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STUDIA MATHEMATICA, T. XLIX. (1974)

The equivalence of two conditions for weight functions

by
BENJAMIN MUCKENHOUPT* (New Brunswick, N. J.)

Abstract. A function W (x) defined on R" satisfies the condition A,, p > 1,
if it is non-negative and for every cube @

( af W(w)dw)( | [W (@)~ Y@-Dda)?~ < 01QP
Q

where O is independent of ¢ and 0-oo is taken to be 0. A function W (x) defined on R®

satisfies the condition Ao if it is non-negative and given ¢ > 0 there exists a 6 > 0

such that if @ is a cube, B < Q and |B| < 6|Q[, then f W (z)dx < ¢ [ W(x)dw. Such
E Q

funections are the weight functions for various weighted norm inequalities for classical
operators. It is shown that a locally integrable function satisties the condition A
if and only if it satisfies the condition A, for some p > 1.

1. Introduction. In several recent papers, [4], [5] and [6], it was
shown that the condition A, characterizes all weight functions for which
various weighted norm inequalities are true. On the other hand, in [1]
and [2] similar weighted norm inequalities were proved using the con-
dition A,. The equivalence proved here is of interest because it shows
a relation between the results in the cited papers. It is also an essential
part of the proof of the norm inequalities in [2].

The fact that a function W(x) that satisfies A, also satisfies A i
an immediate result of formula (3.19), p. 214 of [5]; the fact that (3.19)
is valid in the n dimensional case is proved in § 7 of [5]. This formula
states that if W(w) satisfies A, then for every cube Q

[W@)do< 0Qr=] [ W(@)da]
Q Q

where ¢ and » are constants independent of @ and v > 1. Since Hoélder’s
inequality implies that for any subset F of @

fW(iI:‘ |E'[1 llv(f[W(x ]udw)l/u
E
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102 B. Muckenhoupt
it iy immediate that if E < ¢, then

(1.1) [ Wiwyan < OPUBIIQN'Y [ W (x)ds
B Q

If given ¢ > 0, 6 is taken to be [80“1’”3“’(””‘), (1.1) shows that W satisties

the definition of A, . The fact that condition (1.1) holds for some v > 1 '

and O is used as the definition of A, in [2] and appears to be more res-
trictive than A, as defined here since it gives a particular type of relation
between the & and . The main theorem of this paper shows, however,
that the two definitions are equivalent. If W satisfies A, as defined here,
then for any cube @ such that Qf W(x)dr < co the theorem in § 3 shows

that W satisfies A, on @ with fixed constants and p > 1; the argument
above then gives (1 1) for some ¢ and »>1. If fW(:c dm = oo, (1.1)
iy satistied trivially for any ¢ and » > 1.

The proof given here that A, implies A, for some p > 1 is a one
dimensional one. It is not difficult, however, to adapt it to » dimensions.
Some comments about how this is done are made at the end of this paper.
This extension to the » dimensional version has also been done by Wo-Sang
Young.

2. A basic lemma. The following will be needed in the proof of the
main theorem in § 3.

LemMa. If W(xz), defined on (—oo, o), satisfies the condition A,
d is the value of 0 that corresponds to ¢ = § in the definition of A, Q is
an interval, [ W(z)dz < oo, k is a positive integer and E is the subset of @

where W(z) < (87/1Q1) [ W () dex, then |B| < (1—314d)*1Q].
Q

The following simple property of d will be needed. If ¢ is a subset
of an interval J and |G| > (1 —4a)|J|, then since |J —G| < d|J], fW(m)d*p
: Rad:

< i [W(@)ds so that [W(z)ds >} [ W(x)ds. Equivalently, if ¢ < J
J G J

and [W(z)de < } [ W(2)de, then |G| < (1—d)}J].
& - J
Now fix § and k. By the definition of F

(2.1) [W@)de< 8" [ W(z)aw
. : B Q

Since 87* < %, by the property of d above |B| < (1—d)|Q|.
Therefore, for each point of density, #, of E it is possible to choose
a closed interval, R., centered about x such that

(2.2) [B,NQNE| = (1—d)|E,NQ|

icm
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and R, is a subset of the interval 3¢ with the same center as @ and three
times as long.

Let 8 be the set of the R.’s. A sequence {@;}, possibly finite, of mem-
bers of § will be chosen as follows. Let @, be an interval in S such that
194 = %sup |R]. Given @y, o Qi let §; be the set of all members of 8

whose centers are not in UQ, Choose @y, from §; such that |Q,,!

> isup |R|.
ReSy,

GlVGD. y in (@, it will be shown that y can not be in the the right
half of more than two Qf §; the right half is taken to include the center.
If y were in the right half of three or more Q;’s let @; , @;, and @;, be the
first three such intervals in their order of occurrence. The center of @)
lies to the left of @; since it cannot lie in @;. Similarly the center of @;,
lies to the left of Qh Then the right half of @;, strictly contains the left
half of @; 80 leZ] > [Q;,|. Similarly, the right half of Q;, contains the left
halves of ¢, and @y, so that |Q,31> ]szl-l—[Qh] Combmlng these two
inequalities shows that IQ, |Qh] This contradicts the way the se-
quence {Q;} was chosen.

It is immediate that an 9 in (@, cannot be in the left half of more
than two @;’s; therefore, no point can be in more than four @,’s. This
fact and the fact that all the @,'s are subsets of 3¢ show that the sequence
{Q;} terminates or the length of the @,’s approaches 0. Therefore, since
each R, is eliminated from S, for sufficiently large %, each point of density
of ¥ lies in the union of the €,’s.

Now let By = J(Q;nQ). It is trivial that B, = @. Furthermore,

[ W(z)de is bounded by

El

(2.3) D [ wwa.
: i Qe

v (2.2) and the property of d derived above, (2.3) is bounded by

(2.4) 2 [ W@

i @GNenE
Since no point is in more that 4@,’s, (2.4) is bounded by 8 f W(x)de. Com-
bining these inequalities and (2.1) then shows that

(2.5) [W(@)do <874 [ W(2)do
By Q
Since B, contains all the points of density of B,

(2.6) 1B, = U (@nQ) = !EH-IU ;NQNCE)
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where OF denotes the complement of E. Since no point is in more than
4Qy's, (2.6) implies that

Byl > 1B +1 ) 10,090
J

Because of (2.2), then

B > |Bl+1 ) 219;0
7

50 that |Hy| > |B|+1d|B,|. Therefore, |H,| > (1—1d)~|B|.

Now if % > 2, it is possible to start with (2.5) and repeat the argument
following (2.3) with E replaced by F,. This will produce a set H, = Q
such that

[Wyat <872 [ W(@)do
Ey : Q

and |B, > (1—%4)7%|B|. Repeating this process % times will give
a set H, such that B, < @ and |H| > (1—1d)"*|B|. Since |B,] <19,
IBI< (1—-1d"1Q1. .

3. Proof that A, implies A,. The following theorem and corollary
will be proved. A sketch of the proof of the » dimensional version is given
at the end of this section. )

THEOREM. If W (z), defined on (— oo, 00), satisfies the condition A,
Q is an interval and [W(z)dz < oo, then

4

(3-1) ([ W) ([ iw@1oraf~ <cier

where p and C are independent of @, p > 1 and 0- oo is taken to be 0.

CoroLLARY. If W(x), defined on (— oo, o), satisfies the condition A
and is locally integrable, then it satisfies A, for soms p > 1.

The corollary is, of course, a trivial consequence of the theorem.
The hypothesis that W(w) is locally integrable is essential. Consider, for
example, & nowhere dense set, F, that has positive measure and define
W(x) to be 0 on B and oo off B. Then since the integral of W on any
interval is oo, W satisfies the condition A,. It does not satisfy A, for
any p > 1, however, since there are intervals on which 1/W(z) is oo
on a subset of positive measure.

To prove the theorem fix an interval @ such that 0 < [ W(z)dx < oo,

@
and let d be the value of § that corresponds to ¢ = } in the definition
of A_. It will be shown that (3.1) holds where p and ¢ depend only on d
and p>1. The case f W(z)dx = 0 can be ignored; the convention

0-0co = 0 makes (3. 1) true for any p and C in this case.

iom
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Given & positive number a, let E, be the subset of @ where 1/W(z) > a

and let B = [Q]/éfW(w)dm If a> B, let k be the greatest integer less

than or equal to logg(a/B). Then 1/a < 8 %/B so that B, is contained in
the subset of @ where W (z) < (87%/1QI) f W (t)dt. Therefore, by the lemma

1B, < (1—3d)*|Q|. Using the facts that aloB® — ¢%80% and k> —1+
+logg(a/B) shows that if ¢ > B, then

(3.2) ’ 1B, < (a/B)1Q1/(1—1d)

where r = logy(1 —1d). Next define p to be 1 —2/r; this is greater than 1
gince r is negative. Now

(3.3) f (W (@)D = — f AP0~ | da.
p—1
Q 0
Since B, « @ for all a and (3.2) is true for ¢ > B, the right side of (3.3)
is bounded by

1

B B oo

. 1 a\" 1@
@-2)/(»-1) 101 4, e-e-0 | ) X dq.
p—1,° I — Er“ (B) i—a ™

Both of these integrals can be computed; the result is that

[ IW (@) e < 0B 1)
Q

where ¢ depends only on d. This is equivalent to (3.1) and completes the
. proof of the theorem.

The principal changes for the » dimensional proof are as follows.
The number d must be chosen so that it works for rectangular parallele-
pipeds with sides varying in length by no more than a factor of two.
Tt is easy to prove that 2" times the 6 that corresponds to & = 27!
for cubes works by writing the parallelepmed as the union of 2" cubes.
The constants in the lemma are different and the @,’s are chosen by use
of Corollary 1.7, p. 304 of [3]. The rest of the proof of both the lemma
and theorem are then similar except for changes in the constants.
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Weighted integral inequalities for the nontangential maximal furetion,
Lusin area integral, and Walsh-Paley series”

by
R. F. GUNDY and R. L. WHEEDEN (New Brunswick, N. J.)

Abstract. We prove weighted integral inequalities between the Lusin area
function and nontangential maximal function of a harmonic function. We also obtain
results for Walsh-Paley series as a corollary of the method.

Introduction. In this paper we prove weighted integral inequalities
for the Lusin area function and the nontangential maximal function.
Specifically, we are able to answer some questions raised in [11], and
extend the inequalities proved there. Our results indicate that many of
the norm inequalities for HP-spaces in R%™ remain true for a wide class
of meagures on the boundary. Our method consists of showing that certain
distribution function inequalities, proved in [2] for the area function
and the nontangential maximal funetion, are valid not only for Lebesgue
measure, but also for this wide class of measures. These inequalities lead
easily to the desired norm. inequalities.

The technique used in studying the area integral may also be used
to obtain weighted norm inequalities for Walsh—Paley series. Inequalities
of this kind were first studied by Hirschman [6]; we are able to recover
and extend his results.

Theorems concerning the area function and nontangentlal maximal
function are in Section 1; Walsh-Pa'ey series are treated in Section 2.
Section 3 contains & remark on the radial maximal function.

1. We use the notation of [2]. A cone of opening & in R = {(z, 1):
e R" y > 0} is defined as

@) = I'(@, @) = {(s,9):

The area function, corresponding to a harmonic function u, is given by

A@) = A,)(@) = ( [ 31Vl pirdsay)’,

I'(x)

|z —s] << ay}.
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