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Pour 1 <g<p < +o0, on peut choisir d’aprés les lemmes 1 et 9
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Preuve. Le cas 1 < ¢ < p < + oo résulte des lemmes 1 et 9 et du
théoréme 4 aprés avoir constaté que la fonction de norme Pap = Py

.n’est pas équ1valente 4 la @- norme maximale. Pour ce faire, on s’appuie

. . - =1
sur D’inégalité Z zg <- [(%+l) —1] et sur I’équivalence de la norme
i=1
| I%m, et de la quasi-norme |
Nous avons alors le
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Some remarks on the spectra of umitary dilations

by
PAUL 8. MUHLY* (Iowa City, lowa)

Abstract. We generalizo several well-known theorems concerning the spectral
behavior of the minimal unitary dilation of a single contraction to the setting of
contractive representations of cerfain semigroups. We prove, for example, that if
such a representation is completely non-unitary, then the spectral measure for ifis
minimal unitary dilation is quasi-invariant under a certain flow. This generalizes
the fact that the spectral measure for the minimal unitary dilation of a single
completely non-unitary contraction iz mutually continuous with respect to Lebes-
gue measure on the circle.

§ 1. Introduction. Throughout this note 1" will denote a fixed dense
subgroup of the real numbers R. We shall give I" the diserete topology
and we shall denote its subsemigroup of nonnegative elements by I7..
Also, we shall fix a contractive representation {1'},.r, of I', on a (com-
plex) Hilbert space # and we shall let {U,},.r be its minimal unitary
dilation acting on a Hilbert space 4 containing s#. This means first
that {l’w}yw L I8 B family of linear operators on s such that [|7,[ <1
for each y in I, , T, = T,T,, and such that T, is the identity operator
on #, and secondly, that {U,,}VE r is & unitary representation of I" on %"
such that 7', = PU,|# for all y in I', and such that the smallest sub-
space of " containing #° and reduecing {U,},.p is # itself. (Here P denotes
the projection of /" onto #, and. the vertical bax denotes restriction here
and always.) In this note we investigate some of the spectral propertics
of {U,},.r and prove analogues of well-known theorems concerning the
spectral hehavior of the minimal unitary dilation of a single contraction.
(see [7], Chap. 1T, n° 6). 'We note that Mlalk [3] proved that the minimal
unitary dilation of & contractive reprosontation of I'y always existy and,
consequently, we are not working in a vacuum.

The group dual to I" will be denoted by @, and the pairing between
the two will be denoted thus: {y,#), yel, 2¢ @ Wo shall write {y, +>
for y if wo wish to vegard y as a function on & For each ¢ in R woe shall
write ¢ for the clement in G definod by the equation. {y, ¢ = %, The
family {},.r 15 a one-parameter subgroup of ¢ and the action of R on ¢

* This vosearch was supported in part by the National Seience Foundation.
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it determines will be called the natural action. The spectral measure for
{U,},er, Whose existence is guaranteed by the SNAG Theorem, will be
denoted by ¥ and we shall say that & is quasi-invariant under the natural
action of B on @ provided that for each Borel set M in & such that B (M) = 0
it happens that H(M+¢) = 0 as well for all ¢ in R. The representation
{T,)}yer .. Will be called completely non-unitary (c.n.u.) in case there is no
nontrivial subspace ./ of # which reduces {T,},.r . such that 7|4 is
unitary for all y in I, . According to a theorem of Mlak ([3]; Theorem 2.2)
every contractive representation of I', decomposes uniquely into the
direct sum of a c.n.u. representation and a unitary representation. Our
first theorem is an analogue of the result which states that the spectral
measure of the minimal unitary dilation of a c.n.u. contraction is mutunally
absolutely continuous with respeet to Lebesgue measure on the unit
circle ‘(see [7], Chap. IT, Theorem 6.4).

TurorEM I. The spectral measure of the minimal unitary dilation
of & c.nu. contractive representation of I', is quasi-invariant. '

In this paper all sealar measures are nonnegative, finite, regular,
and Borel and so we will not append these adjectives when we refer to
one. A scalar measure, just like a spectral measure, is called quasi-invariant
in case the class of its null sets is preserved under the natural action of R
on &. For each vector f in 2" we shall write », for the measure defined by
the formula »,(M) = | B(M)f|]* for all Borel sets M in G-

Our second theorem is an analogue of the second half of Théoréme
6.4 on page 78 of [7].

TeeorEM IT. If {T.},.r . 8 CM.%., then ¥, 18 quasi-invariant for each
nonzero vector h in H.

The measure class of a scalar measure is the collection of all measures
mutually absolutely continuous with respect to it and we shall say that
a spectral measure on @ belongs to the measure class of a sealar measure
in case the two have the same null sets. A vector fin # is called a separating
wvector for {U,},.r or for B in case I belongs to the measure class of Vi
It is well known that {U,},.x need not have a separating vector, but
that a necessary and sufficient condition that it does is that Z belongs
to the measure class of some scalar measure on ¢. Of course it is always
possible to decompose o# into a divect sum of a family of orthogonal
subspaces which reduce {T,},.r . Such that the minimal unitary dilation
of the restriction of {T,},.r . to each has a separating vector. If » is a
quasi-invariant measure on ¢, then for ¢ in R, v, will denote the measure
defined by the formula »(M) = »(M —¢,) for all Borel sets I in G, and

d
the Radon—Nikodym derivative o(t, #) = —;i(m) will be referred to as
the o-function for v. w
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Our final theorem is an analogue of Proposition 6.5 on page 78 of [7].
ToEorEM III. Suppose {T,},.r 4 18 e.nu. ond that {U,},.p has & sepa-
rating vector. Let v be any scalar measure determining the measure class
of B, let o be its o-function, and for each f in A, let F; denole the Radon—
Nikodym derivative dyvy/dv. If b is a nonzero vector in 3, then v, is supported
by the set S, consisting of all @ in G such that the function of ¢
log (Fy(@—a)e(t, m))/l +
belongs to L'(R).
The proof of Theorem I is given in the next section while the proofs
of Theorems IT and ITT appear in Section 3. In Section 4 we present some
corollaries.

3 2. The proof of Theorem I. To prove Theorem I it clearly suffices
to show that when {I\},.r_is e.n.u., # can be written as the span of
two (not necessarily orthogonal) subspaces which reduce {U,},., such
that the restriction of I -to each is quasi-invariant. We shall show that
this is posgible in the two lemmas to follow. But first we must recall
certain facts about isometric representations of I'y; we refer the reader
to ([6], §2) for definitions of terms used but not defined here.

It {T,}ycr, is an isometric representation of Iy, i.e., if |T,fll = |IfIl
for all y in I", and all f in s#, then {U,}, ., is its minimal unitary extension
and to say that {T,},.r, 18 cnn. is to say that {I,},.r is pure. According
to Theorem 0 of [5] every pure isometric representation of I'y can be
decomposed uniquely into the direct sum of a ghift representation and
an evanescent isometric representation. The discussion at the end of §2
in [B] (see the proof of [5], Proposition 6.6 also) shows that the spectral
measure for the minimal unitary extension of a shift representation of I",
belongs to the measure clags of Haar measure on G and so must be quasi-
invariant. On the other hand, Theorem I of [B] (see in particular equation
3.3) shows that the spectral measure of the minimal unitary extension
of an evanescent isometrie representation of 17, is quasi-invariant. There-
fore, taken together, these two facts congtitute o proof of

Lvma 2.1, The speciral measure of the minimal unitary ewtension of
a pure dsometric reprosentation of Iy 48 quasi-invariant.

It 8 s gubset of 2, wo ghall write S8, (8) for the sp:»n(mw\[{ Uy, 8

+
and we shall write R, (§) for the space /F\ UM, (8) where the symbols
V and A stand for span and 'ixnmrsecti’flnl ;'espectiwaly. For cither choice
of sign, the space M, () is invariant under {U,,}.r, While both R, (8)
and R_(8) reduce {U,},p. Therefore, if KT (8) = Wi, (§)YSRL(N), then
KI(8) is also invariant under {U:H,},,wl_ and {U ., 18T (8)}y. I, is a pure
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K. (8) reduces {U,},.r and {U,, IR, (8)},.r is the mimmal unitary exten-
sion of {U,, |RL(8)}yer, - This observation together with Lemma 2.1 and
the following lemma clearly completes the proof of Theorem I.

Levwa 2.2. The representation {T,},.p, is on.u. if and only if
A =R, () R_().

Proof. Since {U,},.r is the minimal unitary dilation of {T\yer, s
A =R, (H)DK, (#) = K_(#)DR_ (). Therefore a vector f in A is
orthogonal to &, (#)v R_(s#) if and only if f belongs to R, () A R_(#).
Hence the lemma follows from Theorem 3.1 of [3] which shows that
R (#)AR_(#) is the largest subspace .# of # which reduces {T,},.r 5
such that T,|.# is unitary for each y in I .

§ 3. The proofs of Theorems II and III. Let .# be a subspace of 4
and let P, be the projection of 2 onto .#. Then we shall call .# a spectral
subspace for {U,},.r in case P, lies in the von Neumann algebra generated
by {U,lyer- If {U,},r has a separating vector, and in particular if o
is separable, then it is well known that a spectral subspace for {U,},.r
can always be written as the range of E (M) for some Borel set M in G
(see [1]). In the absence of separating vector, this is not always so.

- LemuaA 3.1. Let v be a measure on G and let 4, be the set of all vectors f
in A" such that vy is absolutely continuous with respect to v and let P, be the
projection of o onto A,. Then A, is a spectral subspace for {U,},.r. If,
i addition, v is quasi-invariant and if 4 s any subspace of A which is
invariant under {U,},.r , then P, and P, commute where P, is the pro-
jection of A" onto A. )

Proof. Basgic spectral theory [1] tells us that o, is a spectral sub-
space for {U,},.r. Assume, now, that » is quasi-invariant and that
is invariant under {U.},.r o Since R, () and K, (A) reduce {U,},.r,
P, commutes with the projections onto R, (.#) and K, (). Therefore,
to prove the lemma, we may assume without loss of generality that
{U,|#}yer, 18 a pure isometric representation of I', and that {U,},.r
is its minimal unitary extension. By Theorem 0 in [5] we may write .
as My DM, where 4, and 4, reduce {U,| M}yer, 8o that {U,] Mshyer,
(vesp. {U,| #o}yer, ) is a shift representation of I', (vesp. an evanescent
isometric representation of I',). Likewise, we may write & = #,@® X,
where %7, and A7, reduce {U,},.r 50 that {U,| & },cp (vesp. {U,| o' }yer)
is the minimal unitary extension of {U,| #3},.r o (esp. {U,| #e}yer,).
Since P, commutes with the projections onto 4, and &, it suffices to
consider the two cases M = #, and A = A, sepamtelj If 4 = A,
80 A" = Ag, then as we pointed out in Section 2, E belongs to the measure
class of Haar measure ¢ on @. Since ¢ is ergodic under the natural action
of R on @ (i.e., the only invariant Borel sets ave null or have null comple-
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ments) and since » is quasi-invariant, it follows that either » belongs to
the meagure class of o, in which case P, is the identity on o7, or ¢ and v
are singular, in which case P, = 0. Therefore, in either case P, commutes
with P,. If, on the other hand, # = ,, then by Theorem I of [B],
P, is a spectral projection of a strongly continuous unitary representation
{8}er of R on " such that S;H(M)S, = B(IM ~—e,) for all Borel sets M
in @ and all ¢ in. R. Therefore, if f iy in o, and if M is a'null set for », then
thig equation and the fact that » is quasi-invariant imply the following
equation which shows that P, commutes with {S}x.

vg(M) = |B(M)SfIP = |7 B(M)SfI* = | B (M ~e)f |} = v (M—g) = 0.

Consequently, P, commutes with P, and the proof is complete.

COROLLARY 3.2. Let P, be as in Lemma 3.1 with » quasi-invariant.
Then P, commutes with the projection onto .

Proof. This follows from Lemma 3.1 and the fact that s# may be
written ag the orthogonal difference of two subgpaces which are invariant
under {U,},cr, ([6], Lemma 0).

The proofs of Theorems IT and ITI are based primarily upon our
next lemma which is an analogue of the following well-known and often
used. fact: Suppose for the moment that U is a unitary operator on the
Hilbert space # and that 4 is an invariant subspace for U such that
Ul 4 is a pure isometry. Then for each nonzero vector & in ., v, is mutun-
ally absolutely continuous with respect to Lebesgue measure m on the
unit circle and log(dv,/dm) lies in L'(m). In order to prove the lemma,
we need some additional notation and terminology. We shall denote
the space of functions f on R such that f(#)/(1—it) belongs to the Paley—

Wiener class by H? (;c.(iﬂ—l?——t—ﬁ) If » is a quasi-invariant measure on &
and if 0(¢, @) is & unimodular function on R x @, then we shall call 6(¢, )
a cocycle in case (i) when regarded as o function from R into L*(v) it is
continuous and (i) 0(8 Ay, @) == 0(h, )0(ty, 2~¢;) e (») for cach
pair of numbers , and, ¢, in R. Tinally, if & is & vector in &4, then wo shall
write IRy, (&), K, (k) ... for M, ({k}), K, ({F}), ete.

Loavma 8.3. Let 4 be a subspace of A such that U, # < M for cach
yin Iy and such that {U,| Myper,, 18 @ pure isomelric representation of 1°, .
Then for each noncero T in M, w, s quasi-invariant and as o function of t,
(log a4 (t, @) /(1 1) belongs to L' (R) a.e. (vg) where gy(t, ) is the o-function
for v,

Proof. The hypothesis implies that 9, (k) == KL (k) and so we may
restriet our attention to the pure isometric representation {U,| KT ()}, r,
of I', and to its minimal unitary extension {U,| &, (%)},r. Since & is
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a cyclic vector for {U,| &, (k)},cr, Bl K, (k) and v, are mutually absolu-
tely continuous and so, by Lemma 2.1, v, is quasi-invariant. Also, since &
is & eyclic vector for {U,| &, (k)},.r, the map which assigns to each finite
linear combination M'e, U,k in &, (k) the sum Ye,(y, - in I?(v,) extends
to a Hilbert space isomorphism W from K, (k) onto I*(»,) such that
WU, W= is the operator of multiplication by the function {y, > on
L*(v;). When convenient, we shall identify &, (k) with L*(s,), {Uer
with {WU,W=},.r, and DM, (k) with WD, (k).

Let o denote Haar measure on & as before, let P, be the projection
of A" onto the space of all f in & such that vy <€ 0, write &’ = P,k and
write & = k—%'. Then by Lemma 3.1, %' and %" belong to .# and so
by what was just proved, v, and »,. are quasi-invariant. Since o is ergodie,
v and o belong to the same measure class and therefore, since vy and o
are supported on digjoint Borel sets, it suffices to consider the following
two cases separately in order to complete the proof.

Case 1. v, and ¢ are mutually absolutely continuous.

‘Write w for the Radon-Nikodym derivative dy,/do and note that by the
chain rule and the fact that o is invariant we have g(t, #) = w(z— &) Jw ().
Now, in I*(w) = I*(wd,), M, (k) is the span of the set of functions
Ky Dhyer . and since M, (k) is not all of I*(»), a famous theorem of
Helson and Lowdenslager ([2], Theorem b5) implies that as a function
of 4, logw(x— ¢;) /(1 +1%) belongs to L'(R) a.e. (¢). Therefore, in this case,
log ox(t, @)} /(1 +1) belongs to L*(R) a.e. v

Case 2. v, and o are mutually singular. .

In this case, Proposition 6.7 of [5] implies that {U,] M, (k)}m«*_
S an evanescent isometric representation of I', and so by the discussion
ati the end of § 5 in [5] we may assert that there is a cocycle (¢, ) such
that M, (k) consists of all functions f in I*(»,) with the property that
as functions of ¢ 6(t, %) f(z —e,) o} (t, ) belongs to H? (Hl_dttl-—t_z—)‘) a.e. (7).
By basic Hardy space theory then, we find that for each f in P, (%),
log(1f(w— &) gx(t, ®)) /(L +1) belongs to I*(R) as a function of ¢ e
(»). But & belongs to M, (k) and in I*(»,), & is the constant function 1.
Thus, as was promised, log (e, (?, #))/(1+1%) belongs to L'(R) ag a function
of ¢ a.e. v, and the proof is complete.

‘We are now in a position to present the

Proof of Theorem II. We shall prove more than we need in order
to obtain Theorem II; however, the excess will be used in the proof of
Theorem IIT. Given & nonzero vector % in s our goal is to produce four
vectors hy, ks, ky and &y, with the following properties:

(3.1.2) h = hy-+h,.
(3.1.b) #, and i, 8re mutually singular.
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(3.1.0) 9R+ (k;l) = Rt (,701)1 EUL (kz) = Ri_ (702) .

(8.1.d) For ¢ =1,2,h = P,%.h ‘while '”lci(M) < %—(M) for all Borel sets
M in & (where, for the remainder of this section, we shall write Py,
(resp. Py,) for the projection of & onto the space of vectors f
such that vy < v, (resp. » < ), ¢ =1,2.)

Of course we allow the possibility that one of the pairs (h;, k), 1 = 1, 2,
may consists of zero vectors. Observe that (3.1.¢) and Lemma 3.3 imply
that each w, is quasi-invariant while (3.1.d) and Lemma 3.1 show that
wy, = ¥y, 9, Sinee (3.1.d) implies that each w,, is equiva,lex}t tol Vigr
we may conelude that each 71, 38 quasi-invariant and 8o v, is quasi-invariant.
Thus if we can produce the four desired vectors the proof of Theorem II
will be complete.

By Theorem 3.1 of [3] one or the other of the spaces R . (7) and K_ (&)
must be different from the zero space and so we may assume without
loss of generality that &, (h) # {0}. Let @, be the projection of »# onto
K, (h) and let k; = @ h. Then &, 5 0 by assumption and a moment’s
reflection reveals that

(3.2.0) My (%y) =KL (k) = KE(R)
and
(3.2.b) K. (k) = K, (h).

Equation (3.2.a) and Lemma 3.3 imply that », is quasi-invariant and
equation (3.2.b) implies that @, < P, . Therefore, if h; =P, h then for
each Borel set M in G we see that v, (M) = [|B(M)Q.hIF = |[B(M)Q, Py I}
= QB (M) by < B (M) g = p, (20).

Leti ' = h—h, and note that since v, is quasi-invariant, b, and A’
lie in # by Corollary 3.2. Also since v, i3 quasi-invariant, Lemma 3.1
implies that M, (k) = M, (h,) @M, (B) while R, () = R, (k) DR, (B')
and, consequently, RKI(h) =Q&I(h)DKL(W). But since Q, <Py, k
=Quh;, and so K (k) = KL (k) = KL (h); or equivalently, KF (W) = {0}
and M, (b') = R..(h"). Since k' belongs to #* this, along with Theorem 3.1
of [3] implies that K. (h') % {0}. Let @, be the projection of 4 onto K. (k")
and lot Ty == Quh'. Thon Qg «<I—Py so that v, and », are mubually
singular and we have the following equations:

(3.8.2) M_(Ey) = KT (ky) = KT ('),
and
(3.3.b) K_ (k) = K_(1").

Equation (3.3.a) and Lemma 3.3 imply that », is qua.si-in.vm:ianﬁ and
equation (3.3.b) implies that @, < Py,. Therefore, as before, if we set
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by = Py B/, then since », and v, are mutually singular &, =P, h and
the following inequality is valid for all Borel sets M in a,

iy (M) = [[E(M) QNI = QB (M) Py, 1|
S B (M) Rl = v, ().

Thus to complete the proof, we need to show that b = hy+hy. To
this end, let A" =h—(hy+hy) = ' —h,. Then by Corollary 3.2, A"
belongs to # and by what was shown above, 4’ also belongs to R, ().
Henee, s'nee {T,},r, i e.n.u. by hypothesis, R, (k) R_(k) = {0} by
Theorem 3.1 of [3], and so all we need to show is that A" belongs to R_ ().
Since 7, and g, are mutually singular, P;cl and P, are orthogonal, and
since the two measures are quasi-invariant, Lemma 3.1 allows us to write
the following two equations

(8.4) M_(h) =M_ (k) BM_ (')
= M_ (b)) DIM_ (hs) DM_(B""),
(3.5) R_(h) = R_(h) DR_(R")

=R_(h)BR_(h)OR_(2"").

Hence it suffices to show that M_(h"’) = R_(A"). But @, < P, and o
K (ha) = KT (k) = K (h'). Therefore by equations (3.4) and %3.5) we
find that M_ (1) = KT (A )VSR_(I) = K (hy) DR (he) DR_(h"') = M_ (hy)
@R_(2"). Whence 91“(7@"') =IN_(h") and the proof is complete.
Proof of Theorem ITI. We continue to use the notation and auxil-
iary results developed in the proof of Theorem II. Let M= v+, and
observe that. the properties (3.1) imply that # is quasi-invariant, equi-
valent to »,, and u(M) < v,(M) for all Borel sets M. Furthermore, if ¥
is the Radon—Nikodym derivative du/dv, then F — .Fl71+Fk2 and by the
chain rule for Radon—Nikodym derivatives. we find that the ¢-function
for u can be written as F(z—e¢,)o(t, x)/F (x). Hence by Lemma 3.3 and
the properties (3.1), it follows that as a function of ¢, log(F(w—e) o(t, @)/
JA -+ belongs to L'(R) a.e. v on 6, UG, and G, U G, supports U
But u is equivalent to »,, so Sy, U &, supports »,, and siznce By, = P,

"(Gr A (S, U Sy,)) = 0. Tt follows that &, supports v, and that the proof
i complete.

§ 4. Corollaries. As our first corollary we give another proof of the
following result due to Mlak ([4], Theorem 3).

. CorOLLARY 4.1. If {T,},. r, 18 & contractive representation of I, which
18 not & wnitary representation, then the closed support of B is all of G.

) Proof. By Theorem 2.2 of [3], it suffices to assume that {7’
is c.n.u. Then ¥ is quasi-invariant by Theorem I and so the closed support
of F is invariant under the natural action of R on &. But it is well known

7}?€P+ )
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that the only non-empty closed invariant set of G is @ itself and so the
proof is complete.

The spectral measure X is called erogdic provided that it M is any
Borel set in ¢ which is invariant under the natural action of R on &,
then B (M) is the jdentity or the zero operator. We note that the proof
of Theorem IIT in [5] shows that if P is quasi-invariant and ergodic,
then F has a separating vector.

The proofs of Lemma 3.1 and Corollary 3.2 show that if M is an

* invariant Borel set, then (M) reduces {1}, r,. and thervefore we have

CoROLLARY 4.2, If {T},.p, ds drreducible then T is ergodic.
The analysis in [6] shows that the converse of this corollary is far

 from being true.

We conclude with the following corollary which containg Theorem 1
of [4] as a special case.

CorOLLARY 4.3. Let the notation be as in Theorem IIL and in addition
to the hypotheses there, assume that v is ergodic. Then v(G\G,) = 0 for each
nonzero vector h in .

Proof. Indeed, Theorem III implies that »(S,)> 0 and since &,
is easily seen to be invariant, the result follows from the ergodicity of ».
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