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STUDIA MATHEMATICA, T. XLIX, (1974)

Interpolation by cones
by
I. GLICKSBERG* (Scattle, Wash.)

Abstract. A dual formulation of the assertion that a closed cone in a Banach
space of functions interpolates as well ag the whole space is given, and applied to
some results of R. E. Edwards, E. Hewitt and K. Ross on Fatou-Zygmund sets.

1. Let @ be a compact abelian group and B a symmetric subset
of the discrete dual I'. Evidently LE(G)", the space of Fourier transforms
of the real integrable functions on @, consists of hermitian symmetric C,
functions on I', and thus the set of restrictions IF(@)"|H < Cy,(E), the
hermitian symmetrie ¢ functions on B. Recently R. B. Edwards, E. Hewitt
and K. Ross [3] considered those sets B (which they call Fatou-Zygmund
sets or FZ(@) sets) with the property that all trigonometric series con-
structed from F with (certain) partial sums bounded from below are
absolutely convergent; they showed in particular that when 0¢ B these
sets are precisely those for which LI+ (6)"|B = Oy (B) (where Li+ (@)
is the non-negative cone in LF(®)). Thus the Fatou-Zygmund sets are
special Sidon sets: those for which the non-negative cone interpolates
as well as its linear span, indeed as well as possible. (Whether all Sidon
sets are Fatou-Zygmund is a still open question which was raised earlier
in [6], p. 67, 5.3.) ‘

The purpose of the present note is mainly to point out the dual for-
mulation of the property that a closed cone interpolate as well as the
entire space; more precisely, the dual formulation of the fact that a closed
cone in a Banach space have the same image under a linear map into
another Banach space as the full domain space. This provides a slightly
different interpretation of some of the equivalences of [3], and allows
applieation in several (related and unvelated) settings; it differs from
the functional analytic tools developed in [3] which were designed to
relate to sequences of partial sums. Our result is wholly unsuited to deal
with such matters, but has the merit of showing the interpolation pheno-
mena occmrring are not at all peculiarto I, (G): for example, if 4 is a prob-
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ability measure on ¢ with dense support and with ge 0y (I") then
(B () 1) | B = Oun(B)

exactly when FE is Fatou-Zygmund.

Ag indicated we shall frequently use the superseripts B or R, to
denote the function space or space of meagures with the obvious restriction :
thus ME+(G) denotes the space of non-negative measures on G. We ghall
also define the Fourier or Fourier—Stieltjes transform without the usual
conjugation, simply for convenience.

2. The basic lernma. Our Dbasic result is closely related to the fact
{[2], p. 488) that a bounded linear map from one Banach space into
another has closed range iff its adjoint has; in fact the result has o proof
suggested by a proof of the known result shown to the author long ago
by K. de Leeuw. Although it will be stated for real Banach spaces it
of course applies to complex spaces by taking the adjoint space to be
space of real linear continuous funectionals.

TEROREM 2.1. Let X and ¥ be real Banach spaces with unit balls By,
By, and let T be o continuous linear map of X onto Y. Suppose P is o closed
cone in X. Then TP = X if and only if

2.1) He > 05 ||y < esup(Bx NP, T*y*>, gy Y™

Finally, if (2.1) holds there is o constant k for which, for cach vy, there
is an @ in P with Tz =y and |lo|| < kly|.

Proof. Suppose that (2.1) holds. To see TP = Y it suffices to show
there is an # with By < (T'(nBy N.P))™, exactly as in the proof of the
open mapping theorem: indeed then for ye By we have an ¢,e nBx NP
for whieh |y—Twf <3 and thus an @ye i(nBynP) = (g—Bx) NP

for which [ly —T'w, —T%,|| < }, and continuing we obtain a sequence {wy}

[s-3 o0
in P with |lo|| < 270, y = YTy, so that @ = Y aye 2nBy AP, since P
1
is a closed cone, and ¥ = Tw since T' is continuous. (Note that once we
know such an » exists we have By < T(2nBy NP), which yields the
final assertion.) '
If no such n exists, then for each n-we have a y, ¢ B\ (T (nBy NPy,
and so a yhe¥" for which (¥, vs> > 1> sup{T(nByNP) . That
implies |yl =1 since #,¢ By, and also that 1> nsap{ T (By AP), 45>,

. ; . 1
again since P is a cone, so ;{>sup<BXnP, TS = o~ Tk

Thus |y, >1 and [[T* ;-0 so that T* cannot be topological. On the
other hand it must be: T is 1-1 since TX = ¥, and for the same reagon T
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has closed range by the theorem on adjoints cited earlier; thus 7" is open
by the open mapping theorem, and we have our contradiction.
Now suppose TP = Y. Then for some , (T(nBx NP))~° is non-

void, where © denotes interior. Let 4,e {(T(nBx NP))~° and choose an a,

in P for which —y, = T®,. Then
0¢(T'(nBx NP))™° + T, = (T'(nBx NP +i0))™° < [T{(n+ |fwol)) Bx nP)]~°
so if eBy lies in the last set then for any y*,

elly*|| = sup (eBy, y*) < sup<Z ((n + [m]) Bx NP), v

and

el Tyl < T (n+ llaolf) sup { By NP, T*y*»
a8 desired.
Clearly the sufficiency of (2.1) is the deeper half of 2.1. As we shall
see later, in several of our applications involving translation invariant

cones it can be replaced by a simple appeal to Hahn-Banach (1),

We can restate our result in a couple of ways.

COROLLARY 2.2. Let N be a closed subspace and P a closed cone in
o Bonach space X. Then P+ N = X iff
(2.2) He > 02 z*| < esup By NP, 2%, a%e N*,
where Nt is the subspace of X* orthogonal to N.

Here Y is the quotient Banach space X /N and 7 the canonical map,
so that 7: (X/N)* = N+—.J* is inclusion, and (2.1) becomes (2.2).

COROLLARY 2.3. Let X be o Banach space and let T: X~ be linear,
with o closed nullity N, and suppose P.is a closed cone in X. Then TP = TX
iff (2.2) Rolds.

For clearly TP = TX is equivalent to P+ = X, so Corollary 2.3
follows from 2.2. :

3. Interpolation by positive definite functions. Let & be a locally
compact abelian group with dual I'. For fe L¥ (@), f(--y) :_f(y), S0 f
is_hermitian symmetrie, and if F is o closed symmetric subset of I,
L#@)" | B < Oy (B), the hermitian symmetric ¢, functions on .

We want to consider the question (?) of when .
(3.1) L () B = Oy, (B).

(1) There are instances where cven less is needed; for example TP = X if

POnkernel 7' @ since if x, lies in this set and z,-+-6Bx < PO then for any zeX we
3 2|
+ —;ﬂ——nw ePO and Tx = T (-%ﬂm’)sfl’l). (This oceurs in §3 if we replace
2|l

Iy (@) by 0(6).)

(%) At loast when I' has no elements of order 2 we could equally well take B
a 8ot with Bn(—2B) = @ and consider interpolation of all ¢, functions on E, but
the formulation of results in the present terms is more convenient.

have o’ = x,-
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Of course that implies 0¢ E since F(0) = [fdz = 0 for fe L+ (&), and
also that LE(@)"|E = Cy(B). The last is easily seen to be equivalent
to L,(@)" | B = Cy(H), or that B is a Helson set. So restricting our atten-
tion to a symmetric Helson set Z not containing 0 we can apply 2.1 to
our map T: f—f|E of L¥(@) onto Cy(E) and the cone P = LE+(@),
once we note that the dual of the real Banach space Cy,(H) is the space
of hermitian symmetric measures on FE, i.e., those ue M(H) for which
u(—F) = ;(F), F < B, or alternatively those with 4 real on @. Weo
shall denote the set of such measures by M, (H).

Here T* iy precisely the map u—p from. My, (%) into LE(G) since

[fdu = [fadw, and (2.1) thus asserts we have a constant ¢ > 0 with -
I [

Il < osup ([ fadw: f>0 in L,(@), [fdw<1), pe M, (@),

or

(3.2) —infi (@) < csupi(§), pe My(H).

Since we can freely translate 4 about (i.e., multiply # by a character of I),
(3.2) is equivalent to the non-existence of a sequence {u,} in M, (F) with
Sup/j‘n(G) < 2_n7 —1= ﬁn(0)7

or
(3.3) infa, (&) >

~27" 1= iy (0).

and for the same reason we can take |4,|< 2

Since B Helson implies |juf < k|l#llo for we M(E), we have a w*
cluster point u of {u,} in M (F), and, provided ¥ is compact, the w* topol-
ogy on M(E) coincides with the topology of pointwise convergence of
Fourier-Stieltjes transforms, so that 4 >0, z(0) =1, and we M, (B).
Now if we choose pe C(I") non-negative, non-zero, and with small support
very cloge to 0 then ¥ = p*¢p*¢™* will be an integrable element of C(I")
which vanishes near 0 (since the support of p lies in the compact set 7
and 0¢ E), while ¥(0) = i(0)| §(0)[* = i(0)-|[edyl? 5 0 shows ¥ 0
and ¥ = i |p|2 > 0 shows ¥ is positive definite. But then |¥(x)| << ¥(0)
=0, <@, a contradiction showing (3.3) fails, and thus (3.2) and (8.1)
hold if B is compact.

When F is non-compact we can only apply this argument by con-
sidering {u,} as a sequence of measures on I, the Bohr compactification
of I'; then we have a cluster point 4 in M, (E~), where B~ is the closure
of Hin I'%, with 4> 0, 4(0) = 1, and can obtain the same contradiction
only under some additional hypothesis like 0¢ ™, for example. In the
particular case of ¢ =T I' = Z, B would be a Sidon set, and it would
suffice to know EnnZ =@ for some n: for then if m is Haar measure
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on (nZ)*, m is an almost periodic function 0 on ¥ and 1 on nZ. (For the
general case of @ compact, the analogous hypothesis is that B misses
a subgroup of finite index in IV)

Again in our particular case of a compact @ and ¥ a Sidon set, we
can take the elements of M, (E) as functions, rather than measures, and
we can 1eph1ase (3.3) in an interesting fashion. Indeed, if we set p,(y)

= (1427~ (2"“ Sy} + ,un{y} ) then p,, is an integrable positive definite
function (since D, = (L+2"""1(27™+4,) = 0) supported by B, = {0}UE,
and, in terms of the p, the non-existence of a sequence {u,} satisfying
(3.3) becomes the non-existence of a sequence of integrable positive
definite functions supported by FE, satisfying

(3.4) 2027 1= [pudy (= pa(0)
and thus cquivalent to the demial of an inequality

(3.5) [pdy <

Thus (3.5) is equivalent to (3.1) for G compact; but in fact this is equiv-
alent to the integrability of all positive definite functions supported
by B,. For a given sequence satisfying (3.4) we have p,(0) = ||p]l. < 27"

pn defines a positive definite function supported by E,,

const - (0), for p integrable positive definite, supported by B,.

and thus p =
which cannot be integrable: for p, —-f,,, thle 0<f, = Dye O(G) and

Ifuls = [fdn = p,(0) < 27" so that f = an L,(@), and f = an by

so that f =an =p
1
Consequently if p were integrable f would be essentially bounded, indeed

dominated convergence (since 0 << Z 1fal < 1),
1

f=2 ae;
> $(0) implies f > m on a neighborhood of 0, whence f > 7 on a neigh-
borhood of 0 and f = P a.e. fails. So if every positive definite function
supported by H, is integrable then (3.1) follows. (It should be noted that
this integrability implies dirvectly that H, is a Sidon set: for if g is a bounded
By-function then (|glle +¢) " is & positive definite function supported by ¥y,
o that the integrability of (|gll.-+g)~ it assured, and that of § follows
(cf. [8], §5.73).)

Now suppose our Sidon set F, supports a non-integrable positive
definite function p = j, where u > 0 is & measure on &. Let {u;} be an
approximate identity for L,(@) consisting of non-negative migonome‘mie
polynomials, with [usde = 1. I {||u*ul.} were bounded then {,u *464}
would have a w* cluster point f in L,.(@), and f =limpg 4 =4 =,
whenee p is integrable sinece f is a bounded Fy-function. Thus we must

but f = }f, is lower-semi-continuous so that f(0) = oo > m
1
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have u, = us for which n < |lu*uylle = pru,( —a,) = uxu,* 4,,(0), so

1 -
the transform p, = w %yt th, of the non-negative trigonometric poly-
1, .
nomial Z(M #u, * 0, ) I8 an integrable positive definite function supported
o a p 1 |
by E, with p,,(0) = j Pudy = W(M*%n * ‘Smn(o)) =1 :m(lpﬂ(()) = -;,;‘LL(O)U,,L(O)

1. 1
= 4 (0) = — 80 (3.5) fails.
—i(0) = —p(0), 50 (3.5) falls

We have proved all but the final parts of the following

TumorEM 3.1. Suppose 0¢ B = —H, a closed Helson set in the dual I'
of & locally compact abelian group G. If I is compact, or 0 is not in the closure
of B in the Bohr compactification I'* of I, then

(3.1) L (@) |8 = Oy ().
In general (3.1) 4s equivalent to
(8.2) —inf (@) << esuppi(G), pe My (),

and if G is compact (so B is Sidon) then (3.1) is equivalent to each of the
Sollowing :

(8.5) [pdy<<cp(0) for p integrable positive definite, supporied by
By = {0}uE. :

(3.6) All positive definite functions on I' supported by I, are integrable.

(8.7) The positive definite functions on I interpolate the bounded hermitian
symmetric functions on K.

(3.8) Some positive definite function on I' supported by I'NB has positive
mean Square.

With the exception of (3.8), the equivalence of these conditions
(in sometimes slightly different form) when (7‘ is compact is given in [3].
(3.7) amounts to the assertion that M” +( V' |E = C,(B). That thig
implies (3.1) for ¥ Sidon is most easily seen by notmg 1ha,t by (3.7) we
have a v > 0 on & for which 7 = —1 on E, so v*l}f‘*(G < Ll (@) implies

— I (@) |8 = (v LF (@) |8 = IFH (@) |,
and hence
If =L —If*  implies LY@ |E <« IM(@)" |3,
and therefore Cy,(H) = Ii+(6)"| F since E is Sidon.

Conversely if (3.1) holds, ge C}(H), and {u,} is a real approximate
identity in I, (&), then from the final assertion of 2.1 we have a constant
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a,ndf‘,sL”’ &) with fa = ttsg on E and ||f;]; < kgl < kllgllw- For a w*
cluster point u in M +(G’) of the net of mefmures corresponding to {f;}
we of course have z = ¢ on B (and ljul| < k|lg]l.), yielding (3.7).

As we have just seen we have a »> 0 with » = —1 on ¥ if (3.1}
holds, 8o (8,+%)" is a positive definite function on I" supported by I'\E
whose mean square is non-zero since d,-+» has a non-zero discrete part.
But the full equivalence of (3.8) and (3.1) arises from a bit of argument
which applies somewhat more generally. Suppose (still for ¢ compact)
we ask for which symmetric # (0¢ Z) we have

(3.9) LI @) |8 = L1 (@) |B.
(For E Sidon this is our oriwiml question about (3.1).) Noting that

the nullity N of f—>f]]’ in L () consists of the real eh}%nonts of kF
the kernel of ¥, it is easy to see that N in the real dual I, (@) is (kE)

“the set of veal valued elements of (RE)* in I, (G), thus the real elemen‘(s

in the w* closed span of H. We can apply 2.3 here to assert that (3.9)
is equivalent to the existence of a ¢> 0 for which

(3.10) —essinfp < cesssupe, @e (ZGE);;.

But in fact it will suffice to merely note that (3.9) implies (3.10) (thus
using only the easier half of 2.1) and of course that implies (3.10) for
the trigonometric polynomials in (kE);, ie.,

(3.11) —infe(@) < csupp(@), ¢ o real trigonometric polynomial in spank.
Now for a non-negative element ¥ ==r--¢ of the real trigonometric
polynomials in span #,, where e B and pe span FE, we have r > sup( —¢)

1
> —iinf(—go) = —supe, and thus since » = f ¥de, for anctherc,
¢ ¢
(3.12) P(0)< e {‘I’dac for W= 0 a trigonometric polynomial in (kE

With m Haar measure on @, (3.12) says em — 9, provides a non-negative
linear funetional on (]cEO); , and %0 we have a non-negative extension by
Hahn—Banach to CF(G). So we have a »>0 on @ uzith om — 8y —v
A (kEo);, hence orthogonal to H,: in particular » = §, = —1 on H,
and (3.8) follows. On the other hand » = —1 on F implies (3.1) a8 we
know, and in showing that we really showed (3.9). So we have shown
(3.9), (8.10), (3.12) are equivalent, and imply (3.8).

Now suppose (3.8) holds and note that the positive definite function
whose existence is asserted there corresponds to a 1> 0 with discrete

part i; # 0, and with 4 =0 on B. Thus ic = —Jz on E, go for a >0
large, b = ﬁd(O +2.(0)+a>0 and
(3.13) (am+14,)" = |{22(0) )+ 3o(0)+a)m—24] bm )" on B.
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Now since am--1,> 0, bm —2; is non-negative on (kI ) { by (3.13), and
it x, is in the support of 15, with ¢ = Az{w} > 0, then bm=cd, 2
= bm —Ag+ (g —00g) = bJ?’_I’b—-ld shows bm—cd,, i8 non~negative on
the invariant space (kEn)R, 50 bm —ed, is also, and (3.12) and therefore
(3.9) follow. We have thus proved (3.8), (3.9), (3.10) and (3.12) arc all
equivalent, and have completed our proof of 3.1.

COROLLARY 3.2 (of the proof). For any subset I of I'with 0 ¢ I = -1,
if G is compact the following are equivalent:

(3.8) Some positive definite function on I' supported by I™ K Tas positive
mean square.

(3.9) L (@) | =L@ |B.

(8.10) —essinfp < cesssupy, ¢ real valued in the w* closed span of 1.

(3.12) ¥(0)< cdfl_ffdmfor all non-negative elements of the span of By == {0}V K.

The preceding argument shows we ean obtain the equivalence in
3.1 for @ compact using only the easier half of 2.1: in effect that shows
(3.1) implies (3.2) (or, what is the same, (3.10)), and (3.10) then produces
a v 0 with # = —1 on B, which shows directly that (3.2) implies (3.1).
(The fact that @ is compact is essential; otherwise » is a measure on the
Bohr compactification of G.) This use of v depends of course on the fact
that L) (@) is translation invariant, and we now want to point out appli-
cations of 2.1 where invariance is missing.

Suppose x> 0isin M, (@), i.e., pe Co(I). Then a well known argument
due to Rajchman shows the set M, of finite » absolubely continuous with
respect to w lies in My (@), and thm M B = Cy(B). Now if the closed
support F of 4 in @ is also the closed support of yz-m and has the property
that (XF-Ll(G))‘ mterpolates Co(B), the same is true of M « and converse-
ly: for (yp-Ls(G )) [T = Oy(B) and M,|E = C,() arve ecquivalent,
respectively, to inequalities

4 < olMHr,m(lF wyy  he M(H),
and

10 <5 ¢ Wi, Ae M),
and in each case the right hand term features precisely pr( M|, The
game mkes place when we conaldo: interpolation wusing positive cones:

(xz L1+((1) |5 = Oy, (B) and (Jl[,ﬁ) | B = Cy(B) both come to the
further inequality

—mtA(F) < osupA(F), Ae M, (7))

(perhaps with distinet constants). In particular
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THEOREM 3.3. Suppose 0¢ B = —H, a closed Helson set in I', and
w=0 is in Mo(G) and has global suppori. Then

(MY 1B = (L () ) 1B = O (D)
iff _
LG 1B = Oy (B).

In [8] the familiar Sidon sets ave shown to be Fatou-Zygmund (i.e.,
satisfy (8.1)). Noting (as in [3]) that such sets are closed under the taking
of finite unions Ly Drury’s argument, one can. trace this result of [3]
via (3.2) to the fact that, in showing these familiar sets Sidon one produces
transforms of Riesz products giving “arbitrary signs” on the set, and
these Riesz products are non-negative. Indeed in order to show X gatisfies
(3.1) from (3.2) it suffices to sce that there is a constant § > 0 for which,
for every function ¢ on F assuming values -1, there is a probability
measure » on @ for which sgn? = ¢ and |9/ # on B: for then given
e My () we can set @(y) = sgnu{y}, so that for the corresponding »
we have

Bllal = 83 In{y}l < D udy}i(y) = [fadv <supp(@).
G

We can do approximately the same thing for # a non-compact Helson
set, and obtain the following sufficient condition for (3.1).
LummA 3.4, Suppose 0¢ B = —F, a Helson set, and

(3.14) sup {—”—/“LEL : ,ue]l[,,(Eo)‘% < 3.
Then (3.1) holds for B.
* Let ae R lie between the quantities in (3.14).
- 1.
If (3.1) fails we have w, in I, (H) with a,>= - 1 (0) == 1, or

alternatively, adding -~—-60 B0 gy and renormalizing, e My (1) with

. N L

P 220y oy (0) ey O <2 g, {0} 255 Fix n and let Op, == lu,|, where 0

has real values and 0] ==1; by lem we can choose o compact symmetric
‘ . 1 . .

subset J' of M, with 0| continuous, |u,| (T, 1) <77:’ and since 0 is

isolated in M, we can take Oe I )
The fact that ¢ exceeds the left side of (3.14) means that for g e Oy, (F)
= (y(F) of unit norm we can find a ve M%) with ¥ = ¢ on T, || < a,

4 — Studla Mathematica XLIX.3
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as usual. (5) With ¢(0) = 1 and ¢ = — 0 elsewhere on F we have v U)o}
= | (Phe subseript denoting restrietion of the measure), and » {0} = 1.
Let » =w, —v_ be the Jorda.n decomposition of ». Since »(0) =
b, (0)—5_(0) = 1 while 3, (0)4»_(0) = [p] < g
P (0) =] = %(.Hvll—l) <ila—1) =1-§
where f (independent of # of course) is positive since a < 3. For ye I’
#(p) = &1, and if #(y) =1 then ‘
b(y) =) HI_() Z1-(1—p) =§
while if #(y) = —1
Poy) = —14+i_(y) < —14+(1—p) = —B
s0 that », has the same sign as » and [7,|> # on F. Since », = 0 and

4, =0, we have

0< [y = [ 5, dp, < |l paf0} + [ ¥, s
ol

<—+ f Il + f B

ENF

: 2a
<L PN O < 2 ) )+ L4 L

n

9

kj’;(a"‘ﬁ)*

since [, = fi,(0) = 1. Thus g < —(a +p) for all n, and g < 0, our con-

tradietion. )

The preceding results give some sufficient conditions for the Fatou—
Zygmund interpolation (3.1). As we have alveady noted when ¢ is compact,
it A is a subgroup of finite index in I" and B nd = @ then F satisfies
(3.1); thus 4f & positive definite function p is. supported by Yy our Sidon set
B, and py, is integrable, p is integrable: for if g = (p-x4) , ge C(@) and

P =0+l —9)" =2 +0led—Pxa

is positive definite by the first equality and supported by (E\ A), Ly the

second, while (3.1) holds for B\ 4 so that p’ is integrable by Theorem 3.1.
Thus by our Lemma 3.4, if B N satisfies (3.14) for some A of finite index
(or is @ finite union of sels which do) then B satisfies (3.1). (Alternatively

(®) The left side of (3.14) gives the interpolation constant for LE (@)L ()" (B
= Cy(E), and thus for the interpolation of bounded continuous hermitian functions
on F by ME@)".

Interpolation by cones 245

gsome condition like (3.8) might apply to 4 and its subset A N7 which
would yield the integrability of py, by 3.1.)

Finally, in connection with (3.6) for & compact it should De noted,
that integrability of all positive definite functions supported by B, is
of course.far from the integrability of all Fourier-Sticltjes transforms
supported by F,. In fact the last condition holds only when H, is finite.
A simple argument to show this is the following, pointed out to me by
John Fournier: if 77,1s infinite, we can choose g e ly (By) \1, (1,), and (extended
to be zero off Hy) ¢ =g, for ge Ly(&) < L, (¢) by Plancherel, so that ¢
(extended) is & non- 111&0{:1' able Fourier~Sticltjes transform supported by #,.

4. Interpolation by other cones. In the _present section, we poind
out the possibility of interpolation by other cones in L, (@), and also in
some other algebras, in a series of examples.

4.1. When ¢ is compac,‘r, and 7 is a Faton-Zygmund set, the existence
of a»>0o0n ¢ withy = —1 on F shows that any invariant cone P
in Ly (@) interpolates as well as its real span, as we have seen; thus, for
example, for

Py o= {fe Ly(@): e Ref = [Imf]},

wo have Py 1, == Cy(B). On the other hand it is trivial to design a similar

cone which i not invariant and which hag the same property (but not

so trivially évident) as in 3.3. Let U be an open (say) dense subset of G
but of small measure, and consider

P o=y Py.

This is a smaller cone and far from invariant, but we can casily see
P|E = Cy(B). For as we observed before Theorem 3.3, (P —ZP) ]
= (XUL ()" interpolates Co(1), and applying 2.1 to this cone in y; Ly (@),
PO\B = Oy(F) iff we have a & for which, for cach pe M(H),

(4.1) Nl = Tesup{Re [fduo: fe P, |If]l, =<1}

sinee each real linear functional iy the real part of a complex ]mo A ONe
(80 that f-+Re ffd,u < Re[fade yicds the (veal) adjoint to f-»f|H) and
Nt = sup{lﬂo Md.r- fe Ly, liflh= 1} Now the right side of (4.1) is
/\».111) ¥ () = I\.sup %t ()] | ~—arg e () where ¢ is an oven. periodic funetion,

== 1 on [O 1.%11'%], == 008 (0 —tan"'e) on [tan~le, v -+tan~'e] and 0 on
[dm4-tan™1e, =] ax iy canily seen (¥, («) is the maximum of the projection
of ¢” i(x) onto R for 0] < tan~le, or 0, if that is negative). Since U is
dense the supremum coincides with that over all of @, and from the form
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of ¢ the supremum exceeds supRe s () and also sin(tan™"s)sup [Tm 4 (2)] .

Now if B is a Fatou-Zygmund set then by (3.2) for »e M, (B),

- - 1 .
sup? (#) = supRey (2) > - Il

while for any ume M(F) we bave u = A-+iv, where A = §(u-+u*) and

1
y :—2—_(,u—y ) lie in M, (H); and i —Re,u, v =TImp so
3

supRe i () = supl — Hlll,

1
supIm i (%) = sup (2) > >— 70

whence

il < JAl+ 117 < osupRef + ¢sup Tmp

Jmlitaiofungi(o)

|

where p is a measure ag in Theorem 3.3, again assuming F Fatou—Zygmund. )
4.2. If ¥ < T"is a Helson set then a well known theorem of Wik

¢
< S —
= (c + sin (tan~'e)

yielding (4.1). (We could equally well let

Im —

dy
P={w<,u.eReEM— o

[5,6,9] shows L(Z,)"|H =0(B) and |u]<osupli(Z,)|, weM(H);
in fact
(4.2} Il < e Lim |f(n)].

N>+ 00

If we take 1¢ B = B! then of cowrse IF(Z
want to note that

1B = O(B), and now we
L(2,)" 1B = 0,(B)
holds here too.

Were this to fail we would have . pu,e M, (F) with supi,(Z,) = 1,

< an 1 : &
infu,(Z.,) = = and since we can replace w, by ¢*u,, keZ,, we can
. . . i
assume instead that 4,(0)> %, 1> 4, = ——on Z,. Then {u,} has a w*
n

cluster point in I, (B) (since [|ju,)| < ¢) and >0 on Z,, #(0)= % (so

. 1
lull = 4). By (4.2) we bave k7 oo for which (k)= 5o and now
(4
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-, N 1 N
{e™ 4} has a w* cluster point ve My, (H) with » (0) = S and v =0 on all

of Z. But exactly as in § 3, just after (3.3), we can use » to construet a non-
zero positive definite funection on 7't which vanishes at the identity, the
desired confradiction.

‘We can use the same argument for any half-group: if ¥: I'+R i
a non-frivial homomorphism then 4 (P ([0, o))" | B = ¢(#) when
L) |E = C(H) as a consequence of a result of Bernard [1, 6] which
yields this extension of Wik's result. So the preceding argument applies
to show 1) o (‘I’” (ro, oo))) [l = (,(K) once we have the analogue of (4.2),
which here reads
I: ¥(y) = n},

el < exup {1 (y) we M(H),

for all n, and is & consequence of the following

LemmA 4.2.1. Let S < 1" and suppose 1,(8)"| B = C(H). Then there
is @ constant ¢ for which, for each ye I,

(4.3) lul < esuplis(y+8),  we M(B).

For cach y the map I, from I,(y+8) to C(H) defined by f—»f | B
has as its adjoint T5: M(E)->l,(y-+8) the map p—a|H, as does the
induced L—LmapT,: I,(y+8)/kernl,~C(H). Of course (4.3) asserts
that_.’l’: has a bounded inverse of norm << ¢, so that the same must follow
for T,; and since we are assuming interpolation for y = 0 we thus have
a ¢, for which (4.3) holds for y = 0. So for pe C(B), ye I' and s> 0 we
can choose fely(S) with fIB =y, [Ifly < (co+8)ole = (00+8) [9lles
with R,f(y') =f(y' —y) we have (B,f)" =yf =¢ on B, |Rfl, = 171l
< (¢o+ ) lplle and R, fel,(y-+8). Bince & > 0 is arbitrary, this says 7',
is an onto map with bounded inverse of norm < ¢, 80 |[(T,)* 7| = 11377
< ¢, and (4.3) holds with ¢ ==¢,.

The lemma is no doubt well known, and can easily be formulated
for I' not necessarily discrete. We should probably also note that it yields
an analogue of Flelson’s result that a non-zero measure carried by a Helson
st cannot have o ¢ transform: Suppose 8 < I'is o subsemigroup with
the property that for each compact I < 8 there is a p in S with K N (y 4+ 8) =
(which occurs, for example, if there is a ppe 8 with —y¢ 8 and I =

U(—=nyo+8). Then if 1,(8)" 1B == C(H), pe M(B), g+ 0 imply iq Co(8).
0
Indeed if |4 (SN K)| < & for some JC then for our v, y+8 < § and is dis-

joint from I, so ||| < esup | (y + 8)| < cs.
Now suppose 8 is a subsemigroup of our discrete T 08, L,(9)|B

= O'(L’) Ocl) = —T, and there is a yye 8 with I' = U(:S’ ny,). Then
LH8) B = 0, (B). '
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The assertion is equivalent to
sup|a(8)] < esupi(8), pe My(H),
and as before we have to obtain a contradiction from a sequence {u,}

N 1
with supg,, (8) =1, inf i, (S) > - Since 8 is & semigroup, we again
v

. 1 n
have another sequence {u,) with L > u, > —-— on 8, u,(0) > %; morcover,
7
by our lemina,

(44) lluall < esup |4 (y + 8)I

for all ywe M (E) and ye S. So once more we get & w* cluster point with
1zuz0o0n8, #0)> %, and by (4.4) for each n we have a y,eny -+ S

- 1 )
with 4 (y,) = D But now any w* cluster point » of {y,u} in My (7) sat-

isfies »(0)>= f¢ while ¥ >0 on all of I': for §—ny,c 8+(—v,+8)
« 88—y, while y,¢8 implies the sets §—mny, increase with =, so cach
ye I lies in 8—y, for n3>m,, and thus (y,u) (y) = u(y+y,) =0 for
n 2= n,. Of course, » provides our contradiction as before.

4.3. As a variant of the first example of 4.2 we can note that for
fely(Z,) we have f i }“ f(m)2" |2 < 1, an extension of the Fourier

. transform analytic on |2| < 1 (Whlch is, of course, the Gelfand representa-

tive of f), and the elements g = f of (% Z,)" are hermitian symmetrie
in the sense that

?) = g(2) =g(2). :
Thus we can take 1¢ % = F < D and ask when I+ (Z.)|B = Cy(1)
={geO(H): g=7(}. Of course, IF(Z, ) |E = C(®) is equivalent to
1,(Z,)"|B = O(E) as usual, and the latter is equivalent to B N1 being
Helson and B nDC being finite.

Indeed if ,(Z,)" interpolates, ! NT* i3 certainly Helson, while the
finiteness of B N DCis a result of S.A. Vinogradov ([5], p. 145). (The argu-
ment runs as follows: if. B n.D° were infinite we could choose a sequonce
{2n} thereinﬂ converging to zye D (necessarily in 1) and an f,el,(%,.)
which has f,(%;) =(—1) for j< n, = 0 elsewhére on H, with 1fullz = ¢,
the constant of interpolation; then any w* cluster point f of {f,} would

have f(z;) Zf(n )4 a cluster point of {f,(2;)} (since |g;| < 1), hence

= (—1Y, for each j, 8o that f could not he continuous at 2,.) Conversely
if F=HEnT*is Helson and F DO finite then the fact that F is hull
kernel closed in the maximal ideal space D of 1,(Z,) (the hull of the kernel
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of F being precisely the maximal ideal space of the quotient algebra
L,(Z, )”]E = O(B)) shows that for any 2 EnDC we have an fiel;(Z,)
with f1 =0on ¥ =HEnl" f;(zl) = 1. Thus given @ C(¥) we can choose
gely(Z,) with § = ¢ on F and a multiple if; of f, so that tfl(,,] + (Hl)
= (), whence if;+¢ =¢ on IF; = {z}Ul. Bvidently, 1,(Z, DIYA
= ((F,) and we can replace I' by I, a.nd. continue.
Now for B conjugate symmetric 1, |( Z)\E = (B) iff Bnl* ds
I[eleo'n and B NDC is finite and misses the non-negative real awxis, i.c. iff
1,(Z,) 1B = () and B N[0, 1] = @. Of course, the clements fZR+(Z+)
are non—nwudave (and non-decrcasing) on the segment [0,1], so that
En[0,1] =@ if our interpolation holds, and “only if” is clear. On the

other hand since
fy = [fdu= )jf(nm(z"

for pe M (1), ,ue M, (E) amounts to u(2") being real for n = 0, and (2.1)
becomes
(4.5) ——m‘m( ) < esupp (), e My(H),

=0 n0
which is equivalent to the desired interpolation sineo B (Z,) B = O, (1)
Again (4.5) fails only if we have a sequence {u,} in M () with 1= ‘uh(z"

1
= - & and. (replacing u, by 2™y, for some m > ¢ if necess: ary) py(1) = %.
v
8o if (4.5) fails we have a g in M (H) with u(1)> %, 12 p(") =0 for
72z 0.
Now lim (") = lim wmu(e"), and vanishes only if um = 0, by Lemma
Po—ep 00 n—~r--00 —_—
4.2.1 applied to S = Z,. If lim u(z") # 0, then we have an &> 0 and
N—+--00
ny 7 co for which g (e") > ¢ so that any w* cluster point » of {#Yu} has
«u(z) . ¢ and (&%) 3= 0 for all ke Z; sinee » is carried by # 1% wo now
have » *cp*(p* a non-zero positive definite function on I vanishing at 1
if pe C(TM) is chosen appropr m{(*]v, yielding the desired contradiction.

On the other hand i Tim @(&") = 0y 80 that uga = 0 and pu is carried

Dy the finite set KN I)“,ns:ﬂiwo;' s {25 ge B NDPY (so 0 < v << 1) and
let () = %z, then p*u () = p(r ey w rFu () » 0 for k2 0 while
*u(@) = g*u(l) 4. Bub. e*p is cartied Dy the finite subset xr
: j— (BADC) of D, and ((F AT is certainty interpolated by 1,(Z,.)", so

that g*p # 0 implies (p*u)" ¢ Op(Z,) as before by Lemma 4.2.1. Thus we
again have an &> 0 and ny 7 oo with @* (") = 5. Now uny w* clustor
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point » of {#"p*u} in M,(F) is non-zero, supported by F NI (which
doesn’t contain 1), and has ¥ > 0 on all of Z, so we arrive at the same
contradiction as before, completing our proof.

4.4. As a final variant we consider interpolation by Beurling algebras
[7]. Suppose w >1 is an even continuous function on ¢ with w(z--y)
L wiw)w(y); then L,(G) = L,(wdz) is contained in Ll(G), is an algebra
under convolntion, and for a closed F < Iy L,(&) |8 < Cy(7). By
Bernard’s theorem [1, 6] if G, = ¥~([0, o)), where ¥: G—R is a non-

trivial homomorphism, Lhcn l}u,( +) 1 = Oy(H) follows from Lw( Y4

= 0y(B) (for ReL,(¢,)" = Re Lw((z‘)' since

Ref = Re(f 1a,)" +Re(f tono,)” = Re(f 16,)" +Re((f zona,)¥)’
and (fxpne, ) e Ln(6y)). Thus we can consider the qucstions of when
a,n mterpolamon set H (with 0¢ B = —B) has LE+(G)"|B = Co(B) or

(G’—+) | B = 6'07 (&), and again both oceur if X is compact or, in the Bohxr
compaetlfma,tlon of Iy, 0¢ B~

TFor convenience we’ll consider the second interpolation with ¥ com-
pact. Where 3.3 is concerned with the map fw—(fw)" |B, here we must

consider f——>fﬂyE, whose adjoint takes we M(E) into the element ;/,‘j of

e, Lo (wde) since
[fou= [ifao = [Lgwas, ferne,),
i &y G

and thus L,(G,)"|B = 0 () ift

(4.7) Ilyllécmlp{t%%i: msG+},
and L%+ (G,) 1B = C,(B) it we also have

f(x)
(4.8) H,uH-<\ksup{ ) me&}.

Once more if the last fails we have u, in M, (B) with 1 = sup =2 fin 'ui’l; _w.}.
I w' ow "

on G, so that (4.7) implies ||u,/| < ¢; again we have Tpe G with g, (z,)
= $wiz,), so that the sequence {”‘n,un} in I1,(E) has a w* cluster point »

with 1> ;0—\0 on @, and #(0)>%. Now
Li(6,) |8 > Ly(@,) |2 =~ O(B),
s0 by Lemma 4.2.1
lull < esupla(g+GL)l, pe M(B),
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for each ge @, and thus we have g, with 0 < ¥(g,)-c0 and ||| < 6’11’((/n)|
= ev(g,). Bub {(/,,fu} now has a w* cluster point A in M, (%) with 1(0)

=Ml >0 ‘1111(1 230 on all of G since g +g,¢ G, for 2= mn,, so that
v(g Fgn) == (ga2) (9) = 0 for n > = 1y Our usual contradiction now follows.
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