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Absteact. The saturation class of a large set of radial approximation processes
i given by the olass X of functions such as

k = {fe L (R"): wl*fw) = §(v) for some ge M (R™)}

where § (v) is Fourier—Stieltjes transform of a measure g. The main purpose of this
paper-is to a characterization of this class by the term of f(z), that is to say, when
fe L(R), fe K if and only if

28(f) (+
fw%ﬁ = O(1)  uniformly in g.

)

4

lwlze—*

Our approach is also approximation theoretic and may be applicable to another
problems. . :

§ 0. Introduction. Let R™ be the n-dimensional Huclidean space whose
element be denoted by @ = (@, ..., ®,) with norm |o] = (@?4... -zl
For a function fe L(R"™) we consider an approximation process of convo-
lution type with a kernel ke M (R"), that is to say,

(1) K@, f) = @)~ [flw—y)dk(ey)
B
where & i normalized as
) (@m)="2 [ dis(y) =1.
nw

Then it iy easy to see that
I (-, Qif) “flzmm >0 a8 ¢~ oo.
. Dmwrvrrown. Suppose that there exists a positive number o and a class
K < L(R™ such that
(1) 1Ky 05 F) —Floam

(1) My 05f) = Fll o
and vice versa.

it

0(0™% as ¢ - co  implies f = 0 a.e.,

~

0(e™% a8 @ - co  implies fe K

fi
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Then the singular integral K (@, o; f) is called to he saturated with the
order o~° in the space L(R") and K is called its saturation lass.

The saturation class of the approximation process (1) is often given
by the class K of functions such a8

K = {fe L(R"): Ivl“f v) = g (v) for some ge M (R")}

where §(v) is Fourier—Stieltjes transform of a measure ¢.

For this see P, L. Butzer and R. J. Nessel [4]. In this book, the treatise
is given in the ome dimension, but the situation is the same in R

For the special case in B, G. Sunouchi [8], [9] gives a characterization.
of the class K. In G. Sunouchi [10] and H. Berens, P. L. Butzer and
U. Westphal [2], there are another simple proofs. In R"-cage, the similar
theorem is given by W. Trebels [11]. The purpose of this paper iy to give
a simple and approximation theoretic proof based upon the fundamental
theorem of saturation and a criterion given in our paper [6].

§ 1. Fundamental theorem of saturation. Let the I‘ourler—StleltJes
transform J(v) of the given kernel ke I (R™ be radial and set x([v|
%(v). We suppose that »(t) satisfies

(3) lim

10

=6 50

(1) —1
_f_(lr._ for gome « > 0,

The fundamental theorem of saturation is as follows (see P. L. Butzer
and R. J. Nessel [4]).

TeporEM 1.1. Leét fe L(R") and the kernel ke M(R") of & singular
imtegral (1) satisfy (2) and (3).
Then the following statements are valid;
(1) 1K () 05 F) —Flrmm = 0(0™%) as @ — oo implies f =0 a.e.,
i) (5 ¢5F) —Fllzgn = 0(e™) as ¢ — oo implies [v]f(v) = §(v)
for some ge M(R™,
(iii) Comversely, if [v|*f(v) = §(v) for some ge M(R") and if

w(jo) =1 ) N N n
h—|'v|" is a Fourier-Stielijes transform of some measure in M(R™),

(4)

then K (-, 0; f) —fllzmny = 0(0™%) as ¢ - oo. Henoce, the singular integral
(1) with the kernel ke M (E") satisfying the conditions (2), (3) and (4) is
saturated with the order o=* and with the saturation class I suoh as

®) & = {feDR: pI'f(0) = §(0) for some ge M(RM}.

We remarks here for the later use that there is a criterion for the
validity of the condition (4). (See M. Kojima and G. Sunouchi [6].)
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TemorEM 1.2. If, for the radial Fourier-Sticltjes transform x(jv))
= 75(«;) of the hernel ke M (R"), there omists a radial Fourier-Stieltjes trams-
form p(|v]) = Mm(v) of some me M (R") such that

11
(6) #(t) ~1 = o [ () dr.

them the condition (4) 18 satisfied.

§ 2. A Characterization of the saturation class K. In the preceeding

gection, we derived the sm.umuon olass K. We shall characterize this
clags by the term of f(a

THmoREM. When fa]J(R"‘), fe K of (5) if and only if

f Aza(f) 2 @ Hn(nn)

= 0() uniformly in o,

et

where
28

a7 0,9) = 3 —1)’(2;)f{W+(a~j)y}
poer v

and integer 8 is choosen swoh that 0 < a < 28.

§ 3. Proof of the theorem in the case of n = 1. For the sake of claxi-
fication of our method, we hegin with the case n = 1. See also [10]. We
can write

28
0 EROITII

wize—!

e flom ™ f F@—y)b(ey) dy—f (o)}
where

et )2, '

L =0,1,...,8—1),

) QAT @) gy w1 for J < o] < § 1
@ = \oaz @m) ey ol =0 for o] 9,
j
[T 2( --*.1.)““’“ (3%?7") L* (j B 07 L, vy \9).
fwma) ’

Consequently, by Theorem (1.1) and Theorem (1.2) in order to prove the
theorem, it is sufficient to verify that the measure k(s o)dw satisfies the
conditions (2), (3) and (6).
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- By simple calculations we have ke L(R), and

1 F
de-{-oaf "Wdﬁ‘}
8
9

= (2m)? Tw)- [Z 0 {§™" = (§+1)") - 058““]

8~1 -1

f k(w)dm = 2a(—1)~6+) (23) (@m)H? {_)J o f
j=1
81

=1

(211)1/2( 1)341(23) Z( 1"-1( )

8—1

=@t — 2 Ny (28) (3"
R _( ‘_1_)”1(8)1%
and also '
Syt = — 2 {””lcjl%::_cﬁﬁdw fal._:—iaﬁﬁdw}‘
(—1p (2:) = FANCaE

{28\
(-2 (3 |
' s( wt) @
da Y da s S(E)
= - = do = ¢ dw
S = S
s
‘where
s(o), = 2( 1)"‘j( )sm’jm = (—1)**+122(~D) (gin g)*e
=1
because

o os R x o 1 2
(sinw) =-——-(27:)2s {6 —¢ im}z - (WZ( 1) (21'9) gi(aa=2) |
1 E:Yl 28
= TTeom —1) i23(8~1) | g—iwa(s—1) _qye[28
(—1r2 [..o( )(z){“ o ( 1)(3)]

1 a~-1 .
iy O () oy
=0 i
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1 N ‘
= i 2 (-1 (218) (sina (s —)*

s+122(8«1) 2( 1)”"1( )ﬁm“_w

8o we have
L 28
o B fa (ﬂm'z_)
t}«f? * = (25.) . e dw
0
3

where the mtogw.l exista for 0 < o < 2. Hence the conditions (2) and (3)
are satisfied.

Next we pass to verify the condition (8). Taking the Fourmr transforms
of the both side (7) with ¢ = 1, we get

_ 98 i(s—!)u!+e~i(a—1)1/l
A0 1 == A7 1[2( —1 ( ) W

1 fe=0
So if 'we pub

-t 28

\ AamdW o8~y
B = a'lA,T%‘J Z(»«-l)f(z,-s)(w-j)e ey

a
FEL

Y

where the 111tegm] exists a8 4 - oo in the improper sense, and if we can
show that fi(|v|) is Fourier-Stieltjes transform of some measure in M (R"),
then the condition. (6) would be satistied and the proof will be completed.

By a formula in a book of I. M. Gelfand and G. B.*Shilov [5], p. 359
and p. 361, the Fourier transform H (@) of 4(lv]) in the sense of distri-
bution is

28 .
B % 2 (zf) (8 =)@+ (8 =)= o — (s =)™}
Jea0 o

(it @ 55 2m-+L1 (m = 0,1,...)),
3 1 aﬁ‘ 1{2¢ i e Y | e Fyla=X
B‘J’UZ(-»I)’(-)(aw.o){IW-l—(s-—j)l Fefo— (s =)

[ET)

H (1) ==

202 Sy () 6-9) ot o=ttt 0=
!mo
-l (s—ﬂ)l“"loglw (8=}
(if @ =2m+1 (m = 0,1,...)).
80 we have only to show that He L(R) for 0.< a < 2.
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Cage 1. a #2m~+1L (m=0,1,..
and gince for |z] = s,

(@) = B, lea— Z( _1) (23) {(1+_9_) (l—%l)a-—l}
Sl S s

+0(jo]E+=o+)

). Since for |oj<s, H(w) = 0(1)

= O(lal~=*+9),
we have He L(R) Here we used the identify
2( —1) (28) (s—j)¥+2 =0 for 0K k<<s—2.

j=o
Case 2. a =2m+1 (m =0,1,...).
H(s) = Hy(o)+ Hy(v) say,

where H, () or H,(x) denotes respectively the first or second sum of
H(x). We have ag before H,e L(R).
Ooncerning H, (@), for |o|<s, Hy(w) = O(1) and for || >

8, Hy(w)
I HY (@) + HP (w), where

to28

L ‘
B (e) = B D 1>f( ') 6=+ @1~ o= (s =)= Hogla.

.'I=‘0

2@ =30 V(- —1y (%) o=+ = ipetog 1+ 52

P =
s—4\

a8 @ — oo,

) — 39 2 Z( —17(}) - ){(1+-l)u ’10g(1+%9;)._
“(1“%’*)“1‘%(1"%")}
g |wl ot 24( 1)’(28)(s—j ZW;%( - )zu+1

J'=0 v=0

Z ( )2v+l Z( 11(2;) =440t

— 0 (a1,

— o —(s—)|* 'log (1 -
A (@) = 0 ({loglol}jal~**=+3),

]ul

=B® =
&

as ¥.—> oo,
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Therefore we have H,e¢ L(R). So we complete the proof of the theorem
when # = L. ’

§ 4. Proof of the theorem in the case of n > 2, Similary as in the .
cage of m =1, we can write

44(f)(@,9) .
(8) |(f]” p‘"&‘,"‘q‘“dJ = Aq0 {(27f fgn ff(m N k{ey)dy —f(») }
et o
where
-A-a == (“"'1)”‘1 (2:) o Wey Wy = 27\7”/2{['(%/2)}‘1
() 2451 (2m)Me g 0| for §< ol <f41, §=0,1,...,8=1,
() ==
24:1(21‘,)1”205'{”'—%-“5: for lwl > 8,

i
~xl 2 " )
o= (-1 ”( e G=0.

e
Consequently by Theorem (L.1) and Theorem (1.2) in order to prove the
theorem, it is sufficient to verify that the measure Te(x)dx satisfies the
conditions (2), (3) and (6).

‘We have ke .L(R"), and

g 2a O r 1
Tl P — % == nIZ_
Rj Jo () dov o (23)(2@ {2 o wadr—l—a,f s d'r} (2m)

8

Also we have

N 1 —(2 n/z Sy,
©)  #)—1 m_..?ff._z_;,{ o f (27) f+ =) g o
(o (¥) =
8
7L (2™ 0 V (1,1)
+0, f ) ,a"m (n=2)2 }
]
21 @ 00
= 2a(~1) °(2j) e
where
3(7) - amj 28 {1 (2 n/z =1 (7‘ )}
= P )" wg” V mgyia (N

—I'(nj2) {T(n—1/2)(1[2)} * X

St
X f(sm 0)””"{2“:

gl

1y ( ) o8 (rjcos 0)} as,
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and noting that

Z( ~1) ”’( )cos(yrcos@

j=1

-1
2 ( ls) { (e~ reosd - 6—"5(3“!)70050}
=0
28
:% [( —1)°9% {sin (g- cos o)} —(—=1)8 (2;)],

we have

8(r) 2( 1“(28) J‘('n/z){l’((n—-l 12) I(1/2)}* %

J=1

x[%(~1)”22" (sin )2 {sin(—;—cos o)} 46271 (—

0

( )f(ﬁmﬂ ““ﬂda]
0
= I'(n/2) {T((n—1)/2) r(l/z)}"12(——D”ﬁ“”"”[(sﬁn a)n*z{ﬁin(-;—'cos 0)}28610

because. Wallis formula is

f(sina)"—zdo = I((n—1)/2)T'(1/2) {T(n/2)}~".

Therefore

>0

i H0 (] o

where the integral exists for 0 < a < 28, and so the conditions (2) and (3)
are satisfied. .

In order to verify the condition (6), we first take the Fourier trans-
forms of the both side of (8) with ¢ =1, and cancel f, we get

®(t)—1 = :(2 yoia 24( 1)4(28) f T’gn_w;l(}i gl

F==0

Putting

i) = —a AP @ ST (= 1)/(28)13 _j f KD (s — i) dr

I=0

where the integral exists as » - co in t;he 1mproper sense.
We shall first show: that for 0'< a<n-+2 and 0< a< 25, a([o])
ig Fourier-Stieltjes transform of some meagure in M (R”‘) The Fourier
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transform. H (®) of p(v|) is for 0 < a < n--2,
28

o147 @m) " B (~1 (’j*) ls =312l ~j2la] ="

Fe=0

[ 17D T (18 —j19) Tl ol ) dr
0

H(w) = —

28 98 T[2
"“““B"Z( 1)( )[8 ik f(cosﬂ)*‘“""‘)’lx
Jw0 2
(l2]36™ - [s —j|2a~ )= it |g]| < |3 —j]|
(lwf2e™ 4 |8 — j26") 1= g |g] > |s —j]
== B,I(|w]),

by a formula in a book of H. Bateman [1], p. B1. We put for simplicity
y = f(n42—a)>0.

Since for |o| < &, I(|w]) = O(1), and for || =

Y e [ R P

-5

1)1( )\3 2 ]2 6 (L o |8 — 12 || =262~

:/“'0
Sﬂo [o] 272 m,;,,)oz( 1) (28) (8 — )P 2 4 O (||~ 2r-+26=1])
1/-0 Jm=0

- O(le—{zy.vpz(nm-l)}) = O(l%'l (.za—-a+n)),
we have Ie¢ L(R") for 0 < a < 28 and 0 < a < n+2. Therefore the condi-

tion (6) is satisfied for such a.
In the case of n--2 = a << 28, from (9) putting

. -1 P o
A(t) = 2a(~1)"" (2;) ,fig)«dr

where the integral exists in the Lebosgue sense, we shall prove that z(]v])
is Fourier-Stieltjes transform of some measure in M (R™). For the sake
of the proof, we use the following result due to J. Boman [3].
LmmmA. (a) Assume that the function he GV (R™) where N = [/n/z] +1,
and that there ewmist comstamts ¢ > 0 and 8> 0 suoh that
|D™(h) (o)) < Ooi=*™  for all ve R” and 0< m< N.

Then the function h(v) is Fourier iramsform of some fumction in L(R").
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(b) Assume that the funclion he OV (R"—{0}) with compact support
and that there exist constants ¢ >0 and 6 > 0 such that

|D™ (k) ()| < Clo)™™  for all we R"~{0} and 0 < m < N.

Then the function h(v) is Fourier transform of some function in L(R™).

We put

A%
h(o) = g(lo) —-Mf - dr

and congider the function ¢(v) such that ge 0 (R"), o(v) = 1 for [v| <1
and g(v) =0 fot o] >2.

Then we can write

h(v) = {h(0) — o (W) h(0)} + o (W) h(0) = By (v)+ha(v) 88y,

where hye 0 (R™ and hye 0°(R"~—{0}) with compact support.

We now apply the above lemma (a) to the function k,(v) and (b) to
the function hy(v).

Since

g(k)(,,,) = {8/(,’,)7.—u}(lc—-l) = 0(,).-u)

therefore, for |v| > 1,

)jak lg® (fol)l o]~ = O(Zlvl"lvl ™ = 0 (Jo|=)
k=

=O0(o|"™?% for § =a—1—n/2>0 and for all 0<M< N,

as 7 — 00,

|D™ (k) (o)1

and so hy(v) is Fourier transform of some integrable function.
Algo since
g9 () = {s' (r)r*?

=00 % agr—>0

therefore, for |v] <2

m
ID™ (ha) (0)] < ) 04 g% (Io])|fo] =P
k=1
=0(p"™™) for § =28—a>0 and for al 0K M N,

and so H,(v) is Fourier transform of some integrable function.
Hence i(lv]) is Fourier transform of some integrable function for
n+2 < a < 2s. Congequently the theorem for » > 2 is proved.

§ 5. Remarks. Since Fourier—Stieltjes transform implies (Z7, L%)
multiplier for 1 < p < oo, special case of our theorem implies B. M. Stein’s
result [7] which is given without proof. Algo more general kernel but
IP-case for 1 < p < oo is given by R. L. Wheeden [12] by completely
different method.
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