icm°®

STUDYA MATHEMATICA T. XLVIII. (1973)

On ideals consisting of
joint topological divisors of zero

by
ZBIGNIEW SEODKOWSKI (Warszawa)

Abstract. Let 4 be a commutative Banach algebra with unit e. Let {(4) des-
ignate the collection of all closed ideals of 4 consisting of joint topological divisors
of zero. The main result of this paper states that any ideal Ie!(4) is contained in
a maximal ideal of 4, which also belongs to ¥(4). This solves a problem posed in [3].

All algebras considered in this paper are commutative complex
unitary algebras. The unit element of such an algebra will be denoted
by e. Let 4 be such a Banach algebra. A non-void subset § < 4 is said
to consist of joint topological divisors of zero if there is a net (b,) = 4,
|Ibs] = 1 such that limb,a = 0 for each ae 8. So a set S consists of joint

topological divisors of zero if and only if for each finite subset (ay, ..., a,)
< § we bhave
@) 0(ayy ey @) =0
where
n
@) 8@y 5oy @) =int D'[bag.
Ibll=1 3=

A closed ideal I = 4 is said to be an I-ideal if it consists of joint
topological divisors of zero. The family of all I-ideals of 4 is denoted by
i4).

Lot £(A4) = t(4) NIM(4), where M(4) is the maximal ideals space
of 4. The above concept has been introduced in [3], where it was shown
that £(A4) is a closed subset of M(A4) containing the Shilov boundary.
It was shown also that every #-ideal I is contained in a maximal -ideal J,
ie. an ideal Je¢¥(4) such that if J, is an ideal in }(4) and J < J, then
Jy = J. It was not known, however, and it was asked in [3] whether every
{-maximal ideal is a maximal ideal in 4, i.e. whether such an ideal belongs
to £(4). ,

In this paper we give an affirmative answer to this question. As
a corollary we prove also that if a Banach algebra B is an extengion of 4,
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ie. if B containg isomorphically 4 (as a closed subalgebra, with topology
induced on 4 by B equivalent to the original topology on A4) and the
unit of A serves as the unit element of B, then any multiplicative and
linear functional fe£(4) extends to a member fe£(B) (we identify
here the multiplicative linear functionals with their kernels). This gives
an answer to another question posed in [3].

The author is indebted to Professor W. Zelazko for calling his
attention to these problems and for formulating the basic Lemma 3.

LevmA 1. Let I be an ideal of an algebra R, amd p o submultiplicative
seminorm on R. Then

(a) for any r in R the set

(3) H(r) = {0 > 0: p(ri) < Op(9) for each ieI}
8 non-void, omd the fwn,omon on R
(4) - g(r) = inf M (r)

8 a submultiplicative seminorm ow R

(b) If, in addition, there is an element y in I sudh that p( ) 0, tiwn
g(e) =1L
“Proof. Since the seminorm p is submultiplicative, the number p('r)

belongs to the M (r) and so it is a non-void set. ‘We notice that the set
M(7) is closed, and hence g{r) belongs to M (r). This means that

(5) p(ry<g(r)p(e) for all » in B and ¢ in I.
For 7., ry in B and ¢ in I, », 4 belongs to I and from (B) we have

17((71"'2)'5) =19("1(7‘2'5)) g(r)p(r.d) < ¢(r) q(ry)p(3).
This implies ¢ (ryr,) < q(rl)q(i'a). Similarly
: P((ﬁ"‘rz)’i) SP(18) +p (1) < (Q(Vx)“f*!l("”z ) (@)
and 80 )
q(r)+g(ra) = g(ry+ry).

Since ¢ is obvmnsly a homogeneouq funetion, it is & submultiplicative
seminorm.
The simple proof of (b) can be omitted.’

 Lewova 2. Let R be an algebra, g— a submultiplioative seminorm on R

and @ — an element of B such that for any complew A there emsts a pomwc
'rmmber £ satwfymg

®) . g(r(le——m)) =q0r)
Jor every r in R. Then q(e) = 0.
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Proof. Suppose that g(e) = 0. We define a Banach algebra .4 by
completing the normed algebra R/kerg, with the norm induced by g.
We denote this norm by | |l There is a natural map ¢: R — A4, namely

@(r) = r+kerg.

'We put ¢(#) = a. It easily follows from (6) that for each complex A and
for each b in A We have

16 (Ae — )| = bl e3.-

This means that for every complex A the element A¢—a is not a topolo-
gical divisor of zero in A. But this is impossible for, say A belonging to the
boundary of the spectrum of @ in A (cf. [2]) and the lemma follows.

. LmmMa 3. Let A be o Banach algebra, o, ..., a6, acd, and suppose
that subset {ay, ..., a,} consists of joint topological divisors of zero. Then
there is & complew number A such that the subset {a,, ..., &,, A6 —a} consists
of joint topological divisors of zero.

" Proof. Suppose that the lemma iy false. Then there is a Banach
algebra 4 and elements a, . vy @y, @ in A, such that for each integer %
there is a b, in 4, and for any complex A there is a posmve ¢, satisfying
following relatxon.s

(7) | llasly -y llaal, lall < 1,

(8) ul =1 E=1,2,..., ‘

(9) " ladl+...+ 0,8+ (le—a)d] > exldl  for any d in 4,
@) mhga] =0, §=1,2 .00

We denote by R the algebra O[wy,...,

Dy Doy evey By @, Y

(11) ‘ r o= iy 1O - W'Y
fy e bt 120

with complex coefficients LY ; (the summation is finite). For each
integer % we define a mapping of B into 4 given by

@y, %, y] of all polynomials in

4 ey
(12) 7= by (r) = O oty O oo OGP0 D
L e R

and a. mapping N, of R into non—negatiwfe real numbers, given by
(13) Ny(r) = ("l ‘
It is easy to see that the mapping (12) is an algebraic homomorphism

and in. consequence; formula (13) gives a submultiplicative seminorm
on E. . '
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It d = hy(yr) where » belongs to R and & =1,2,..., then
fosdll = lhz (@) ha(yr)l| = W@yl = Nylwgyr), . i =1,2,...,n,
ldll = Ni(yr),
(Ae —a)d|| = |[h(Ae —2) By (yr)]| = Ny((Ae—2)yr)

and from (9) follows

(14) Niloyr)+ ...+ Nyp(@,y7) + Ny (e — w)yr) > &, Ny (yr).
We notice that Ny(r)<o,, reR, bk =1,2,..,, where

0, = a,

= %:ml Y
for any 7 in R of the form (11). Hence any mapping N, belongs to the
Oartesian product of the collection {[0,¢,]: re R}, considered as a sot
of mappings. This product is compaect relative to the product topology;
hence we can choose a submet {p,: me M} of the sequence {N,: k
=1,2, ...} which converges to a point p of the product. (Thig subnet need
not be a sequence; (M, <) iz a directed set.)

We recall that a net in a product space converges to a point if and

only if its projection in each coordinate space converges to the projection
of the point ([1], Chap. 3., Theorem 4), hence for any 7 in R

limp,,(r) = p(r).

m
Any p,, is equal to some N, and therefore it is a submultiplicative semi-
norm. Each subnet of a converging net converges to the limit of the net

([1], p. 74, (a)). For any r in B the net {p,,(r): me M} is a subnet of the
sequence {N,(r): k =1,2,...} and from (10), (8)

li;nNk (rymy) = li;nllhk(rywi)tl = lim |by a7z (7))
k

< (Iil?lllbka’i”)or =0, i=1,2,..,n

and

h';cme(y) = liinllbkll =1
hence
(15) plagyr) =0, i=1,2,..,n,
(16) p(y) =1.
Any p,, is equal to some Ny, and hence by (14) we get
an 2((Ae—a)yr) > &,p(yr).

Obgerve tl}afc the ideal I = yE, the seminorm p and, by (16), the member
y of I satisfy the conditions of Lemma 1; hence the function q(r) given
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by formula (4) is a submultiplicative seminorm on E and, by (16) and
condition (b) of Lemma 1,
(18) gle) =1.
We can write
¢ p(ry) = plrry)
and therefore
4((re—o)7)p (r;) = p((Ae — w)rryy).
By (17) ‘
(e —)rr1y) > & (111y)
and by the definition of ¢ (formulas (3) and (4)) we geb

a{(2e —o)r)je2 > q(r).
Now by Lemma 2 g(e) = 0 but by (16) this is impossible, which gives
a contradiction completing the proof.

LMy 4. Let A be a Banach algebra, lot I = {a, ..., a,} be a finite
subset of A which consists of joint topological divisors of zero, amd let a belong
to A. Then the set
(19) Z =Z(F,a) ={Ae0: 8(ay, ..., @, 6—a) = 0}
is @ non-void compact subset of the complex plane.

Proof. Z is non-void from TLemma 3.

Tt is easy to see that no invertible element of 4 is a topological divisor
of zero; if a finite subset of A consists of joint topological divisors of zero,
then each of its elements is a topological divisor of zero. These remarks
imply that Z is contained in the spectrum of @, and hence Z ig bounded.
" Now it is sufficient to prove that Z is a closed subset of the complex
plane. Let 4 be an accumulation point of Z; then for a given & > 0 there
is & 4, in Z such that |[A—1,] < ¢/2. The subset {@y, ..., Gy, Ae—a} con-
sists of joint topological divisors of zero. Hence there iy a d in A with
fid] =1 such that

g @l + ... + 16l + (A6 —a) dl| < /2

and we have

g @l o =+ lan @l - [1(A6 = @) @] < o - . -l B +-

+ (A6 — @) ]| + [[(Ae— A6) A < 824 14— Ay [ld]] <e.

This means that 8(ay, ..., G, 46 —a) < ¢ for every &> 0, and so A belongs
to Z.

TamoruM. Let A be a commutative complew Banach algebra with unit e.
Let Iet(A). Then there i3 a Je£(A) such that I < dJ.

Proof. Let I be an Hideal of codimension greater than one. This
means that there is an & in 4 such that for any complex A the element
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¢ —a does not belong to I. Since, by Lemma 3 of [3] any I-ideal is con-
tained in an !-maximal ideal, it is sufficient to prove that there is an
I-ideal J which properly contains I..

Let Fy, F, be finite subsets of I and ¥, o F,. It is easy to see tham

Z(Xy, a) C:Z(-Pz’a)’

where the set Z (I, a) is given by formula (19). Hence for any finite family
{Fy,..., F,} of finite subsets of I

Z(F,a)N...0Z(F,,a) > Z(F,V...UF,,a).

This means that the family of all subsets Z (Tf’ o), where I is any flnlte
subset of I has the finite intersection property, Any F in I consigts of
joint topological divisors of zero. Hence by Lemma 4 any Z(F,a) is

a non-void compact set. Thus the family has a non-void intersection. Let
2o belong to the intersection. We notice, that the set I U{1y¢ —a} consists
of joint topological divisors of zero. By Lemmas 1 and 2 in [3], which
jointly state that any subset of A consisting of joint topological divisors
of zero ig contained in an ?!-ideal, there is an I-ideal J which contains I
and Ay¢ — a. The inclusion is proper, because Ao¢ —a does not belong to I.

So we have obtained a contradlctlon of the assumption that I is a I-
maximal ideal.

Remark. Since every maximal ideal is a prime ideal, Proposition 2
in [3], which states that every Z-maximal ideal is a prime ideal, follows
immediately from the Theorem.

‘CoROLLARY. If f is a fundtional in £(4) and B 8 am emtension of A,
then f extends to o member F of £(B).

-Proof. Since any I-ideal in 4 is contained in an I-ideal of B (Propo-
sition 1 of [3]), the kernel of f is contained in an #-ideal of B. By the Theo-
rem, the ideal is contained in an ideal in #£(B). The multiplicative-linear

functional ' in M(B) coresponding to thiy ideal extends f and belongs
to £(B).

References

[1] J. L. Kelley, General topology, 1964.

[2] I. M. Gelfand, D. A. Raikov, €. E, Shilov, Commutative normed rings, New
York 19864.

[8] W.Zelazko, On a certain class of non-removable ideals in Banach algebras, Btudia
Math, 44 (1972), p. 8'7~92

WARSAW UNIVERSITY,
DEPARTMENT OF MATHEMATICS

Received Jume 26, 1972 ' (544)

STUDIA MATHEMATICA T. XLVIIL. (1973)

Separability of orbits
of functions on locally compact groups*

by
H. PORTA (Urbana, Il.), L. A. RUBEL (Urbana, Ii.)
and A. L, SHIBELD S (Ann Arbor, Mich,)

Absteact. Let G be a locally compact group. Fivst, if fe L (6) has a separable
orbit under loft translation by elements of &, then f is locally a.o. equal to a bounded and
upiformly continuous function on ¢. Secondly, if fe Ljoo(G) has a separablo orbits
then f is locally a.c. equal to a continuous function on ¢.

1. Notatxon. Let G be a locally compact group, dv a left invariant
Haar measure { flem)dw = j f(@)dw), We do not assume that G is com.-

pact or Abeha.n or separa.ble For se@ 'md f a function on @, the left
translate of f by s is the function (y(s)f) (w) = f(s7'w). We alslo ‘write
f, = y(8)f. For p a measure on ¢, define (,u*f m) dff(s‘ ) du(s)

whenever this makes sense. In particular, for two complex»va,lued func-
tions f and g on G we have (g*f) (#) = ff(s"lm)g(s)da, which exists when.

fls7rm)g(8)e I}’L Algo, if ¢, denotes the 11n113 mafs at we G, then (s, F) (@)
= (p(w)f) (@); ie. exf =yp(w)f. Clearly, then, y(u)(fxg) = (y(w)f)*g
whenever both members make sense.

The space I(@) is the usual space of classes of bounded measurable
functions. The space L2, (6) is the space of clagses of measurable functions
on '@ that are bounded on compact subsets of ¢ Two functions belong
to the same equivalence clags if they agree except at most on a set that
intersects every compact set in & set of zero meagure. The topology of
L (@) is given by the seminorms

Iflx = esssup{|f(@)|: @e X}

a5 K runs over the compact subsets of ¢. We use the phrase “locally a.e.”
to mean “almost everywhere on each compact subset of 6. By ¢ o (@)
we mean the class of functions that are bounded and uniformly conti-
nuous on. G.

2. Statements of results. Our fivst result is related to known results,
but does not appear to be explicity stated in the literature. It was establi-
shed independently for the cirele group by - T. Kaczyndski (unpubli-

* The regearch of thoe authors was partislly supported by different grents from
the National Seience Foundation.
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