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On characterizations of interpolable and minimal
stationary processes

by
A. WERON (Wroclaw)

Abstract. In this paper some charactervizations of interpolable and minimal
stationary processes over locally compact Abelian (LCA) groups are established by
using an isomorphism theorem between the time, spectral and Hellinger spectral
domaing of stationary processes. In the note [156] wo studied the interpolation
problem on LCA groups and announced several results without proofs. We present
them here in a complote form. Our rosults constitute a natural extension to the case
of an LCA group of Kolmogorov’s, Yaglom’s and Salehi’s results on interpolation for
the simple stationary stoehastic processes.

1. INTRODUCTION

Clagsical least squares linear prediction theory is concerned with
@ stationary stochastic process, that is, a family X, (se Z — the discrete
Abelian group of integers or s¢ B—the Abelian group of reals with natural
topology) of complex-valued random variables on a probability space,
with zero means and finite covariances (X, X¥}) depending only on s —t.
Then the family of random variables forms s Hilbert space and, conse-
quently, Hilbert space methods play a key role there.

‘Two Important cases are considered; extrapolation and interpo-
lation. One accomplishment of the theory in both cages is an analytical
charactorizabion of those processes which are errorlessly predictable 5 de-
terministic processes in extrapolation and interpolable processes in inter-
polation. Prediction theory of stationavy sequences (processes over Z)
has heen studied by Kolmogorov in his fundamental paper [5]. Basing
himselt on the isomorphism between the time and the spectral domain
of the univariste stationarvy processes (ef. [5], Th. 2.7) he has obtained
analytieal characterizations of  deterministic and minimal Processes.
Yaglom [17] has obtained a characterization of interpolable processes in
an analogous way. Next, these results have been extended to the mulbi-
variate case by Wiener and Masani [16], Rozanov [9] and many others.

In the present paper some analytical chavacterizations related to
interpolation arce given in the more general sotting of ¢-variate stationary
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processes over LCA groups. The study of stationary processes over LA
groups was initiated by Kampé de Fériet [4] in 1948. We refer the reader
to Yaglom [18] for an account of the theory of stationary processes over
-topologieal groups.

In Section 3 we obtain the spectral representations of a g-variate
stationary process and of a correlation function. We present an iso-
morphism theorem between the time, spectral and Hellinger-spectral
domain of a process after having given the preliminary results in Section 2.
'The significance of Hellinger integrals has been pointed out by Salehi
[11] in relation to multivariate processes. In Section 4 a characteri-
zation of the “space of errors” of interpolation in terms of Hellinger
integrals is established. This result is suggested by recent papers of Salehi
[12]-[14]. Finally in Section 5 the interpolable and minimal processes
are characterized in terms of the spectral measure of the process. Using
these results we have obtained an extension of Bruckner’s results [1]
concerning univariate processes over a discrete Abelian group given in
Section 6. .

The results of this paper are taken from my Ph.D. thesis at the
Technical University in Wroctaw, September 1972. I wish to thank my
thesis advisor, Professor S. Gladysz for his advice, many valuable con-
versations and constant encouragement. I also wish to thank Professor
C. Ryll-Nardzewski for his lively interest and encouragement.

2. PRELIMINARIES -

The space L, . Let & be a o-algebra of subsets of a space Q and
let @ = [py] where 1<i<p, 1<j< ¢ be a matrix-valued function.
on Q. A function @ is #-measurable ift each function ¢; is Z-measurable.
If m is a nonnegative real-valued measure on %, then by Ly,m we denote
the class of all @ such that each g, is integrable with respect to (abbre-
viated to ‘“w.r.t.”) m. For OcL,,, we put [Bdm = [[p,;dm|.

2 Q

If 7 =[Fy] is a ¢x ¢ nonnegative Hermitian-valued measure on
(£, #), then each ¥y is a nonnegative real-valued measure and each Iy
for i +j is a complex-valued measure on (2, #). Consequently, each Ty
is absolutely continuous (a.c.) w.r.t. the measure trF (tr = trace). This
follows from the inequality 0 < F < (twF)I, which is satisticd for any
nonnegative Hermitian matrix.

Lmyva 2.1, Let F be as before and let m, n be o-finite nonnegative
real-valued measures on & w.r.t. which F is a.c. If &, ¥ are p x ¢ motriz-
valued functions on Q, then

(a) the imtegral [B(dF[dm)P*dm exists if only if the wntegral
[P (AF |dn)P*dn exists, ©

P2
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(b) 4f these integrals exist, they are equal.
Proof. Let w = m~+n. If the integral [&(dF |dm)¥P™*dm exists, then
2

[ @R [Am) P am = [ @G am) P (@m[dw)dw = [ & (dFjdu)P*dw.
2 Q &

Hence the integral [@(dF/dw)¥*dw exists if and only if the integral
0
[P (AF |am)P* dm exists. A similar argument may be used to show that the
2
integral [ (dF [dn)¥"dn exists if and only if the integral [ (dF /dw)¥™ dw
Q9 Q2

exists. Hence (a) and (b) are proved. m

Thus the following definition makes sense. Let @, ¥ and F be as
before. We say that @, ¥ are integrable w.r.t. B if O (T [@m)¥P™ e Ly ,,
where m is an arbitrary o-finite nonnegative real-valued measure w.r.t.
which F' is a.c. We note that such a measure m always exists, m = trF.
We write

(@, P)p = [GaFW* = [ B(AF |dm)P*dm.
o Q2

By I, » we denote the class of all #-measurable p x ¢ matrix-valued
functions @ on @ for which the intégral [PdFP* exists.
Q2

TrozorEM 2.2 (ef. [7], p. 295 and p. 296). (a) L, 5 is a Hilbert space
under the inner product

(2, %)) = tr (D, P)p.

(b) Pe L, » if and only if there ewists a Cauchy sequence in L,y of
simple fumctions @, such that D,(w) — D(w) everywhere (irF).

Stochastic integral. Let H be a Hilbert space over the field of complex
numbers with inner product (-,-), let H% 1< g < oo, be the Cartesian
product of ¢ copies of H. If X, Y are in H%and 4, B are q X ¢ matrices with
complex. entries, then AX+BY iz in HL For X = (2, 4y, ..., @,) and
Y = (y1,¥a; ..., ¥,) denote by

the Gramian of X and Y. In HY% X and Y are orthogonal if (X, ¥) = 0,
i.e., if cach @, is orthogonal to each y; for 4,§ = 1,2, ..., g¢. The space H?
with the inner product (X, ¥)) = tr(X, ¥) becomes a Hilbert space
(cf. [16], Section 5).

We shall call S an orthogonally-scatiered vector-valued measure 0.v.m.
on (2, %) it § is a countably additive function on # such that

1° 8(B)e H® for each Fe 4%, ‘

2° (S(®,), S(B,)) = 0 whenever I, NE, = .
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If §is an o.v.m. and F(E) = (S(B), S(B)) for cach EeH, then F is a
matrix-valued measure. This is a consequence of the formula

P ST8) - (5( S8, 5 T 50) — S50, 550) = r e,

Moreover, F' is obviously a nonnegative Hermitian measure. We may
define an integral w.r.t. an o.v.m. S (stochastic integral, cf. [T], p. 297)
in such a way that it has the following properties:

(2.8) [(A®+BY)dS = 4 [@as+B [ ¥as,
Q o Q2

(2.4) ( [oas, fszfds) = [oary*,
2 Q Q
where @, ¥e L, p and A, B are p X p matrices.
Let G denote the class of all stochastic integrals [GdS with Pe L, ,;
fQ

then
-LeMMA 2.5 (ef. [7], p. 297). The correspondence V: ® — f@d;S’ is

an gisomorphism from L, p onto © such that (2.3) and (2.4) hold

Hellinger integral. The following lemma belongs to elementary matrix
theory.

Lmnvma 2.6 (cf. [6], p. 406). The four equations AXA = 4, XAX = X,
(AX) = AX ond (XA)" = XA have a unique solution for any matriz A.

The unique solution of this equations is called the generalized inverse
of 4 and written X = A~. If A is nonsingular then 4~ = 4~ and for
scalars k- =1/k if kb %0 and k5~ =0 if & = 0.(%)

If m iy a o-finite nonnegative real-valued measure on w.r.t. which
F is a.c., then (dF/dm)” is #-measurable matrixz-valued function. The
proof of the following lemma is analogous to that of Lemma 2.1.

LeMMA 2.7 (cf. [11]). Let I and N be p x g matriz-valued moasures
on & and let m and n be o-finite nonnegative real-valued measures on %
w.r.t. which M, N and F are a.c. Then

(a) the integral [(AM |dm) (AT [dm)~

9

the dntegral [(d.M [dn)(dF |dn)~
2

(AN |dm)* dm exists if and only if
(AN [dn)* dn exists,

(b) if these integrals ewist, they are equal.

Thus, the following definition makes sense. Let M, N, I and m be
as in the previous lemma. Then we say that 3, N is Hellinger %megmble

() cf. also A. H. Clifford and G. B. Preston, The algebraic theory of sPmdgroups,
Providence 1961, p. 63,
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w.r.t. F if
(@M [dm)(dF |dm)~ (AN |@m)* €Ly
‘We write

(M, N)p = [ AMaN*|aF = [ (@M [dm)(dF |dm)~ (AN [dm)* dm

Q

By H, y we denote the class of all p x ¢ matrix-valued measures M on #
for which Hellinger integral (M, N);, exists.

It is known (ef. [11]) that H, 5 is a Hilbert space under the inner
product ((M, N)) =t (M, N)p and that MeH, if and only if there
exigty a #- mea,.sumble matrix-valued function ®e L, such that, for
cach He#, M(E fqﬁoll’

3. SPECTRAL REPR]E.}SENTATIONS AND THE ISOMORPHISM THEOREM

Let @ be any LCA group with multiplication. The set of all characters
of @, i.e., continuous homomorphism of & into the group T = {exp2niz;
0 < 2 < 1} forms a group I, the dual group of G (cf. [10], p. 7). In view
of the duality between @ and I' (the Pontryagin duality theorem [10],
p. 28) we will denote the characters by <g, ¥>, ge G and ye I'. From the
definition it follows immediately that

(3.1) e,y> =<g,1> =1,
(3.2) A 77f>

I' with the compact-open topology is also an LCA group. The Borel field
of the LOA group is the minimal o-field generated by the closed subsets.
Throughout this paper the letter " will denote the dual group of ¢ and #
the Borel field of the dual group I'. On every LCA group there exists
o nonnegative measure, finite on compact sets and positive on nonempty
open sets, the so-called Haar measare of the group, which is” translation-
invariant. We denote by dg and dy the Haar measurves on ¢ and I%
T DumNmToN 3.3 (ef. [87). A g-variate stationary process over any LOA
group G is o function (X)), such that :

(i) X,¢ HY for all ged, '

(ii) the ¢ X q Gram matriz (X,, X)) = (Xp-1, X,) = K(gh~
only on gh~* for all g, he @,

(iii) the correlation function K (g) is continuous on G.

Let M denote the time domain of the stationary process (&X,)geq, i.e.,
the closed subspace of HY? spanned over the elements X, ge G with g x ¢

{g,9v” B =g, 7

Y depends
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matrix coofficients. If (wf, a3, ...

) , @) are the compoments of X,, then
each «¢ H and by (ii)

(5, @) = K (gh™)

depends only on gh~'. Thus the g-variate process (X,),.s is associated
with ¢ simple processes (m,,)aeg which are stationary in the wide sense
(¢f. [3]). Each simple process defines in the space I, the time domain
of process (#%),.q, & unitary representation of the group ¢. Namely, the
suitable unitary operators U% are defined by the formula
Uial = a¥;,  for g,he G, ¢ =1,2,...,4,

and for the remaining points of the space MM’ the operators UL are
defined by a natural extension. It is known (cf. [8], Lemma 2.1 or [16],
p. 135) that we may take U’ = UJ, so that therc exists a umta,ry
operator UD = (U, U, ..., ﬂ) on M such that
(8.4) X, =U0X, =[Ualle, forge@.

Following Jajte [3] we have by the generalized theorem of Stone
for the operators U, the spectral representation

(3.5) U = [ <, v>P(dy),
r

where P(-) is a regular, normed and orthogonal spectral family of pro-
jectors in 9 defined on 4. If we put

S() =P(Q)(')Xc;

where P9 = (P, P, ..., P) is a spectral family of projectors in In, then
§ is an o.v.m. on .@ According to (3.4) and (3.5) wo have the spectral
representation for the stationary process (X,),.q

(3.6) X, =UQX, = [{g,»I8dy), g6
r

where I denotes the ¢ xX'q unit matrix.

The matrix-valued function ¥ on &, F(-) = (8(-), 8(-)) is called a spectral
measure of the process (X,),.q. Clearly, F is a nonnegafnwe Hermitian-
valued measure. Henceforth, the letter # will denote the spectral measure;
the spaces L,r and H, p related to F—as in Section 2—are called
the spectral domain and the Hellinger-spectral domain of the process (X Doets
respectively.
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. We note that according to (3.6), (2.4) and (3.1) we obtain the spectral
representation for the correlation function

K(g) = (Xgy Xo) = ( [ <g, > IS(dy), [ <o, v>IS(ay))
Ir r

= [ g, y>IaF e, y»I* = [ g, y>IdF.
r r

The main result of this gection is the following isomorphism theorem.
TuworeM 3.7. If (X,),.q 8 a g-variaie stationary process over any
LCA group G, with the spectral measure I, then Hilbert spaces I, Ly » and
H,p are isomorphic, where

(a) the mapping V,y: X, - {g;,—;)l, I denoting the unit matriz, is an
isomorphism between M and Ly 5,

(b) the mapping Vy: @ - My, for any matriz-valued f@mcm’on Oe L, p
with values on the set of measures My on B given by My (B J (Ddlf’
s an isomorphism belween Ly g and H, p.

Proof. (a) Let X, = X, in HY% then according to (2.4) and (3.2)
ST = (X, X)) = (X, X) = ([ <0, 7738, [ <hy v 1a8)
I xr

= [<@ 1T = [ g™y Tar,
so that (g, I = (h, y>I in Iy  and the mapping Vi: {X,, g G} — Ly 5y
is well defined and may be extended in a natural way to a mapping of m
into Ly p. If we prove that M = &, then by Lemma 2.5 and the obvious
equality V, = V the proposition (a) will be proved. Sinee <g, y>I L, 5,
then from the representation (3.6) it follows that M < &.

Conversely, let @¢.L,p and let ¥ = L ®ds. By Theorem 2.2, there

exists in L, @ Cauchy sequence of simple functions &, — & every-
where. If we put ¥, = 1\{ ®,d8, then clearly a sequence of Y, is conver-

gent in 4. Since P, iy a simple function,
I

f D,d8 = ZA"S () = D) A}PO(B}) X,
(51 (VS
where A7 are ¢ X ¢ matrices, B} ¢ # and P9 ig a gpectral family of projectors
in M. Of course, PD(H) X,c M, thuy Y, M and consequently ¥e M.
It follows that & = M.
Part (b) is a special cage of the isomorphism theorem (cf. [11], Th. 1)
between the space L, and H,p on any space 2. m
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4. THE SPACE R¢

Let (X,),q be a g-variate stationary process over LCA group &
and let € be any proper and nonempty compact subset of G. If My
denotes the closed linear subspace of H? spanned by X, ge G—C, then
we denote

mc = im@ wtg_c-

The space Ny plays an essential role in an interpolation problem, which
will be considered in the next section. The purpose of this seetion is a con-
struction of isomorphism Ty on RN, into H,, and a characterization of
the range of T,y (Th. 4.9). First we prove several lemmas.

Let 2(@) denote the set of all p x ¢ matrix-valued functions @ on ¢
which are representable in the form

) = f<g,y>dM, ge @,

where M is a p x ¢ matrix-valued measure on 4%, i.e., each M,; is aregular,
complex-valued measure on %. We note that Boohners theorom (cf.
[10], p. 19) in combination with the Jordan decomposition theorem
(cf. [2], p. 309) implies that 2(F) is exactly the set of all matrix-valued
functions where entries are finite linear combinations of contimuous
positive-definite functions on G.

For all » Xq matrix-valued functions ®e L, the pxg matrix-
valued function & defined on dual group I' by

b(y) = [ <g, »>Bl9)dg
&

is called the Fourier tramsform of ©.
Levyma 4.1 (a) If Pe Ly 4N D(Q), then De L4y

b) If the Haar measure of G is fiwed, the Haar measure of I' can be
normalized so that the imversion formula

= [, oWy, g6
r

is valid for every ®eLy 4, N D(G).
Proof. We note that in virtue of the definition of a matrix-valued
integral w.r.t. a scalar measure it remains to prove that

(%) @5 (¥) € Ly apy
(#%) Pu(g) = f <9, ¥>Py(7)dy,

where the Haar measure dy is suitably normalized, 1< i< p, 1 <j<yq,
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geG and ye I'. Bince @< D(@), then D(g) = [<g, y>IaAM. If m is a o-finite
F

nonnegative real-valued measure on % w.r.t. which M is a.c., then

®(g) = [ g, ppIAM = [ (g, y>I (M [dm)dm
r r

- lf g, y)I((ZMﬁ/(lm)dm] = [f g, y)dMijtl,

and 8o ¢y(g f {g, y>AdM;, where My is a bounded regular complex-

valued measure on #. Moreover pyelL, 4, aceorcding to the assumption
Pe Ly 4, and hence by the inversion formula for complex-valued functions
(cf. [10], p. 22) we obtain () and (**). m

From now on, it will always be tacitly assumed that the Haar meas-
ures dg and dy arve so adjusted that the inversion formula holds.

Lovma 4.2. (a) If XM, then (X, X,))e D(G).

(b) If XeNy, then (X, X))e Ly 4,

Proof. Let & be in M and let @ be in L, p such that V, X = &,
where V, i3 an isomorphism from 9 onto L, as in Theorem 3.7. We
have

(X, X,) = (ViX, Vi X))y = (D,4g, y>D)p = f (g, y)Par.

It m is a o-finite nonnegative real-valued measure on £ w.r.t. which ¥
is a.c., then for each Fe & we have

M, (B) = [ ®aF = [ (aFam)dm.
B i
Consequently, (dMy/dm) = @ (dF /dm) and therefore

(4.3) (X, X,) = f (g yy ®AF = f $g, > B(AF [Am)d

II

f g, v (AM pfdm) dm = f $g, y)aM,.

It remaing to prove that the entries of My are regular measures on 4.
From Section 2 it is clear that we may put m == trF, where I is the
speetral measure of the proeess (A7) . Bach measure Iy for 4 = 1,..., ¢
a8 the gpeetral measure of a simple stationary process is regular and non-
negative. This is a consequence of Boehner’s theorem (ef. [3]). Thus

= g‘ I, i algo o nonnegative regular measure.

1-:1

Let [yy;] = O(dF [dm) and lot My == [M;] where 1<i<p, L <j< ¢
Then for each He % My(H) = |qp,jdm Sinee m is regular, then M; are

complex regular measures on fﬂ Thus part (a) is proved.
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(b) For Xe M the matrix-valued function (X, X)) is by the defi-
nition 3.3 (ili) a continuous function on @. Moreover, if Xe RN, then
(X, X,) =0 for g¢C. Hence for X Ny(X, X,) is a continuous function
with a compact support and so (X, X )e L, q,. m

Now for each XNy we let

(4.4) Pxly) = [ <g, (X, X,)dg, e[
G

Px(y) is the Fourier transform of (X, X). Its properties are given in the
following lemma,.

Lmnvwma 4.5, fa) Px(y)e Ly g,

) If for each B e & we define Np_ (E)

where My = V,V,(X) (see Theorem 3.7),

(¢) NpyeHyp.

Proof. (a) If Xe MRy, then from Lemma 4.2 (X, X, e Ly q," D().
Hence by Lemma 4.1 (a) Pxe Ly 4,.

(b) Simultaneously, by Lemma 4.1 (b), (X, X,)

=EfPX(J’) dy, then NPX = My,

=Pf<g7 > Px(v)dy

Since the definition of Np,. implies (dNp, /dy) = Px,

(X, X,) = [<g,v>(@Nppldy)dy = [ g, y>IdNp,.
I I

On the other hand, by (4.3) we have (X, X,)

= f<97 y>dM 4. Hence for
each ge G we get r

[ g, ¥IaNp, = [<g, y>IdM,.
r Ir

It follows according to the uniqueness theorem for the inverse Fourier—

Stieltjes transform of measure (ef. [10], p. 17) that N Py = Mq.
(e) From Theorem 3.7 (b) Mye Hy p; thus from (b) NpgeHyp.m

DerFinITION 4.6. Let ¢ be any proper and momemply compact subset
of G. Then

(a) Qo will denote the set of q X q matriz-valued functions Q(g) on G
such that

(*) Q(g9)e Ly gy N 2(),

(**) supp @ (g) < ¢

Interpolable and minimal stationary processes 175

l

(b) Bo will denote the set of Fourier transforms of all functions from Qg.
‘The properties of the set Py are given in the following two lemmas.
LeMmA 4.7. (a) If Xe Ry, then Pye Po, where Py is as in (4.4).

(b) If G i$ a discrete Abelian group, then Pg is exvactly the set of all

n JR—
trig-polynomials W(y) = ZAWC(g,” vy with matriz coefficients.
fom=1

Proof. (a) If Xe RNy then by ‘Temma 4.2. (X, X)) is in Ly g,nD(&);
moreover, the support of (X, X,) is in . Thus (X, X;)e Qy and conse-
quently by (4.4) Px(y)e Pg.

(b) follows readily from the fact that in diserete topology each
compact subset is finite. m ‘

Levma 4.8. If P(y)e Pgo, then '

(@) P(y)e Lygy,

(b) N, is a matriz-valued measure on & if we put for each He %
Np(B) = [ P(v)dy,

(c) @(g) =ff<g, »>P(y)dy

Proof. Since P(y) is by definition a Fourier transform of the
matrix- valued funetion @(g) which is in Ly 4,0 2(@), (a) and (c) follow
immediately from Lemma 4.1. Accordmg to (a) the definition of
2 meagure Np in (b) makes sense. m

Now we define the operator Ty on R, into H,p. For each XeNg

ToX = NPX7

where Np_ is as in Lemma 4.5 (b). A construction of T¢ is presented

in the following diagram:

mc,aX\\ XeM
N
!
Qe (X, X)) : : !
| )
ITC’ @GLZ.F
|
|
Bo2Px :
B
-7 Y
3
To(Mo) > Npg Mo Hopp
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We are now ready to give a characterization for the range of the
operator Tg. '

‘ TEEOREM 4.9. (2) Ty is a single-valued linear operator om Ro, i.e;,
'M, YeNy and A, B are qx g matrices, then

T(AX+BY) = AT, X+BT, Y.
(b) Tg is an dsometry on Ny into Hy p, d.6., for X, Ye R,
(X, ¥) = (T X, ToY)p.

(¢) The range of Ty is a closed subspace of the Hilbert space H, 5.

(Q) The ramge of Ty consists of all matriz-valued measures N, » for which®

the Hellinger integral ff AN pdNp/AF exists, where Pe Py and N, p 18 related
to P as in Lemma 4.8 (b).

Proof. (a) Let X, Ye Ny and 4, Bhe gx g matrices; then Z = AX 4
+BYeN, and for each FHe # we obtain

Ny(B) = Ef Pyyydy = [[ [ G AT+ BY, X,)dg|ay
% G :

E

[l @nx Dywes [, sl
= JiZ\TPX (E) e 'BNPY (E) .

Consequently, TpZ = AT, X + BT, Y.

(b) Let X, ¥eRy. According to Theorem 8.7 there exist matrix-

valued functions &, ¥ in L, » and maitrix-valued measures M, oy My in
H,  such that

(X, ¥) = (@, ¥)p = (Mq, My)p.
But from Lemma 4.5 (b) M, = Npy, and My = Np,, hence

g, My)y = (Npy, Ny )p
and consequently
(X, Y) = (19X, To X)p.

(¢) Since fﬁc is a closed subspace of Mt and sinee by (b) Ty is an iso-
metry on g into H, 5, the range of Ty is a closed subspace of H, p.
. (@) Let XeRyand TyX = Np,. From Lemma 4.5 (¢) Np, is
in H,» and consequently the Hellinger integral [dm. P\,dN}‘,Y/dlﬂ eic)itsts‘
Moreover, from Lemma 4.7 (a) Py is in P ) .

‘ Conversely, let ¥Np be a matrix-valued measure on @ given for ‘each
BeZ by Np(E) =FfP(y)dy, where P(y) is in Py and the Hellinger inte-
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gral [ANpANR/AF exists. Since Np is in H,p, then there exists
#

(cf. [11], Th. 1) a %-measurable matrix-valued function @ in L,y such
that for cach He® Np(B) = [DdF = [ O(dF [dm)dm, where m is an
i i

arbitrary o-finite nonnegative real-valued measure on # w.r.t. which I
ig a.c. By the Theorem 3.7 we may choose ¥Ye I such that V, ¥ = &,
Thus according to Theorem 3.7 (a) and Lemma 4.8 we obtain

(Y, X,) = (@,4g, vy Dy = [ <g, > @R = [ <g, y) O(@L [dm) dm
r r

= [ g, yydNp = [<g, PPy = Q).
r I

Hence by Definition 4.6. the support of (¥, X,) is contained in C.
Since Y M and (¥, X)) =0 for g¢C we conclude that YeJN,. But
also from equation (¥, X)) =@(g) we obtain for each He¢ %

Np(l) = [P)dy = [[ [ <g,7Q)dg|ay
p B G

= [[f <osw> (¥, Xpaglgy = [ Prp)dy = Np, ().
y [£3 1

o

Heneo it follows that we find ¥e RNy such that Np =T Y. =

5. INTERPOLABLE AND MINIMAL PROCESSES

Let (X,),q be a g-variate stationary process over an LOA group ¢
and let ¢ be a proper and nonempty compact subset of G. Suppose that
only X, for ge¢—C are known. The prediction problem for a compact
subset ¢ will be called interpolation (for classical processes cf. [9],
p. 134 and p. 180).

We say that Mg is the “space of observation” of the process (X))@
and. consider each Ye My g to be a prediction of the process (X)),
based on observations of the outside of a compaet subset . The error
of this prediction may be expressed with the aid of the norm in M. That
is o say, wo are looking for a predictor X satistying Nje My ¢ and

|, — XY = min &, Y|*
T ey
It follows that X) is the projection of A, onto Ma-c. We note that
the elosed subspree of M spanned by all X,—X], for ge ¢ is exactly
the space %y, which was defined in the previous section. Hence, the
space Ty plays the role of the “space of errors” of interpolation.
DewrNrrion 5.1 (ef. [12] and [18]). We say thal
(a) C is interpolable w.rt. (Xp)yeq of Mg = 0.
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(b) (X,)geq i interpolable if each proper and nonempty compact subset
of @ is interpolable w.r.t. (X,),iq-

(e} (Xy)gew 18 minimal if, for each he@, {h} is not interpolable w.r.t.
<—Xg)gsG'

Now we give an analytical characterization of interpolable and
minimal processes. We start from an analytical characterization of inter-
polable subsets.

THEOREM 5.2. A compact subset C of an LOA group & is interpolable
w.r.t. a g-variate stationary process (X),. with the spectral measure F
if and only if for any matrie-valued function Pe P the Hellinger integral
JANpdAN}|AF is zero o does nmot exist.

I

Proof. Necessity. Let Iy be an isomorphism on R, onto H,;
defined in the previous section. If € is interpolable w.r.t. (X,);. then by
definition RNy = 0. Hence by Theorem 4.9 (b) the range of Ty is a
null-point in H,  and so by Theorem 4.9 (d) for each matrix-valued
function P in Py the measure Np is a null-point in H, 5 or Np¢ H, 5.
In other words, for each measure Np the Hellinger 1nt0fvra1 f ANpdN3|aF
is zero or does not exist.

Sufflcmney Let X Dbe in Ny and T.X = Npy, by Lemma 4.5
(¢) Npy e Hy m and by Lemma 4.7 (a) Pye PBo. bmce for each matrix-
Valued funetlon P from P, a suitable measure Np is a null-point in Hy p
or Np¢ H, p, it follows that Npy is a null-point in H, p. Conbequently,
by Theorem 4.9 (b)

0 = (Npys Npgp = (Lo X, ToX)p = (X, X).

Since X is arbitrary in R, it follows that Ny = 0 and by definition
the set C is interpolable w.r.t. (X,),.. W

DrrINITION 5.3. (a) Quill denote the szt of q X q matriz-valued functions
Q(g) on G such that
(*) - Qg) ¢ Ln gy ND(H),
(xx) the support of Q(g) is contained in any proper compact subset of ¢.

b) P will denots the set of Fourier tramsforms of all functions from Q.
We note that according to Definition 4.6 P = U Bo, where

C is any proper compact subset of G. Hence the following gencmhmmon
of Salehi’s results (cf. [12], Th. 2, [13], Th. 3 and [14], Th. 3.8) concerning
g-variate stationary processes over the group %, 2" and R follows di-
rectly from Theorem 5.2.

COROLLARY 5.4. A g-variate statiomary process (X, ogea 0ver am LOA
group G, with spectral measure F is interpolable if and only if for any. matriz-
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valued function Pe P the Hellmgw integral f ANpdANp/AF is zero or does
not ewist.

Now, for discrete Abelian groups we obtain the following group
analogue of Yaglom’s result (cf. [17]) concerning simple discrete para-
meter processes, i.e., with ¢ =1 and G =Z.

THEOREM 5.5. Let G be a discrete Abelian group and (X,),.q @ g-variate
stationary process over G, where the spectral measure F is a.c. w.r.t. the
Haar measure dy on dual group I. Then (X)), is interpolable if and
only if for any trig-polynomials W(y) with matrie coefficients, the integral
W (y)(AF [dy)~ W (p)*dy is zero or does not ewist.

Proof. Since @ is discrete, then according to the Pontryagin theorem
(ef. [10], p. 9) the dual group of G is compact and consequently the Haar
measure dy' is finite on I'. Since by assumption F is a.c. w.r.t. dy,
the Radon-Nikodym derivative (dF/dy) exists. By Lemma 4.7 (b)
P is exactly the set of all trig-polynomials W(y) with matrix coefficients,
on dual group I'. Let for each Ee¢ & Ny (B) = [W(y)dy, then (AN /dy)
= W(y). Thus we get the formula =

[ aNwdN3[aF = [ (AN dy) (dF [dy)~ (AN dy)* dy
Ir I

= [ W(y(dF|dy))~ W (v)*d
I .

Now our agsertion is a consequence of Corollary 5.4. m

We note that by Definition 3.3 (iii) minimal processes exist
only on discrete groups. Let ¢ be a discrete Abelian group. Let ¥,
denote the orthogonal projection of X, onto Ny, and let J denote the
projection matrix on the subspace 8¢ of g-tuples of complex numbers
onto the range of (¥,, ¥,) in the privileged basis of §% The next theorem
is an extension to the case of an LCA group of Salehi’s results on
processes over Z and Z"™ (cf. [13], Th. 3 and [14], Th. 3.7).

TaBOREM 5.6. Let G be a discreie Abelian group and (X,),.x & q-variate
stationary process over G, with spectral measure F. Then (X,)yeq 18 minimal
if and only if the Hellinger integral f AN ;AN ;[AF 5= 0, where, for each
Te B, Ny B) = dey

Proof. Smce the process (X,),. is stationary, M, 0 if and
only if for each ge¢ G My, # 0. Hence it rema.lns to prove that ¥, is not a
null-point in Ry, Let, Ior each He %, Ny ( f (Y, Y)dy=(X,, X, f dy.

Let Py, be ag in (4.4); then a.ecmdlng to the definition. of ¥, We get
Py (y) = f(g, (¥, X)dyg = (X, ¥,). It follows that ToY, = Ny,.

Oonsequently, by Theorem 4.9 (b) (¥,, ¥,) = (¥yg,, Ny,)p. From Lemma
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2.6. we obtain

(Fey Yo)7 = (Yoy Yo)7 (X, X)X, ¥)75

thus

(Y, ¥,)~ = (Y., ¥,)~ (Nl’aa ATI'Q)F(Yei Y,)”

= (Ym Ya)~<17w ye)(Nblﬂ -Z\I)F(Yu Ye)(yci Ye)—-

where for each He# N, (& JI dy and I denotes the unity matrix.

Since (Y, X )7 (Y,, ¥,) =, W(’ get

(Y, X))~ =J(Ny, Ny = (N, N,) f AN ;AN ;)ai.
From Lemma 2.6 it follows also that (Y,, ¥,) 50 if and only if
(Y,, ¥,)~ s 0. Hence it follows that ¥, is not a null-point in Ny if and

ouly if [dN,dN,JiF #0.

I‘m(ﬂ]y we obtain a natural extension to the case of an LOA group
of a result due to Kolmogorov (cf. [5]) concerning univariate processes,
which was generalized by Rozanov (c¢f. [9], p. 138) to the multivariate
case.

TemoreM 5.7. Let & be a discrete Abelian group and (X,),.q @ g-variate
stationary process over G, where the spectral measure I is a.c. w.r.1. the
Haar measure on I. Then (X,),q 18 minimal if and only if the integral
[tr(aF[dy)~dy ewmists.

Proof. From Definition 5.1 (¢) for each ge& the set {g} is not
interpolable w.r.t. (X ),.q if and only if SR(,,} # 0. If ¢ iy in G then SB{{,
is exactly the set. of all trlg -monomial A4 <{g, y> with matrix- cooﬂlcmnts
Let, for cach Fed, N (B f_fl g, v>dy, hence (AN jdy) = A{g, y>.

Sinee F' i8 a.c. w.r.t. dy, ,sumlaal} ag in the proof of Theorem 5.5 (4F /dy)
exists. Consequently

[ AN NG JAF = [ (AN, jdy) (a8 [dy)= (AN 4[dy)dy
I I

i

= [ gy 7o <y, vy A AR fdy)” Ay
3
= A [ (AP |dy)” dy A*.
]

Since ¢ is arbitrary in @, it follows by Theorem 5.2 ihatb (X)) geqe 18
minimal if and only if the integral [(dF/dy)~dy exists. If this integral
I

exists then obviously the integral [tr{d¥/dy)~dy exists. The necessity
r
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of the condition is thus proved. It remains to prove that if tr(dF/dy)™ is
in Iy g, then also (dF [dy)~ isin Ly g,. Put @ = (4F /dy)~. Since (dF/dy) is
a nonnegative Hermitian-valued function, from the properties of a gen-
eralized inverse matrix (cf. [6]) we conclude that @ is also a nonnegative
Hermitian-valued function on I. Consider @ as a linear operator on the
space 87 of g-tuples of complex numbers. Let ||@| denote the norm of &
and [|P|z_g — the Hilbert-Schmidt norm of @ (ie., |B|Z_g = tr(PD*)).
Since in the finite dimensional cage all norms are equivalent and for
a nonnegative matrix @ = @Y*PY*, we have

8] = I | = [ BE < el Pfy_s = obr(PB) = otr .
But in the privileged basis of 8¢
lpy! = e, Do)l < [|D]].

Hence if tr® is in L, 4, then gye Ly g, for 1<4, j<g. m

6. REGULARITY AND SINGULARITY

The interpolation problem for univariate stationary processes over any
diserete Abelian group was studied by Bruckner in [L]. In this section
we shall demonstrate how the results of the previous section extend his re-
sults to the case of g-variate stationary processes over any LCA group.

Let I be any family of nonempty subsets of an LOA group G.
A g-variate stationary process (X,),.q is called (cf. [1], p. 283) I-regular

it MMy =0 and I-singular if ﬂ My = M, where M, denotes the
Ael

Hilbert subspace of M spanned by Xﬂ, ge A.

Tollowing Bruckner (ef. [1], Th. 3.1) we obtain Wold’s decomposition
theorem in the multivariate case.

TreorEM 6.1. If the family I is closed under translations for all ge G
(6.e., Adel and ge@G implies Ag = {hg; he A}el), then every gq-variate
stationary process (X,),.q over any LOA group @ i @ sum of two g-variate
stationary processes (X7)geq ond (X3),.4 over @ (i.e., for ge G X, = X5+ X2)

~such that the following statements are true:

(i) for the spaces M' and I spanned by (X}),.q and (
pectively, we have

Xi)yeq 705-
= M @ m27

(i) (X2),eq is I-regular,
(i) (X3),eq 48 I-singular.

6 — Studia Mathematlca XLIX.2
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The proof of this result is essentially the same as in the classical case
(ef. [9], p. 75) and we omit it.

Let'I, denote the family of complements of all compact subscts
in @. If G is a discrete group then I, coincides with the family I, of com-
plements of all finite subsets. Denote by I, the family of complements
of all singletons of G.

LeMMA 6.2. Let (X,),.q be o g-variate stationary process over any LUA
group @; then
(a)  (Xp)gee 8 Ic-smgula? if and only if is interpolable,

() (X )peq 45 mot Iy-singular if and only if 4s minimal.

Proof. (a) If (X)), i Isingular then for each compact subset
C of a group G we have M = My_. Hence Ny = 0 and consequently
by Definition 5.1 (b) (X,),.s is interpolable. Conversely, if for each com-
pact subset ¢ My =0 then M = My_ and (M) P, = M. Hence (X)),
iy I,-singular. Aele

Of courge, part (b) may be proved in the same way. =

Corollary 5.4, Theorem 5.6 and Lemma 6.2 immediately yield the
following

COROLLARY 6.3. Let (X),.q be o g-variate stationary process over any
LCA group G, with the spectral measure F; then
(8) (Xg)geq 8 Iysingular if and only if for any matriz-valued function
PeP the Hellinger integral [ANpdNE(dF is zero or does not ewist.
7

(b) (Xp)peq over a discrete group is not I-singular if and only if the
Hollinger integral [dN,;dN ;/dF + 0.
I

Similarly Theorems 5.5 and 5.7 with Lemma 6.2 yield the following
multivariate analogue of the results obtained by Bruckner (cf. [1], Th. 4.1
and Th. 5.2)

CoROLLARY 6.4. Let G be a discrete Abelian group and (X)), ¢ ¢-
variate stationary process, where the spectral measure F is a.c. w.r.t. the
Haar measure dy on dual group I'; then

(a) (X)geq 18 Io-singular if and only if for any trig-polynomial W(y)
with matriz coefficients the integral [ W(y)(AF [dy)™ W (y)*dy is =ero or
does mot emist. o

(0} (Xy)geq is not Lo-singular if and only if the integral [tr(dR [dy)~ dy
exists. r

Added in proof. In the case of discrete ICA groups similar problems, con-
cerning interpolation of multivariate stationary processes, were considered also by
H. Salehi and J. K. Scheidt, Journal of Multivariate Analysis 2 (1972), pp.
307-331.
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