$ of complex numbers is called a *joint approximate proper value* of (x_1, \ldots, x_n) if one of the assertions 1) - 5) of Theorem 1 holds. The set of all joint approximate proper values of a system (x_1, \ldots, x_n) is called the *joint approximate spectrum* and is denoted by

$$\pi_{\mathcal{A}}(x_1, \ldots, x_n) = \pi(x_1, \ldots, x_n).$$

THEOREM 2 (Bunce [4]). Let (x_1, \ldots, x_n) be a finite system of elements of A such that $x_ix_j = x_jx_i$ for any $i, j \in \{1, \ldots, n\}$ and let $(\lambda_1, \ldots, \lambda_n)$ be an element of $\pi(x_1, \ldots, x_n)$. Then there exists $\lambda_{n+1} \in \pi(x_{n+1})$ such that

$$(\lambda_1, \ldots, \lambda_n, \lambda_{n+1}) \in \pi(x_1, \ldots, x_n, x_{n+1}).$$

From this theorem follows the fact that for any finite system (x_1, \ldots, x_n) of elements of A with $x_i x_j = x_j x_i$ for $i, j \in \{1, \ldots, n\}$, the joint approximate spectrum of (x_1, \ldots, x_n) is non-empty.

We recall the following:

DEFINITION. Let (x_1, \ldots, x_n) be a finite system of elements of A. The set

$$V(x_1, ..., x_n) = : \{ (s(x_1), ..., s(x_n)) | s \in S \}$$

is called the joint numerical range of (x_1, \ldots, x_n) .

THEOREM 3. Let $(\lambda_1, \ldots, \lambda_n) \in V(x_1, \ldots, x_n)$ be such that

$$i \in \{1, \ldots, n\} \Rightarrow |\lambda_i| = ||x_i||.$$

Then

$$(\lambda_1, \ldots, \lambda_n) \in \pi(x_1, \ldots, x_n).$$

Assume that $(\lambda_1, \ldots, \lambda_n) \notin \pi(x_1, \ldots, x_n)$. Then there exists a real number $\varepsilon > 0$ for which

$$\sum_{i=1}^{n} (x_i - \lambda_i)^* (x_i - \lambda_i) \ge \varepsilon.$$

We have

$$\sum_{i=1}^n x_i^* x_i + \sum_{i=1}^n |\lambda_i|^2 \geqslant \sum_{i=1}^n (\lambda_i x_i^* + \overline{\lambda}_i x_i) + \varepsilon.$$

Let us denote by s a state such that

$$s(x_i) = \lambda_i$$
.

We have

$$\begin{split} \sum_{i=1}^n s\left(x_i^*x_i\right) + \sum_{i=1}^n |\lambda_i|^2 \geqslant \sum_{i=1}^n \left(\lambda_i s\left(x_i^*\right) + \overline{\lambda}_i s(x_i)\right) + \varepsilon &= 2\sum_{i=1}^n |\lambda_i|^2 + \varepsilon\,, \\ \sum_{i=1}^n ||x_i||^2 \geqslant \sum_{i=1}^n s\left(x_i^*x_i\right) \geqslant \sum_{i=1}^n |\lambda_i|^2 + \varepsilon &= \sum_{i=1}^n ||x_i||^2 + \varepsilon\,. \end{split}$$

Remark. From this theorem follows the following theorem of Winter-Hildebrand [6], Orland [10]: If $x \in B(H)$, $\lambda \in \overline{W(x)}$ where $W(x) = \{\langle xh, h \rangle | h \in H, ||h|| = 1\}$ and $|\lambda| = ||x||$, then λ is an approximate proper value. For the proof it is sufficient to see that $\overline{W(x)} \subset V(x)$.

Let B be a subset of A. A state s on A is called *left B-multiplicative* if

$$x \in B, y \in A \Rightarrow s(yx) = s(y)s(x).$$

From [8], (Theorem 1) it follows that a state s is left B-multiplicative if and only if

$$x \in B \Rightarrow s(x^*x) = s(x^*)s(x)$$

We denote by S_B (resp. P_B) the set of all states s (resp. pure states p) which are left B-multiplicative.

THEOREM 4. For any finite system (x_1, \ldots, x_n) of A we have

$$\begin{aligned} \pi(x_1, \dots, x_n) &= \{ (s(x_1), \dots, s(x_n)) | & s \in S_{(x_1, \dots, x_n)} \} \\ &= \{ (p(x_1), \dots, p(x_n)) | & p \in P_{(x_1, \dots, x_n)} \}. \end{aligned}$$

Let $s \in S_{\{x_1,\ldots,x_n\}}$ and let us denote, for any $i \in \{1,\ldots,n\}$, $\lambda_i = s(x_i)$. We have immediately

$$i \in \{1, \ldots, n\} \Rightarrow s((x_i - \lambda_i) * (x_i - \lambda_i)) = 0$$

and therefore

$$\sum_{i=1}^n s\left((x_i-\lambda_i)^*(x_i-\lambda_i)\right)=0.$$

Hence, by Theorem 1, it follows that

$$(\lambda_1,\ldots,\lambda_n)\in\pi(x_1,\ldots,x_n).$$

Let now $(\lambda_1, \ldots, \lambda_n) \in \pi(x_1, \ldots, x_n)$. Since

$$1 \notin \sum_{i=1}^{n} A(x_i - \lambda_i),$$

the set $L = \sum_{i=1}^{n} A(x_i - \lambda_i)$ is a proper left ideal of A. We deduce that

$$d(1,L)=1$$

where

$$d(1, L) = \inf_{y \in L} ||1 - y||.$$

Using the Hahn–Banach theorem, we may find a state s such that $s_{|L}=0$. Let us denote by S_0 the set of all states s such that $s_{|L}=0$. By the preceding observation, S_0 is a non-empty set. Obviously, S_0 is a compact convex subset of S. We are going to show that S_0 is a face of S. Indeed, let $s_0 \in S_0$ and $s_1, s_2 \in S$, $t \in (0, 1)$ such that

$$s_0 = (1-t)s_1 + ts_2$$

Since

$$i \in \{1, \ldots, n\} \Rightarrow (x_i - \lambda_i)^* (x_i - \lambda_i) \in L$$

and $s_0 \in S_0$, we have, for any $i \in \{1, ..., n\}$,

$$0 = (1 - t) s_1 ((x_i - \lambda_i)^* (x_i - \lambda_i)) + t s_2 ((x_i - \lambda_i)^* (x_i - \lambda_i))$$

and thus

$$s_1((x_i-\lambda_i)^*(x_i-\lambda_i)) = s_2((x_i-\lambda_i)^*(x_i-\lambda_i)) = 0.$$

From the Schwarz inequality

$$|s(zy)|^2 \leqslant s(zz^*)s(y^*y)$$

which is satisfied for any $s \in S$ and any $z, y \in A$, we deduce that

$$y \in A \Rightarrow s_1(y(x_i - \lambda_i)) = s_2(y(x_i - \lambda_i)) = 0$$

and so s_1 , $s_2 \in S_0$. It follows that S_0 contains an extremal point p_0 of S. We have, for any $i \in \{1, ..., n\}$,

$$p_0(x_i - \lambda_i) = 0,$$

$$p_0((x_i - \lambda_i) * (x_i - \lambda_i)) = 0$$

and thus

$$p_0(x_i) = \lambda_i, \quad p_0(x_i^*x_i) = p_0(x_i^*)p_0(x_i).$$

Hence

$$(\lambda_1,\ldots,\lambda_n)\in\{(p(x_1),\ldots,p(x_n))|\ p\in P_{\{x_1,\ldots,x_n\}}\}.$$

CONOLILARY 5. For any finite system (x_1, \ldots, x_n) of elements of A the set $\pi(x_1, \ldots, x_n)$ is a compact subset of C^n .

Conolidate 6. For any finite system (x_1, \ldots, x_n) of pairwise commuting elements of A the set

$$P_{\{x_1,\ldots,x_n\}}
eq\emptyset$$

COROLLARY 7. For any finite system (x_1, \ldots, x_n) of A we have

$$\operatorname{Sp}(x_1, \ldots, x_n) = \pi(x_1, \ldots, x_n) \cup \pi^*(x_1^*, \ldots, x_n^*),$$

^{5 -} Studia Mathematica XLIX.3

The joint approximate spectrum

261

where $Sp(x_1, ..., x_n)$ is the joint spectrum of the system $(x_1, ..., x_n)$ and

$$\pi^*(y_1,\ldots,y_n) = \{(\overline{\lambda}_1,\ldots,\overline{\lambda}_n) | (\lambda_1,\ldots,\lambda_n) \in \pi(y_1,\ldots,y_n) \}.$$

Moreover, if x_1, \ldots, x_n are hyponormal elements then

$$\operatorname{Sp}(x_1, \ldots, x_n) = \pi^*(x_1^*, \ldots, x_n^*);$$

if x_1, \ldots, x_n are normal elements then

$$\operatorname{Sp}(x_1,\ldots,x_n)=\pi(x_1,\ldots,x_n).$$

THEOREM 8. For any finite system (x_1, \ldots, x_n) of hyponormal elements of A if $s \in S_{\{x_1, \ldots, x_n\}}$ then $s|_{C^*(\{x_1, \ldots, x_n\})}$ is a character, where $C^*(\{x_1, \ldots, x_n\})$ is the C^* -algebra generated by $1, x_1, \ldots, x_n$.

Let $s \in S_{\{x_1, \dots, x_n\}}$ and write

$$\lambda_i = s(x_i), i \in \{1, \ldots, n\}.$$

We have

$$s(x_i^*x_i) = s(x_i^*)s(x_i), \ s((x_i - \lambda_i)^*(x_i - \lambda_i)) = 0.$$

Since x_1, \ldots, x_n are hyponormal, then $x_1 - \lambda_1, \ldots, x_n - \lambda_n$ are hyponormal and therefore, for any $i \in \{1, \ldots, n\}$, we have

$$0 \leqslant s\left((x_i - \lambda_i)(x_i - \lambda_i)^*\right) \leqslant s\left((x_i - \lambda_i)^*(x_i - \lambda_i)\right) = 0,$$

$$s(x_i x_i^*) = s(x_i) s(x_i^*).$$

Hence

$$s \in S_{\{x_1^*,\ldots,x_n^*\}}$$
.

Consequently for any $z \in C^*(\{x_1, \ldots, x_n\})$ and any element y of A we have

$$s(zy) = s(yz) = s(z)s(y)$$

and thus the element

$$s|_{C^*(\{x_1,\ldots,x_n\})}$$

is a character.

COROLLARY 9 (Bunce [4]). For any finite system (x_1, \ldots, x_n) of hyponormal elements of A we have

$$\pi(x_1, \ldots, x_n) = \{ (p(x_1), \ldots, p(x_n)) | p \in \operatorname{Car}(C^*(\{x_1, \ldots, x_n\})) \}$$

where $\operatorname{Car}\left(C^*(\{x_1,\ldots,x_n\})\right)$ is the set of all characters on $C^*(\{x_1,\ldots,x_n\})$.

THEOREM 10. Let (x_1, \ldots, x_n) be a finite system of A and let $s_0 \in S_{\{x_1, \ldots, x_n\}}$ be such that

$$s_0(x_i) \in \partial V(x_i)$$
 for $i \in \{1, \ldots, n\}$.

Then the restriction of s_0 to $C^*(\{x_1, \ldots, x_n\})$ is a character.

Write $\lambda_i = s_0(x_i)$, $i \in \{1, \ldots, n\}$. Since $V(x_i)$ is a compact convex subset of C and $\lambda_i \in \partial V(x_i)$, there exists a complex number α_i , $\alpha_i \neq 0$ such that

$$s \in S \Rightarrow \operatorname{Re} \alpha_i \lambda_i \leqslant \operatorname{Re} \alpha_i s(x_i).$$

From this fact we deduce that

$$\operatorname{Re}(a_i x_i - a_i \lambda_i) \geqslant 0$$
.

For the proof of the fact that $s_0|_{C^*(\{x_1,\dots,x_n\})}$ is a character it is sufficient to show that

$$s_0(x_i x_i^*) = s_0(x_i) s_0(x_i^*), \quad i \in \{1, ..., n\},$$

i.e. to show that

$$s_0((a_ix_i-a_i\lambda_i)(a_ix_i-a_i\lambda_i)^*)=0, \quad i\in\{1,\ldots,n\}.$$

This assertion follows from the preceding considerations and from the following lemma:

Let y be an element of A such that

$$\operatorname{Re} y \geqslant 0$$

and let $s \in S$ be such that s(y*y) = 0, s(y) = 0. Then

$$s(yy^*) = 0.$$

We have

$$y^* + y = 2 \operatorname{Re} y$$
,
 $yy^* = 2y \operatorname{Re} y - y^2$,
 $s(yy^*) \le 2 |s(y \operatorname{Re} y)| + |s(y^2)|$.

Since

$$|s(y^2)|^2 \le s(yy^*)s(y^*y) = 0$$

and

$$|s(y\operatorname{Re} y)|^2 \leqslant s(yy^*)s((\operatorname{Re} y)^2),$$

we have

$$s((\operatorname{Re} y)^2) = s((\operatorname{Re} y)^{\frac{1}{4}}\operatorname{Re} y(\operatorname{Re} y)^{\frac{1}{4}}) \le ||\operatorname{Re} y|| s(\operatorname{Re} y)$$

and

$$s(\text{Re}y) = \text{Re}s(y) = 0.$$

We deduce that

$$s(yy^*)=0.$$

COROLLARY 1.1. Let (x_1, \ldots, x_n) be a finite system of elements of A and let $(\lambda_1, \ldots, \lambda_n) \in \operatorname{Sp}(x_1, \ldots, x_n)$ be such that

$$\lambda_i \in \partial V(x_i), \quad i \in \{1, \ldots, n\}.$$

Then there exists a character p on $C^*(\{x_1, \ldots, x_n\})$ such that

$$p(x_i) = \lambda_i, \quad i \in \{1, ..., n\}.$$

The assertion follows from the preceding theorem by Corollary 7 and Theorem 4.

Remark. The preceding corollary contains the following theorem of Arwerson [1]: If $x \in B(H)$ and $\lambda \in \partial W(x) \cap \operatorname{Sp}(x)$ then there exists a character p on $C^*(\{x\})$ such that $p(x) = \lambda$. The proof follows from the fact that $\overline{W(x)} = V(x)$ ([2], Theorem 3; [7], Theorem 11).

References

- W. B. Arwerson, Subalgebras of C*-algebras, Acta Math. 123 (1969), pp. 141-224.
- [2] S. K. Berberian and G. H. Orland, Closure of the numerical range of an operator, Proc. Amer. Math, Soc. 18 (1967), pp. 499-503.
- [3] J. Bunce, Characters on single generated C*-algebras, Proc. Amer. Math. Soc. 25 (1970), pp. 297-303.
- [4] The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc. 29 (1971), pp. 499-505.
- [5] J. Dixmier, Les O*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Paris 1964.
- [6] S. Hilderbrandt, Über den numeriche Wertbereich eines Operators, Math. Ann. 163 (1966), pp. 230-247.
- [7] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), pp. 29-43.
- [8] Gh. Mocanu, Les fonctionnelles relativement multiplicatives sur des algèbres de Banach, Rev. Roum. Math. Pures et Appl. 3 (1971), pp. 379-381.
- [9] R. Nakamoto and M. Nakamura, A remark on the approximate spectra of operators, Proc. Japan. Acad. 48 (1972), pp. 103-107.
- [10] G. Orland, On a class of operators, Proc. Amer. Math. Soc. 15 (1964), pp. 75-79.

Received October 30, 1972 (610)

Normally subregular systems in normed algebras

by

BÉLA BOLLOBÁS (Cambridge, England)

Abstract. The main aim of this note is to give a negative answer to a question about ideals of normed algebras, raised by Arens [3].

Let A be a commutative complex unital normed algebra. $\{a_i\}_1^N \subset A$ is called a normally subregular system if there is a commutative algebra $B \supset A$ containing elements $\{b_i\}_1^N$ of norm at most 1 such that $\sum_{i=1}^{N} a_i b_i = 1$. We show that for $N \geqslant 2$ normal subregularity is not characterized by the condition

$$\inf \Bigl\{ \sum_{1}^{N} \|a_i x\| \colon \ x \in A \, , \ \|x\| \, = \, 1 \Bigr\} \, \geqslant \, 1 \, .$$

A set $\{a_1,\ldots,a_N\}\subset A$ is called a regular system if there exist $b_1,\ldots,b_N\epsilon A$ such that $\sum\limits_{i=1}^N a_ib_i=1$. If the elements b_i can be chosen to have norm at most 1 then $\{a_1,\ldots,a_N\}$ is normally regular. Finally, $\{a_1,\ldots,a_N\}\subset A$ is subregular and normally subregular, respectively, if A has an isometric extension B for which the appropriate b_i 's can be chosen. These concepts were introduced by Arens [3], mainly in order to pose the following problem. Is normal subregularity characterized by the (obviously necessary) condition

(1)
$$\inf \sum_{1}^{N} \|a_{i}x\| \colon x \in A, \ \|x\| = 1\} \geqslant 1?$$