

Pour $1 < q < p \le +\infty$, on peut choisir d'après les lemmes 1 et 9

$$\varphi_{q,p} = \varphi_{q',p'}^*$$

$$\operatorname{avec} \frac{1}{q} + \frac{1}{q'} = \frac{1}{p} + \frac{1}{p'} = 1.$$

Le théorème 6 donne alors le

Corollaire 11. Pour $(p,q) \in [1,+\infty] \times]1,+\infty], \ \mathscr{C}_{q,p}$ est un espace strictement intermédiaire.

THÉORÈME 12. Le dual de $\mathscr{C}_{q,p}$ est $\mathscr{C}_{q',p'}$ avec $\frac{1}{q} + \frac{1}{q'} = \frac{1}{p} + \frac{1}{p'} = 1$ si $(p,q) \in [1, +\infty[\times]1, +\infty[$ ou $p=q=+\infty.$

Preuve. Le cas $1 < q \leqslant p < +\infty$ résulte des lemmes 1 et 9 et du théorème 4 après avoir constaté que la fonction de norme $\varphi_{q,p} = \varphi_{q',p}^*$ n'est pas équivalente à la φ -norme maximale. Pour ce faire, on s'appuie sur l'inégalité $\sum\limits_{i=1}^n i^{\frac{p}{q}-1} \leqslant \frac{q}{p} \left[(n+1)^{\frac{p}{q}} -1 \right]$ et sur l'équivalence de la norme $| \cdot |_{q,p}$, et de la quasi-norme $| \cdot |_{q,p}$.

Nous avons alors le

Corollaire 13. Pour $(p,q) \in]1, +\infty[\times]1, +\infty[\ \mathscr{C}_{q,p}$ est un espace réflexif.

Bibliographie

- P. L. Butzer, H. Berens, Semi-groups of operators and approximation, Berlin-Heidelberg-New York 1967.
- [2] A. P. Calderón, Spaces between L¹ and L∞ and the theorem of Marcinkiewicz, Studia Math. 26 (1966), p. 273-299.
- [3] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. of Math. Monographs 18, Amer. Math. Soc. 1965.
- [4] S. T. Kuroda, On a theorem of Weyl-von Neumann, Proc. Japan Acad. 34 (1958), p. 11-15.
- [5] C. Merucci, Interpolation dans Cω (H), C. R. Acad. Sci. Paris 274 (1972),
 p. 1163-1166.
- [6] Pham The Lai, L'analogue dans E^p des théorèmes de Convexité de M. Riesz et G. O. Thorin, Studia Math. 46 (1973), p. 111-124.
- [7] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Math. 27, 1960.
- [8] H. Triebel, Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen, Inv. Math. 4 (1967), p. 275-279.

U.E.R. DE MATHÉMATIQUES UNIVERSITÉ DE NANTES

Some remarks on the spectra of unitary dilations

b

PAUL S. MUHLY* (Iowa City, Iowa)

Abstract. We generalize several well-known theorems concerning the spectral behavior of the minimal unitary dilation of a single contraction to the setting of contractive representations of certain semigroups. We prove, for example, that if such a representation is completely non-unitary, then the spectral measure for its minimal unitary dilation is quasi-invariant under a certain flow. This generalize the fact that the spectral measure for the minimal unitary dilation of a single completely non-unitary contraction is mutually continuous with respect to Lebesgue measure on the circle.

§ 1. Introduction. Throughout this note Γ will denote a fixed dense subgroup of the real numbers R. We shall give Γ the discrete topology and we shall denote its subsemigroup of nonnegative elements by Γ_{+} . Also, we shall fix a contractive representation $\{T_{\nu}\}_{{\nu}\in\Gamma_{+}}$ of Γ_{+} on a (complex) Hilbert space \mathscr{H} and we shall let $\{U_{\gamma}\}_{\gamma\in\Gamma}$ be its minimal unitary dilation acting on a Hilbert space $\mathscr K$ containing $\mathscr H$. This means first that $\{T_{\gamma}\}_{\gamma\in\Gamma_{+}}$ is a family of linear operators on $\mathscr H$ such that $\|T_{\gamma}\|\leqslant 1$ for each γ in Γ_+ , $T_{\gamma+\sigma}=T_{\gamma}T_{\sigma}$, and such that T_0 is the identity operator on \mathcal{H} , and secondly, that $\{U_v\}_{v\in\Gamma}$ is a unitary representation of Γ on \mathcal{H} such that $T_{\gamma} = PU_{\gamma} | \mathcal{K}$ for all γ in Γ_{+} and such that the smallest subspace of \mathscr{K} containing \mathscr{H} and reducing $\{U_v\}_{v\in \Gamma}$ is \mathscr{K} itself. (Here P denotes the projection of \mathscr{K} onto \mathscr{H} , and the vertical bar denotes restriction here and always.) In this note we investigate some of the spectral properties of $\{U_{\nu}\}_{\nu\in\Gamma}$ and prove analogues of well-known theorems concerning the spectral behavior of the minimal unitary dilation of a single contraction (see [7], Chap. II, no 6). We note that Mlak [3] proved that the minimal unitary dilation of a contractive representation of I_{+} always exists and, consequently, we are not working in a vacuum.

The group dual to Γ will be denoted by G, and the pairing between the two will be denoted thus: $\langle \gamma, x \rangle$, $\gamma \in \Gamma$, $x \in G$. We shall write $\langle \gamma, \cdot \rangle$ for γ if we wish to regard γ as a function on G. For each t in R we shall write e_t for the element in G defined by the equation $\langle \gamma, e_t \rangle = e^{tt\gamma}$. The family $\{e_t\}_{t \in R}$ is a one-parameter subgroup of G and the action of R on G

^{*} This research was supported in part by the National Science Foundation.

it determines will be called the natural action. The spectral measure for $\{U_r\}_{r\in \Gamma}$, whose existence is guaranteed by the SNAG Theorem, will be denoted by E and we shall say that E is quasi-invariant under the natural action of \mathbf{R} on G provided that for each Borel set M in G such that E(M)=0 it happens that $E(M+e_t)=0$ as well for all t in \mathbf{R} . The representation $\{T_r\}_{r\in \Gamma_+}$ will be called completely non-unitary (c.n.u.) in case there is no nontrivial subspace \mathcal{M} of \mathcal{H} which reduces $\{T_r\}_{r\in \Gamma_+}$ such that $T_r|\mathcal{M}$ is unitary for all γ in Γ_+ . According to a theorem of Mlak ([3]; Theorem 2.2) every contractive representation of Γ_+ decomposes uniquely into the direct sum of a c.n.u. representation and a unitary representation. Our first theorem is an analogue of the result which states that the spectral measure of the minimal unitary dilation of a c.n.u. contraction is mutually absolutely continuous with respect to Lebesgue measure on the unit circle (see [7], Chap. II, Theorem 6.4).

THEOREM I. The spectral measure of the minimal unitary dilation of a c.n.u. contractive representation of Γ_+ is quasi-invariant.

In this paper all scalar measures are nonnegative, finite, regular, and Borel and so we will not append these adjectives when we refer to one. A scalar measure, just like a spectral measure, is called quasi-invariant in case the class of its null sets is preserved under the natural action of R on G. For each vector f in $\mathscr K$ we shall write v_f for the measure defined by the formula $v_f(M) = ||E(M)f||^2$ for all Borel sets M in G.

Our second theorem is an analogue of the second half of Théorème 6.4 on page 78 of [7].

Theorem II. If $\{T_{\gamma}\}_{\gamma \in \Gamma_{+}}$ is c.n.u., then ν_h is quasi-invariant for each nonzero vector h in \mathscr{H} .

The measure class of a scalar measure is the collection of all measures mutually absolutely continuous with respect to it and we shall say that a spectral measure on G belongs to the measure class of a scalar measure in case the two have the same null sets. A vector f in $\mathscr X$ is called a separating vector for $\{U_r\}_{r\in\Gamma}$ or for E in case E belongs to the measure class of v_r . It is well known that $\{U_r\}_{r\in\Gamma}$ need not have a separating vector, but that a necessary and sufficient condition that it does is that E belongs to the measure class of some scalar measure on G. Of course it is always possible to decompose $\mathscr M$ into a direct sum of a family of orthogonal subspaces which reduce $\{T_r\}_{r\in\Gamma_+}$ such that the minimal unitary dilation of the restriction of $\{T_r\}_{r\in\Gamma_+}$ to each has a separating vector. If v is a quasi-invariant measure on G, then for t in R, v_t will denote the measure defined by the formula $v_t(M) = v(M-e_t)$ for all Borel sets M in G, and the Radon-Nikodym derivative $\varrho(t,x) = \frac{dv_t}{dv}(x)$ will be referred to as the ϱ -function for v.

Our final theorem is an analogue of Proposition 6.5 on page 78 of [7]. THEOREM III. Suppose $\{T_{\gamma}\}_{\gamma\in\Gamma_{+}}$ is c.n.u. and that $\{U_{\gamma}\}_{\gamma\in\Gamma_{-}}$ has a separating vector. Let v be any scalar measure determining the measure class of E, let ϱ be its ϱ -function, and for each f in \mathscr{K} , let F_{f} denote the Radon-Nikodym derivative dv_{f}/dv . If h is a nonzero vector in \mathscr{H} , then v_{h} is supported by the set \mathfrak{S}_{h} consisting of all w in G such that the function of t

 $\log (F_h(x-e_t)\varrho(t,x))/1+t^2$ belongs to $L^1(\mathbf{R})$.

The proof of Theorem I is given in the next section while the proofs of Theorems II and III appear in Section 3. In Section 4 we present some corollaries.

32. The proof of Theorem I. To prove Theorem I it clearly suffices to show that when $\{T_{\gamma}\}_{\gamma \in \Gamma_{+}}$ is c.n.u., $\mathscr K$ can be written as the span of two (not necessarily orthogonal) subspaces which reduce $\{U_{\gamma}\}_{\gamma \in \Gamma}$ such that the restriction of E to each is quasi-invariant. We shall show that this is possible in the two lemmas to follow. But first we must recall certain facts about isometric representations of Γ_{+} ; we refer the reader to ([5], §2) for definitions of terms used but not defined here.

If $\{T_{\nu}\}_{\nu \in \Gamma_{+}}$ is an isometric representation of Γ_{+} , i.e., if $\|T_{\nu}f\|=\|f\|$ for all γ in Γ_{+} and all f in \mathscr{H} , then $\{U_{\nu}\}_{\nu \in \Gamma}$ is its minimal unitary extension and to say that $\{T_{\nu}\}_{\nu \in \Gamma}$ is c.n.u. is to say that $\{T_{\nu}\}_{\nu \in \Gamma}$ is pure. According to Theorem 0 of [5] every pure isometric representation of Γ_{+} can be decomposed uniquely into the direct sum of a shift representation and an evanescent isometric representation. The discussion at the end of § 2 in [5] (see the proof of [5], Proposition 6.6 also) shows that the spectral measure for the minimal unitary extension of a shift representation of Γ_{+} belongs to the measure class of Haar measure on G and so must be quasiinvariant. On the other hand, Theorem I of [5] (see in particular equation 3.3) shows that the spectral measure of the minimal unitary extension of an evanescent isometric representation of Γ_{+} is quasi-invariant. Therefore, taken together, these two facts constitute a proof of

LEMMA 2.1. The spectral measure of the minimal unitary extension of a pure isometric representation of Γ_+ is quasi-invariant.

If S is a subset of \mathscr{K} , we shall write $\mathfrak{M}_{\pm}(S)$ for the space $\bigvee_{\gamma \in \Gamma_{+}} U_{\pm \gamma} S$ and we shall write $\mathfrak{R}_{\pm}(S)$ for the space $\bigwedge_{\ell \in \Gamma_{+}} U_{\pm \gamma} \mathfrak{M}_{\pm}(S)$ where the symbols \bigvee and \bigwedge stand for span and intersection respectively. For either choice of sign, the space $\mathfrak{M}_{\pm}(S)$ is invariant under $\{U_{\pm \gamma}\}_{\gamma \in \Gamma_{+}}$ while both $\mathfrak{R}_{+}(S)$ and $\mathfrak{R}_{-}(S)$ reduce $\{U_{\gamma}\}_{\gamma \in \Gamma}$. Therefore, if $\mathfrak{R}_{\pm}^{+}(S) = \mathfrak{M}_{\pm}(S) \ominus \mathfrak{R}_{\pm}(S)$, then $\mathfrak{R}_{\pm}^{+}(S)$ is also invariant under $\{U_{\pm \gamma}\}_{\gamma \in \Gamma_{+}}$ and $\{U_{\pm \gamma}\}_{\mathfrak{R}_{\pm}^{+}(S)}\}_{\mathfrak{p} \in \Gamma_{+}}$ is a pure isometric representation of Γ_{+} . Finally, if $\mathfrak{R}_{\pm}(S) = \bigvee_{\gamma} U_{\gamma} \mathfrak{R}_{\pm}^{+}(S)$, then

 $\mathbf{R}_{\pm}(S)$ reduces $\{U_{\gamma}\}_{\gamma\in\Gamma}$ and $\{U_{\pm\gamma}|\mathbf{R}_{\pm}(S)\}_{\gamma\in\Gamma}$ is the minimal unitary extension of $\{U_{\pm\gamma}|\mathbf{R}_{\pm}^+(S)\}_{\gamma\in\Gamma_{\pm}}$. This observation together with Lemma 2.1 and the following lemma clearly completes the proof of Theorem I.

LEMMA 2.2. The representation $\{T_\gamma\}_{\gamma\in\Gamma_+}$ is c.n.u. if and only if $\mathscr{K}=\mathfrak{K}_+(\mathscr{H})\vee\mathfrak{K}_-(\mathscr{H}).$

Proof. Since $\{U_{\gamma}\}_{\gamma\in\Gamma}$ is the minimal unitary dilation of $\{T_{\gamma}\}_{\gamma\in\Gamma_{+}}$, $\mathscr{K}=\Re_{+}(\mathscr{H})\oplus\Re_{+}(\mathscr{H})=\Re_{-}(\mathscr{H})\oplus\Re_{-}(\mathscr{H})$. Therefore a vector f in \mathscr{K} is orthogonal to $\Re_{+}(\mathscr{H})\vee\Re_{-}(\mathscr{H})$ if and only if f belongs to $\Re_{+}(\mathscr{H})\wedge\Re_{-}(\mathscr{H})$. Hence the lemma follows from Theorem 3.1 of [3] which shows that $\Re_{+}(\mathscr{H})\wedge\Re_{-}(\mathscr{H})$ is the largest subspace \mathscr{M} of \mathscr{H} which reduces $\{T_{\gamma}\}_{\gamma\in\Gamma_{+}}$ such that $T_{\gamma}|\mathscr{M}$ is unitary for each γ in Γ_{+} .

§ 3. The proofs of Theorems II and III. Let \mathscr{M} be a subspace of \mathscr{X} and let $P_{\mathscr{M}}$ be the projection of \mathscr{X} onto \mathscr{M} . Then we shall call \mathscr{M} a spectral subspace for $\{U_{\gamma}\}_{\gamma\in\Gamma}$ in case $P_{\mathscr{M}}$ lies in the von Neumann algebra generated by $\{U_{\gamma}\}_{\gamma\in\Gamma}$. If $\{U_{\gamma}\}_{\gamma\in\Gamma}$ has a separating vector, and in particular if \mathscr{X} is separable, then it is well known that a spectral subspace for $\{U_{\gamma}\}_{\gamma\in\Gamma}$ can always be written as the range of $E(\mathscr{M})$ for some Borel set \mathscr{M} in G (see [1]). In the absence of separating vector, this is not always so.

IMMA 3.1. Let v be a measure on G and let \mathcal{K} , be the set of all vectors f in \mathcal{K} such that v_f is absolutely continuous with respect to v and let P_v be the projection of \mathcal{K} onto \mathcal{K}_v . Then \mathcal{K}_v is a spectral subspace for $\{U_v\}_{v\in \Gamma}$. If, in addition, v is quasi-invariant and if \mathcal{M} is any subspace of \mathcal{K} which is invariant under $\{U_v\}_{v\in \Gamma_+}$, then P_v and $P_{\mathcal{M}}$ commute where $P_{\mathcal{M}}$ is the projection of \mathcal{K} onto \mathcal{M} .

Proof. Basic spectral theory [1] tells us that \mathcal{K}_{r} is a spectral subspace for $\{U_{\nu}\}_{\nu\in\Gamma}$. Assume, now, that ν is quasi-invariant and that \mathcal{M} is invariant under $\{U_{\gamma}\}_{\gamma\in\Gamma_{+}}$. Since $\Re_{+}(\mathscr{M})$ and $\Re_{+}(\mathscr{M})$ reduce $\{U_{\gamma}\}_{\gamma\in\Gamma_{+}}$ P_{\star} commutes with the projections onto $\Re_{+}(\mathcal{M})$ and $\Re_{+}(\mathcal{M})$. Therefore, to prove the lemma, we may assume without loss of generality that $\{U_{\nu}|\mathscr{M}\}_{\nu\in\Gamma_{+}}$ is a pure isometric representation of Γ_{+} and that $\{U_{\nu}\}_{\nu\in\Gamma}$ is its minimal unitary extension. By Theorem 0 in [5] we may write M as $\mathcal{M}_s \oplus \mathcal{M}_e$ where \mathcal{M}_s and \mathcal{M}_e reduce $\{U_v | \mathcal{M}\}_{v \in \Gamma_+}$ so that $\{U_v | \mathcal{M}_s\}_{v \in \Gamma_+}$ (resp. $\{U_{\gamma} | \mathscr{M}_e\}_{\gamma \in \Gamma_+}$) is a shift representation of Γ_+ (resp. an evanescent isometric representation of Γ_+). Likewise, we may write $\mathscr{K} = \mathscr{K}_{\bullet} \oplus \mathscr{K}_{\bullet}$ where \mathscr{K}_s and \mathscr{K}_e reduce $\{U_{\gamma}\}_{\gamma\in\Gamma}$ so that $\{U_{\gamma}|\ \mathscr{K}_s\}_{\gamma\in\Gamma}$ (resp. $\{U_{\gamma}|\ \mathscr{K}_e\}_{\gamma\in\Gamma}$) is the minimal unitary extension of $\{U_{\gamma}|\ \mathcal{M}_s\}_{\gamma\in\Gamma_+}$ (resp. $\{U_{\gamma}|\ \mathcal{M}_e\}_{\gamma\in\Gamma_+}$). Since P_s commutes with the projections onto \mathscr{K}_s and \mathscr{K}_e , it suffices to consider the two cases $\mathcal{M} = \mathcal{M}_s$ and $\mathcal{M} = \mathcal{M}_e$ separately. If $\mathcal{M} = \mathcal{M}_s$, so $\mathscr{K} = \mathscr{K}_s$, then as we pointed out in Section 2, E belongs to the measure class of Haar measure σ on G. Since σ is ergodic under the natural action of **R** on G (i.e., the only invariant Borel sets are null or have null complements) and since v is quasi-invariant, it follows that either v belongs to the measure class of σ , in which case P_v is the identity on \mathscr{K} , or σ and v are singular, in which case $P_v = 0$. Therefore, in either case P_v commutes with $P_{\mathscr{M}}$. If, on the other hand, $\mathscr{M} = \mathscr{M}_e$, then by Theorem I of [5], $P_{\mathscr{M}}$ is a spectral projection of a strongly continuous unitary representation $\{S_t\}_{t\in\mathbb{R}}$ of \mathbb{R} on \mathscr{K} such that $S_t^*E(M)S_t = E(M-e_t)$ for all Borel sets M in G and all t in \mathbb{R} . Therefore, if f is in \mathscr{K}_v and if M is a null set for v, then this equation and the fact that v is quasi-invariant imply the following equation which shows that P_v commutes with $\{S_t\}_{t\in\mathbb{R}}$.

$$\nu_{S,f}(M) = \|E(M)S_tf\|^2 = \|S_t^*E(M)S_tf\|^2 = \|E(M - e_t)f\|^2 = \nu_f(M - e_t) = 0.$$

Consequently, P_r commutes with $P_{\mathscr{M}}$ and the proof is complete.

COROLLARY 3.2. Let P_r be as in Lemma 3.1 with r quasi-invariant. Then P_r commutes with the projection onto \mathscr{H} .

Proof. This follows from Lemma 3.1 and the fact that \mathcal{X} may be written as the orthogonal difference of two subspaces which are invariant under $\{U_{\nu}\}_{\nu \in \Gamma_{+}}$ ([6], Lemma 0).

The proofs of Theorems II and III are based primarily upon our next lemma which is an analogue of the following well-known and often used fact: Suppose for the moment that U is a unitary operator on the Hilbert space $\mathscr K$ and that $\mathscr M$ is an invariant subspace for U such that $U \mid \mathscr M$ is a pure isometry. Then for each nonzero vector k in $\mathscr M$, v_k is mutually absolutely continuous with respect to Lebesgue measure m on the unit circle and $\log(dv_k/dm)$ lies in $L^1(m)$. In order to prove the lemma, we need some additional notation and terminology. We shall denote the space of functions f on R such that f(t)/(1-it) belongs to the Paley-

Wiener class by $H^2\left(\frac{dt}{\pi(1+t^2)}\right)$. If ν is a quasi-invariant measure on G and if $\theta(t,x)$ is a unimodular function on $\mathbf{R}\times G$, then we shall call $\theta(t,x)$ a cocycle in case (i) when regarded as a function from \mathbf{R} into $L^2(\nu)$ it is continuous and (ii) $\theta(t_1+t_2,x)=\theta(t_1,x)\theta(t_2,x-e_{t_1})$ a.e. (ν) for each pair of numbers t_1 and t_2 in \mathbf{R} . Finally, if k is a vector in $\mathscr K$, then we shall write $\mathfrak M_{\pm}(k)$, $\mathfrak K_{\pm}(k)$... for $\mathfrak M_{\pm}(\{k\})$, $\mathfrak K_{\pm}(\{k\})$, etc.

LIEMMA 3.3. Let \mathcal{M} be a subspace of \mathcal{H} such that $U_{\gamma} \mathcal{M} \subseteq \mathcal{M}$ for each γ in Γ_+ and such that $\{U_{\gamma} | \mathcal{M}\}_{\gamma \in \Gamma_+}$ is a pure isometric representation of Γ_+ . Then for each nonzero k in \mathcal{M} , v_k is quasi-invariant and as a function of t, $(\log \varrho_k(t,x))/(1+t^2)$ belongs to $L^1(\mathbf{R})$ a.e. (v_k) where $\varrho_k(t,x)$ is the ϱ -function for v_k .

Proof. The hypothesis implies that $\mathfrak{M}_{+}(k) = \mathfrak{K}_{+}^{+}(k)$ and so we may restrict our attention to the pure isometric representation $\{U_{\gamma}|\ \mathfrak{K}_{+}^{+}(k)\}_{\gamma\in\Gamma_{+}}$ of Γ_{+} and to its minimal unitary extension $\{U_{\gamma}|\ \mathfrak{K}_{+}(k)\}_{\gamma\in\Gamma_{-}}$. Since k is

a cyclic vector for $\{U_{\gamma}|\ \Re_{+}(k)\}_{\gamma\in\Gamma}$, $E|\ \Re_{+}(k)$ and v_{k} are mutually absolutely continuous and so, by Lemma 2.1, v_{k} is quasi-invariant. Also, since k is a cyclic vector for $\{U_{\gamma}|\ \Re_{+}(k)\}_{\gamma\in\Gamma}$, the map which assigns to each finite linear combination $\sum c_{\gamma}U_{\gamma}k$ in $\Re_{+}(k)$ the sum $\sum c_{\gamma}\langle\gamma,\cdot\rangle$ in $L^{2}(v_{k})$ extends to a Hilbert space isomorphism W from $\Re_{+}(k)$ onto $L^{2}(v_{k})$ such that $WU_{\gamma}W^{-1}$ is the operator of multiplication by the function $\langle\gamma,\cdot\rangle$ on $L^{2}(v_{k})$. When convenient, we shall identify $\Re_{+}(k)$ with $L^{2}(v_{k})$, $\{U_{\gamma}\}_{\gamma\in\Gamma}$ with $\{WU_{\gamma}W^{-1}\}_{\gamma\in\Gamma}$, and $\mathfrak{M}_{+}(k)$ with $W\mathfrak{M}_{+}(k)$.

Let σ denote Haar measure on G as before, let P_{σ} be the projection of $\mathscr X$ onto the space of all f in $\mathscr X$ such that $v_f \leqslant \sigma$, write $k' = P_{\sigma}k$ and write k'' = k - k'. Then by Lemma 3.1, k' and k'' belong to $\mathscr M$ and so by what was just proved, $v_{k'}$ and $v_{k''}$ are quasi-invariant. Since σ is ergodic, $v_{k'}$ and σ belong to the same measure class and therefore, since $v_{k'}$ and σ are supported on disjoint Borel sets, it suffices to consider the following two cases separately in order to complete the proof.

Case 1. ν_k and σ are mutually absolutely continuous.

Write w for the Radon–Nikodym derivative $dv_k/d\sigma$ and note that by the chain rule and the fact that σ is invariant we have $\varrho_k(t,x)=w(x-e_l)/w(x)$. Now, in $L^2(v_k)=L^2(wd_\sigma)$, $\mathfrak{M}_+(k)$ is the span of the set of functions $\{\langle \gamma, \cdot \rangle \}_{\gamma \in \Gamma_+}$ and since $\mathfrak{M}_+(k)$ is not all of $L^2(v_k)$, a famous theorem of Helson and Lowdenslager ([2], Theorem 5) implies that as a function of t, $\log w(x-e_l)/(1+t^2)$ belongs to $L^1(\mathbf{R})$ a.e. (σ) . Therefore, in this case, $\log \varrho_k(t,x)/(1+t^2)$ belongs to $L^1(\mathbf{R})$ a.e. v_k .

Case 2. ν_k and σ are mutually singular.

In this case, Proposition 6.7 of [5] implies that $\{U_{\nu}| \mathfrak{M}_{+}(k)\}_{\nu \in \Gamma_{+}}$ s an evanescent isometric representation of Γ_{+} and so by the discussion at the end of § 5 in [5] we may assert that there is a cocycle $\theta(t, x)$ such that $\mathfrak{M}_{+}(k)$ consists of all functions f in $L^{2}(\nu_{k})$ with the property that

as functions of
$$t$$
 $\bar{\theta}(t,x)\bar{f}(x-e_t)\varrho_k^{\dagger}(t,x)$ belongs to $H^2\left(\frac{dt}{\pi(1+t^2)}\right)$ a.e. (v_k) .

By basic Hardy space theory then, we find that for each f in $\mathfrak{M}_{+}(k)$, $\log(|f(x-e_{t})|^{2}\varrho_{k}(t,x)|/(1+t^{2})$ belongs to $L^{1}(\mathbf{R})$ as a function of t a.e. (ν_{k}) . But k belongs to $\mathfrak{M}_{+}(k)$ and in $L^{2}(\nu_{k})$, k is the constant function 1. Thus, as was promised, $\log(\varrho_{k}(t,x))/(1+t^{2})$ belongs to $L^{1}(\mathbf{R})$ as a function of t a.e. ν_{k} , and the proof is complete.

We are now in a position to present the

Proof of Theorem II. We shall prove more than we need in order to obtain Theorem II; however, the excess will be used in the proof of Theorem III. Given a nonzero vector h in \mathscr{H} our goal is to produce four vectors h_1, h_2, k_1 and k_2 with the following properties:

(3.1.a) $h = h_1 + h_2$.

(3.1.b) v_{k_1} and v_{k_2} are mutually singular.

(3.1.c)
$$\mathfrak{M}_{+}(k_1) = \mathfrak{R}_{+}^{+}(k_1), \quad \mathfrak{M}_{-}(k_2) = \mathfrak{R}_{-}^{+}(k_2).$$

(3.1.d) For i=1,2, $h_i=P_{k_i}h$ while $v_{k_i}(M)\leqslant v_{h_i}(M)$ for all Borel sets M in G (where, for the remainder of this section, we shall write P_{k_i} (resp. P_{h_i}) for the projection of $\mathscr K$ onto the space of vectors f such that $v_f\leqslant v_{k_i}$ (resp. $v_f\leqslant v_{h_i}$), i=1,2.)

Of course we allow the possibility that one of the pairs (h_i, k_i) , i=1, 2, may consists of zero vectors. Observe that (3.1.c) and Lemma 3.3 imply that each ν_{k_i} is quasi-invariant while (3.1.d) and Lemma 3.1 show that $\nu_h = \nu_{h_1} + \nu_{h_2}$. Since (3.1.d) implies that each ν_{h_i} is equivalent to ν_{k_i} , we may conclude that each ν_{h_i} is quasi-invariant and so ν_h is quasi-invariant. Thus if we can produce the four desired vectors the proof of Theorem II will be complete.

By Theorem 3.1 of [3] one or the other of the spaces $\mathfrak{A}_+(h)$ and $\mathfrak{A}_-(h)$ must be different from the zero space and so we may assume without loss of generality that $\mathfrak{A}_+(h) \neq \{0\}$. Let Q_1 be the projection of $\mathscr K$ onto $\mathfrak{A}_+(h)$ and let $k_1 = Q_1h$. Then $k_1 \neq 0$ by assumption and a moment's reflection reveals that

(3.2.a)
$$\mathfrak{M}_{+}(k_{1}) = \mathfrak{K}_{+}^{+}(k_{1}) = \mathfrak{K}_{+}^{+}(k)$$

and

(3.2.b)
$$\Re_{+}(k_1) = \Re_{+}(k).$$

Equation (3.2.a) and Lemma 3.3 imply that ν_{k_1} is quasi-invariant and equation (3.2.b) implies that $Q_1 \leqslant P_{k_1}$. Therefore, if $h_1 = P_{k_1}h$ then for each Borel set M in G we see that $\nu_{k_1}(M) = \|E(M)Q_1h\|^2 = \|E(M)Q_1P_{k_1}h\|^2 = \|QE(M)h_1\|^2 \leqslant \|E(M)h_1\|^2 = \nu_{h_1}(M)$.

Let $h'=h-h_1$ and note that since v_{k_1} is quasi-invariant, h_1 and h' lie in $\mathscr H$ by Corollary 3.2. Also since v_{k_1} is quasi-invariant, Lemma 3.1 implies that $\mathfrak M_+(h)=\mathfrak M_+(h_1)\oplus\mathfrak M_+(h')$ while $\mathfrak R_+(h)=\mathfrak R_+(h_1)\oplus\mathfrak R_+(h')$ and, consequently, $\mathfrak R_+^+(h)=\mathfrak R_+^+(h_1)\oplus\mathfrak R_+^+(h')$. But since $Q_1\leqslant P_{k_1},\ k_1=Q_1h_1$ and so $\mathfrak R_+^+(h_1)=\mathfrak R_+^+(h_1)=\mathfrak R_+^+(h)$; or equivalently, $\mathfrak R_+^+(h')=\{0\}$ and $\mathfrak M_+(h')=\mathfrak R_+(h')$. Since h' belongs to $\mathscr H$ this, along with Theorem 3.1 of [3] implies that $\mathfrak R_-(h')\neq\{0\}$. Let Q_2 be the projection of $\mathscr H$ onto $\mathfrak R_-(h')$ and let $h_2=Q_2h'$. Then $Q_2\leqslant I-P_{k_1}$ so that v_{k_2} and v_{k_1} are mutually singular and we have the following equations:

$$\mathfrak{M}_{-}(k_2) = \mathfrak{K}_{-}^{+}(k_2) = \mathfrak{K}_{-}^{+}(h'),$$

and

(3.3.b)
$$\Re_{-}(k_2) = \Re_{-}(h').$$

Equation (3.3.a) and Lemma 3.3 imply that ν_{k_2} is quasi-invariant and equation (3.3.b) implies that $Q_2 \leq P_{k_2}$. Therefore, as before, if we set

 $h_2=P_{k_2}h'$, then since r_{k_1} and r_{k_2} are mutually singular $h_2=P_{k_2}h$ and the following inequality is valid for all Borel sets M in G,

$$\begin{split} \nu_{k_2}(M) &= \|E(M)Q_2h'\|^2 = \|Q_2E(M)P_{k_2}h'\|^2 \\ &\leq \|E(M)h_2\|^2 = \nu_{h_2}(M). \end{split}$$

Thus to complete the proof, we need to show that $h=h_1+h_2$. To this end, let $h''=h-(h_1+h_2)=h'-h_3$. Then by Corollary 3.2, h'' belongs to $\mathscr H$ and by what was shown above, h'' also belongs to $\mathfrak R_+(h)$. Hence, since $\{T_r\}_{r\in \Gamma_+}$ is c.n.u. by hypothesis, $\mathfrak R_+(h)\wedge\mathfrak R_-(h)=\{0\}$ by Theorem 3.1 of [3], and so all we need to show is that h'' belongs to $\mathfrak R_-(h)$. Since r_{k_1} and r_{k_2} are mutually singular, P_{k_1} and P_{k_2} are orthogonal, and since the two measures are quasi-invariant, Lemma 3.1 allows us to write the following two equations

$$\begin{array}{lll} \mathfrak{M}_{-}(h) &= \mathfrak{M}_{-}(h_{1}) \oplus \mathfrak{M}_{-}(h') \\ &= \mathfrak{M}_{-}(h_{1}) \oplus \mathfrak{M}_{-}(h_{2}) \oplus \mathfrak{M}_{-}(h''), \\ \mathfrak{N}_{-}(h) &= \mathfrak{N}_{-}(h_{1}) \oplus \mathfrak{N}_{-}(h') \\ &= \mathfrak{N}_{-}(h_{1}) \oplus \mathfrak{N}_{-}(h_{2}) \oplus \mathfrak{N}_{-}(h''). \end{array}$$

Hence it suffices to show that $\mathfrak{M}_{-}(h'')=\mathfrak{R}_{-}(h'')$. But $Q_2\leqslant P_{k_2}$ and so $\mathfrak{R}_{-}^+(h_2)=\mathfrak{R}_{-}^+(h_2)=\mathfrak{R}_{-}^+(h')$. Therefore by equations (3.4) and (3.5) we find that $\mathfrak{M}_{-}(h')=\mathfrak{R}_{-}^+(h')\oplus\mathfrak{R}_{-}(h')=\mathfrak{R}_{-}^+(h_2)\oplus\mathfrak{R}_{-}(h_2)\oplus\mathfrak{R}_{-}(h'')=\mathfrak{M}_{-}(h_2)\oplus\mathfrak{R}_{-}(h'')$. Whence $\mathfrak{R}_{-}(h'')=\mathfrak{M}_{-}(h'')$ and the proof is complete.

Proof of Theorem III. We continue to use the notation and auxiliary results developed in the proof of Theorem II. Let $\mu = \nu_{k_1} + \nu_{k_2}$ and observe that the properties (3.1) imply that μ is quasi-nant, equivalent to ν_h , and $\mu(M) \leqslant \nu_h(M)$ for all Borel sets M. Furthermore, if F is the Radon–Nikodym derivative $d\mu/d\nu$, then $F = F_{k_1} + F_{k_2}$ and by the chain rule for Radon–Nikodym derivatives we find that the ϱ -function for μ can be written as $F(x-e_i)\varrho(t,x)/F(x)$. Hence by Lemma 3.3 and the properties (3.1), it follows that as a function of t, $\log (F(x-e_i)\varrho(t,x))/((1+t^2))$ belongs to $L^1(R)$ a.e. ν on $\mathfrak{S}_{k_1} \cup \mathfrak{S}_{k_2}$ and $\mathfrak{S}_{k_1} \cup \mathfrak{S}_{k_2}$ supports μ . But μ is equivalent to ν_h , so $\mathfrak{S}_{k_1} \cup \mathfrak{S}_{k_2}$ supports ν_h , and since $F_h = F$, $\nu_h(\mathfrak{S}_h \triangle (\mathfrak{S}_{k_1} \cup \mathfrak{S}_{k_2})) = 0$. It follows that \mathfrak{S}_h supports ν_h and that the proof is complete.

§ 4. Corollaries. As our first corollary we give another proof of the following result due to Mlak ([4], Theorem 3).

COROLLARY 4.1. If $\{T_r\}_{r\in\Gamma_+}$ is a contractive representation of Γ_+ which is not a unitary representation, then the closed support of E is all of G.

Proof. By Theorem 2.2 of [3], it suffices to assume that $\{T_y\}_{y\in \Gamma_+}$ is c.n.u. Then E is quasi-invariant by Theorem I and so the closed support of E is invariant under the natural action of E0 on E0. But it is well known

that the only non-empty closed invariant set of G is G itself and so the proof is complete.

The spectral measure E is called erogdic provided that if M is any Borel set in G which is invariant under the natural action of R on G, then E(M) is the identity or the zero operator. We note that the proof of Theorem III in [5] shows that if E is quasi-invariant and ergodic, then E has a separating vector.

The proofs of Lemma 3.1 and Corollary 3.2 show that if M is an invariant Borel set, then $E(M)\mathcal{H}$ reduces $\{T_{\gamma}\}_{\gamma\in\Gamma_{+}}$ and therefore we have

Corollary 4.2. If $\{T_{\gamma}\}_{\gamma\in\Gamma_{+}}$ is irreducible then E is ergodic.

The analysis in [5] shows that the converse of this corollary is far from being true.

We conclude with the following corollary which contains Theorem 1 of [4] as a special case.

COROLLARY 4.3. Let the notation be as in Theorem III and in addition to the hypotheses there, assume that v is ergodic. Then $v(G \setminus \mathfrak{S}_h) = 0$ for each nonzero vector h in \mathscr{H} .

Proof. Indeed, Theorem III implies that $\nu(\mathfrak{S}_h) > 0$ and since \mathfrak{S}_h is easily seen to be invariant, the result follows from the ergodicity of ν .

References

- P. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea, New York, 1951.
- [2] H. Helson and D. Lowdonslager, Prediction theory and Fourier series in several variables, II, Acta Math. 106 (1961), pp. 175-213.
- [3] W. Mlak, Unitary dilations in case of ordered groups, Ann. Polon. Math. 17 (1966), pp. 321-328.
- [4] On semi-groups of contractions in Hilbert spaces, Studia Math. 26 (1966), pp. 263-272.
- P. Muhly, A structure theory for isometric representations of a class of semigroups,
 J. Reine. Angew. Math., Band 255, pp. 135-154.
- [6] D. Sarason, On spectral sets having connected complement, Acta Sci. Math. 26 (1965), pp. 289-299.
- [7] B. Sz.-Nagy and C. Foias, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Akademiai Kiado, Budapest 1967.

Received November 13, 1972 (640)