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Absgtract. Lot L (H, 1) be the ket of bounded linear operators from the Banach
gpaco B to the Banneh spaco J0 LI m i o moasure delined on a ring € of subsots of 7'
with values int L (/, 1), for oach y* in the dual 2%, ono defines a mesatres Myx from
% into J¥. Algo for cach A in % one may define a semi-norm Dm,4 o0 I din terms
of the g-variation of myx. Topologics aro defined on the unit sphere &* of F* utilizing
those semi-norms. We then investigate tho rolationships of these topologies to the
propertios of the moeasures. Wo congider when tho topologies ave Iausdorlt and when
they are compact. Wo then econsider operators on 24 (4) (1 < p « co) using thoe above
topologics. For example, if U is & continuous oporator from 24 (u) into B and it U is
abrolutely eontinuous with respoect o 4 then U is compact it and only if the associaboed
topology makes ¢* compact. Additional results for continnous and eompaet oporators
U which are sbsolutely continuous with vospoet to g are obinined.

1. Introduction. The recont definitive work by W. Orliez in [6]
generates additional intorest in the relationship of topologies placed on
the unit sphere ¢* of u dual space J™ to the meagsure theoretic properties.
In particular, in [4] and [6] & topology associated with a measure is defined
a8 follows.

Lot L(H, I') be the set of boundod linear operators from the Banach
space B into the Banach space ' and lot % boe o ring of subsets of a non
empty set 1. It m is a mearure defined on % with values in L (H, &), then
for each .4 in % a semi-norm p,, , is defined on the dual ™ of I by

I
Dun, . (Y7) = My (A)

where m,, denotes tho variation of the measure m,. that maps % into the

dual B and is defined by ‘

My (A) = {m(d), y*>.

The colloction P of all sueh semi-norms for A in % generatos a topology
in the usual way. This topology when restricted to o, the unit sphore
of B, turns oub to ho of interest. Also of intorest is the topology gen-
erated by p,, 4 for A in % where m is now an clemont in the sot » (¥, I)
of finitely additive set functions from % into L (B, ). Among the numerous
resulty contained in [4] and [5] one main property seems to be central
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Namely, if the sphere o* is compact in the above topology the following
gtatements are equivalent.

(1) The measure m,. iy countably additive for y* in o

(2) The measure m is variationally semi regular, that is, if the se-
quence {4, }pey of sobs monomnimlly decreages to @ then the sequence
{M(A,)}ney converges to 0, where  is the semi-variation of m.

(3) The measure 7 is norm countaﬂbly additive.

For the spacoe Cy(I, B) of continuous functions defined on the locally
compact space H and vanishing at infinity, operators are defined and
studied in [8]. Among the main results iz the characterization of compact
operators on Cy(H, ). An operator is shown to be compact if a,n(l only
if the topology generated by p,, 4 for A in € is compact on o*. In this
cage m is the measure used to represent the operator as an integral. It is
natural to study corresponding results for operators defined on &7 spaces.
The g¢-semi variation of a measure seems to be the natural vehicle for

such a study. An example of this may be found in the representation theo-

rems for operators on %P spaces contained in [1]. As a mattor of fact
the notion of g-semi variation has recently been generalized to.p-bounded
variation and used for the study of £” spaces (see [7]).

In this article we will define & topology amlogom to that above by
replacing the variation m, with the g-variation (m,,,.)q of the measure M.
In particular, for A in ¢ we will define the semi-norms p,, 4 by

P, 4 (y*) = (lm’u*)q(A‘) .

As in [4] and [5] it will be of interest when o* is compact relative to this
topology. However here the situation is differentin that the above topol-
ogy need not be Hausdorif. It also should be pomted. out that in contrast
to the countable additivity of mm, the q—vmna‘umn (m,,.)q is only countably
subadditive. In [4] and [5] it was of interegt to determine under what
conditions m is countably additive. In the present situation eountable

additivity will follow from the fact that the ¢ semivariation is finite (for”

g # 1) (see [1]). In this respect at theé conclusion of thiy work, we will
be able to state some additional ideas which will require further research.

In [6] Orlicz studied the properties of weakly absolutely continuous
subadditive set functions. Snme of the present results are applicable to
the present sitnation when ¢* fails to be compact in contrast to tho situ-
ation in [B] where compactness iz always used.

The results of this article will be organized as follows. In Section 2,
the main notations and definitions will be presented. The topology of ¢*
will be studied, and the conditions under which the ¢.semi-variation is
right continuous will be established in Section 3. As pointed out earlier

one of our hypothesis will be-that ¢* is compact. If ¢* is not compact .
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some conditions introduced in [6] by Orlicz will be used. Conditions for
the topology to be Hausdortt will be defined and topologies corresponding
to dlfferem, values of ¢ will be compared. In Section 4, operators on % (u)
(1< p <l o0) spacos will be studied using the topology introduced in
Section 3. It U is a continuous operator from %% (u) into F' with U abso-
lutely continuous with respect to x4 then U is shown to be compact if and
only if the associated topology makes o compaet. Tt is then shown that
the g-semi variation iy right continuous if and only if there exists some
sequence of open Baire sets converging to @ and the integral satisfies

some continuity condition on tho unit hall of 24 (u) (for L |1 == 1, and
» q

P 5% 00). I U is o continuous and compact operator from L5 (u) into ¥
with U absolutely continuous with respect to «, it iy then shown that the
representative measure of U is countably additive. Finally if U is o contin-
uous operator from 2% (u) into & (p +# oo) and if

KU,y () = U, ¥

for fe %5(u) then it is shown that whenever |KU, 4" Yallpy for y*e o,
satisfios a Fatou condition and is dominated by o set function having the
0, property (see[6]), the representative measure of U has o right contin-
uous g¢-serui-variation.

The book [1] by N. Dinculeanu on Vector Meusures has gonoratoed
much interest in this area of research: Trequent reference to it will be
made throughout the paper.

2. Definitions and notations. As above € will denote o ring of subscts
of the non-empty seti ', and x will denote u positive finite measure on %.
For the Banach spaces B and 7, L(H, F) will denote all bounded linear
operators from I into F and ar"‘ will denote the unit sphere of the dual
space F* of J. By % (u) wo will donote all # valued functions that are
p-integrable with respect to x4 (in the sense of [17). IE f belongs to Eh (),
then I, (f) will denote the p-norm of £, If U is-u linear operator definod
on Z(u) wo will write U < u if 1T 4l =+ 0 whenever u(4) = O (seo [1]).
The letter m will denoto always 4 measure from % into L(H, .

, 11
Ar in [1], for 1L =7 ¢+ eo, :Z , o} v =1 the g-semi wvariation of the

meagure m is definod for A in % 1)y
My (A) - wup | Zm (A ) ay|

where the supremum is taken over all disjoint ﬁ(ﬂH Ay in € and w, in H
for ¢ in & finite indexing sot I and for which N » Z La,%) < 1 Por A4
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of the measure m is defined for 4 in € by my(d) = supX|m(4,)| |z
where the supremum is taken in the same manner ag the g-semi variation.

Two important properties of these definitions are

(1) My (A) = sup{(mu),(4): ¥* in o*}.

(2) My = M, if F is the field of scalats.

The set r(H, I") will denote all finitely additive set functions from #
into L(H,F).

For the set »(#, I} defined above, we will let 7, represent that sub-
collection of set functions m in r(¥,F) whose g-variation, m,, is finite
on #. If ¢ 51, it is known that m is countably additive.

A sequence {4} e of sets in € is said to be decreasing monotonically

to @ if ﬂ A, =@. In this case we will write {4,},y d.m. @.

A scalar valued set function A4 on ¥ is said to be right continuous
at the sequence {4,},.y of sets in ¢ if 4, d.m. @ implies that the sequence
{AN (A )} ey converges to 0. The funetion A" satisfies the O, property (as
in [6]) if for every sequence {B,},.n of digjoint sets in ¥, the sequence
{A (B)}new converges to 0 (some authors have referred to this property
ag “strongly bounded”).

It is shown in [6] that while every function of finite variation satisfies
the 0, condition, the converse need not be true.

The scalar valued function » is said to satisfy the Fatou property
if 5 is real valued and if liminfy (#,) > »(H) whenever I, = B and the
sequence {u(H— H,)},y converges to 0. ‘

‘We finally recall that ‘

a-|ile

(3) (my) (A) == p[z '(A q_l] if ¢%1 where the sup is
taken over a finite family of dlsJomt sets A; from % with 4, ¢ 4% and
[m(B)

(4) (my) (4) = sup ———(E)— = (M) (4) where the sup is taken
0
over Be %, B = Ae%. The convention that o is interpreted as 0 is main-

tained.
In general all the notations and concepts pertaining to vector meagures
can be found in [1].

3. Tepologies associated with m,. For m in r, and 4 in % we consider
the functions p,, 4 defined on ™ by
pm,A(y*) = (m;)q(-A)

In the unit sphere o* of F* we consider the following two topologies.

icm
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We denote by 0,,, the woeakest topology on ¢ making all qeml—norms
(which we now Prove) P, 4 continuous. By &, we mean the topology on o*
generated (in the usual way) by all the semi-norms p, 4 for A in % and m
in r,.

LemMA 1. For every 1 < ¢ < 00, Py, 4 18 @ SEMI-NOTM 0% ™, Thus B™*
is a locally convex space und(w the topology generated by p,, 4 (see [87).

Proof. It is elear from the formula defining (M), that p,, 4 (oy™)
= |a| P, 4(y"). Since

P, 4T "{""/2 == ‘111:[)[

fot ¢ # oo (where the sup is taken over a finite sequence of disjoint sets
A, with A; = A) it follows from the Minkowski inequality applied to
the g-summable sequences .

_ Jmma( (-At)l

where @, = 7
/"'(-Ai) e /‘(Ai)

{a}ien 304 {bi}sar

that . .
Drm, d (YT +92) < P, a (1) + Do, 2 (92
If g = oo the mequmlmy follows immediately from the expression for
(M) o -
From [4] we are motivated to define tho boqmqu/ of 7, to be a.]l m
in r, such that whenever 4 is in ¢ there oxists some ¥ in o* w1t,h n, o(4)
(my“ (-A)
LEMMA 2. If (0%, 8,,,) 48 a compact space then the boundary of v, @s 7.
Proof. There exists a sequence {yy}.qy in o* such that the sequence
{m )(A)}pay comverges to (). Without loss of generality we may
Un,

assume (by compactness) that {yh},v converges to y* in the O, o topology
(for some y* in ¢*). Thus the sequence {[(my),(4d) - (m (A [Jney cOM

verges to 0 and () == (i) (4).

If o™ is eompn,ct in the topology generatod by tho seminorm P, 4
(for m and A fixed) then dn,(A) = (M), (A). The proof follows the proof
of Lemma 2.

Since vight continuity of 7, will be of importance for later results,
the following theorem, which. ou1.1uma gomo bagic resgulty in, Lhu.’r direction,
will be of interest.

TuzorEM 1. Let {4 }new b0 o sequence of sels in ¥, decreasing mono-
tomoally to @. If o™ fo.s oommcL in the topology generated by Py, 4,5 thon there

""""""" Dol Ay) =iy (A,). Moreover if

y* is an acoumulation point of {Ynlnay tlw above topology, then the follow-
ing statements hold.
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(a) If (myu), is right continuous at {A,}uey then ing is vight continuous
at {‘ATL}VLEN g ’ ’
(b) If q # 1 and m is in 7, then m, is countably additive.

(e) If (myp), s vight comtinuous at {4} and if u(d,)> 0 then 1,
is comtinuous at {4}y for all L<<r<q.

(A) If m s in vy and if my. is countably additive for every o* in o
them My 58 right contimuous at every sequence {4} vy dm. @,

(8) If (myu), satisfics the O, condition and the Fatou property for cach
inereasing {4}, then (M), is right continuous at every sequence {4} nenw
dom. @. : .

If " is mot mecessarily compact in the topology Om,qr then iy ds still
right continuous af every sequence {A,}nay dom. @ provided there cwisls
some set fumetion A from % into T -for-which

(£) (Mg)y < A for every 2* in o*.

(8) A satisfies the O, condition. ) o

(h) Bach (i), satisfies the Fatou condition (2 in o*).

Proof. First we show statement (a). If 7, is not right continuous
at {4, }nqy We may assumo that for some ¢ > 0, 7, (4,) > s Then p,, A, (Yn)
> ¢ (Y, exists by the note preceding the theorem). Thus Ponay (Un—9")
< /4 for all % > N. Consequently p,, 4, (Un—9") < &[4 for n = N. However
by Lemma 1, p,, 4 (4¥) > /2. This contradicts the hypothesis that. (M) g
is right eontinuous at {4}, : ; L

Statement (b) is shown in [1]. Statemen (c) follows from. (a) and
from the inequality

w(A)" i, (A) << (), (A)

for 4 such that u(4)> 0 (see [L]). .

In statement (d), if m is in r,, then m < u Thus M. = my. In [4]
the stated property is shown to be true for m.

Statement (e) follows from Theorem 4 of [6] applied to (M)

Finally the second part of the thoorem follows from Thoorem 7
of [6]. It is mecessary to apply that theorem to the family M == {(Pg)y:
#*c 0"}, In particular as needed there, it the sequence {(#i),(4,)}ney
converges uniformly to 0 for 2* in ¢* then the sequence {fg (A
converges to 0. This completes the proof of the theorem.

Applying the results of [6] to the above family M would yield condi-
tions under which the (m), are uniformly absolutely contintious with
respect to w4 (in the ¢ 4§ sense).

We can now obtain conditions equivalent to the space (o® é,) being
Hausdorff. ‘

n) }neN

for o*,
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TuMMA 3. The following conditions are equivalent.

(1) The space (0*, 8,) is Hausdorff.

(2) The closure of the lincar span of ) U’,fm(./l)a is I (for o the unit
sphere of ). mety Aet

(8) The topology o, 8 stronger tham the weak” topology.

Proof. The proof follows a pattern similar to that in [4]. That .(3)
implies (1) 18 clear. Now assume that (1) is troe and 1;11_&1: ((2) iy false. Pick
a non-zoro # in o such that for o finite indexing sot I, (%mm (Aywg, 2y

2L
= () (the ¢; are sealars and the a; belong o o). Thus m, = 0 :;md (M) == 0.
TLonce P, 4(2) = 0 for all m in ry and 4 in . This contradicts (1),
inally wo show that (2) dmnplics (3). Assume tho net {£,} e nogwerges
to # in the topology d,. To show (2.} converges to 2 in the weak topol-

ogy, lot &;, 4, m; bo such that ||y -—‘12'~eim¢(¢1i)m,¢ < &/2. For some a,

and a > a, we have ‘

k' k e SR .
D il Ny (X gy (i 2= 8)g(A) < &

gz L

So

It L ]
’<Z’s,;m¢(11.i)w¢, Zg—ay| == K‘_)_:sifXdiawm“ By 7
fan] Gl

& e
2 |81 -Nz)(XA?;mi) (M5 2~ 2)g(As) =< &2
Pl

It follows that |{y, 7,—2)| < 2e. .
Turorem 2. (1) If (0¥, 8,) is o Hausdorff space then (a y Og) ’L::} compact
if and only if (0%, 8,) == (0", wk"), where wk™ represents the weak™ topology

(2) If (o*, 0,) and (a*, 8,) are Hausdor[f spaces then (o, 8,) and (&%, 8,)
are both compact if and only if 0, - 8, - wk".

Proof. Wo show (1), If (¢ 8,) is Hausdorff then the .‘i.(‘lm'xf.ii‘y;}kr map
from (o, 8,) onto (¢*, wk* ix continnous by Lovmn 3. Sineo (o, wk™)
i w Ilausdortt spaco, the map is o homeomorphisim. Of course slatemont (2)

Aollows immedintely from statement (1)

In contrast to the situation depicted in [4] one tay have (6", 8,)
as & non Iaosdortt space. 18 g 8 identically zero, then », roau(m to 4ero.
Thus statemont (2) of Lemma 3 shows that (0¥, d,) is non ]!.mmdor:ﬁi;
The other extromo is to have w purely atomic. Then (o™, (Sq) is always
a Wansdortt space. In fact lot my(A) ~~ 0 when t¢.4 and my(d) ==
Ue L(H, F) whon. t c.4. T 4,8 tho atom containing ¢, (u(4y) > 0. TEB « Ay,
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v

-1
uldy) ¢
is finite. So m, belongs to #,. By statement (2) of Lemma 3, it follows that
(0", 8,) is Hausdorff.

The preceding observations point out that there are many more
countably additive measures than measutes in 7, (for ¢ s 1). In [4] some
conditions were pointed out which were equivalent to the topology gene-
rated by P, 4 (m finitely additive, fixed, and A in % also fixed). A brief
look at the proof shows that this does not carry over to the present setting
since the point mass in general is not in »,. However we have the following
result.

Prorosrrion 1. Assume (0¥, 8,) is a Hausdorff space, then the follow-
ing conditions are equivalent. )

(1) The topology generated by p,, 4 (for m in v, fived and A in € also
fiwed) is Housdorff.

(2) 7 = {n: m in v, for which (my.), = 0 implies (ny), = 0}.

(3) The topology generated by p,, 4 on o* is stronger than the wlk* topol-
ogy of o*.

Proot. If (2) holds and (1) does not, there, exists a non-zero 5* in o*
such that (m,.), = 0. Thus for all n in 7, (#,.), = 0. This contradicts
the fact that (0¥, 8,) is a Hausdortf space. The rest of the proof follows
the pattern of [4] and will not be reproduced here.

then u(B) =0 if and only if B =0), then (f)y(4) =

4. Linear operators on #%. In this section %, ; will denote the ¢-ring
of wo-finite subsets of T' (sée [1]). Now if 1 < P < oo, if U is a continuous
linear operator from #%(u) into F with U < u and if Te %,,y, then there
exists a unique measure m from ¢ into L(¥,F) with m,(T) finite and
U(f) = [ fdm.If p = co, then there exists a finitely additive set funection
m from ¥ into L(R, X) with i, (T) < co such that U(f) = [ fdm for all
in 2% (p) where R denotes the scalar field (zee [1]).

THEOREM 3. (1) Let p 5 oo, 1/p+1jg =1 and let Te Co,ye If U is
a continuous linear operator from %% (u) into T such that U. < Wy then U
is o compact operator if and only if (o*, Om,q) 18 @ compact space.

(2) Let p = oo, If U is a comtinuous linear operator from LF(u)
into F such that U < u, then U is & compact operator if and only if (o, 6
8 a compact space.

Proof. In showing (1), let us assume that U is compact and let
{Zn}new Do a sequence in o*. Without loss of generality we may assume
that the sequence converges to z* in the weak* topology. Thus we need
o show that the sequence converges to ¢* in the O, topology. (Now
the sequence {U”(¢)},qy converges to U*(¢*) in the norm (see [3]).)

m, 1)
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Note that (‘m";,)a w= (Mye)g HiNCO My hay values in a dual space. Thus for
A in %, there exists o digjoint sequence of sets 4, in @ with 4, = 4, ie N,

" guch that if ¢> 0 and if N, (3 g, @) <1 then,

(Mgt )g(A) <

-

QI m(Ayay, &~ 2>

(Mgt )o(A) KU(Z XA-L‘mi)y z*mz,’ﬁ>'+s
< Ny () a0 10 (& =)+ e
Consequently the sequence {#) .y converges to * i‘n* the 4, , topology.
Now assume that (%, 8, ,) is compact and let {en}lyy be & sequence

in ¢ Without loss of generality we may assume (by compactness) that
the sequence converges to " in the &y, , topology. If fe #%(u), then

IKfy U* (@) = U*(@*)) = KU (), 2h—~2"

- Kffdm, z;‘;-——z*>|

Thus

Since the latter converges to zero for » in N, the sequence {U*(z:;)}m_N
converges to U*(z*) in the norm. Thus U* iy compact and by [3] U is
compact. The proof of (2) is similar and will not be reproduced here,

Tor the next theorem let @ denote the o-ring generated by the com-
pact @, subsets of the locally compact Hlausdorit space I. Again 1£ 1<y
< oo, L/p+1/g = 1, and if mer, then it is shown in Ll] that “the 1ntggraul
of fe. &% (u) relative to m?” is defined (and is denoted by [ fdm) provided
that o, (4) is finite for all 4« %, , (the variation of m however, need not
be finite). o

The next theorem establishes a relation between the con?mmty ~oi
the integral [fdm on the unit ball of #% and the right continuity of m,.

TawoREM 4. Lot @ be as desoribed above and let p = oo, 1/p —Fl‘./Qm' L.
If m s a moeasure from € into L(B, I') with 1y Jinite onlfaf’,,,,, then the ‘mght
continuity of i, is equivalent to the following two conditions taken simul-
taneously. o

(1) For every sequence {Ay}yy of sold in € o'lom'maiﬂg monotomically
to O, there exists @ sequence of open Baire sets U, in T' such that A, < Uy,
o in N, and the sequonce {My(U,) by converges to 0. 0 s

(2) The sequenco ||[f,dm||.y converges um‘forml:t/ to Jor ovory
s6quienos {fn}mN in M%E% w“h| }-Nn(fn) < L and fp (o) = 0 fOV‘ @ in INT,,
n in N.

Proof. Let us asswme that +i, is right continuous. As in the .proof.
of o gimilar result given. in [2], it can be shown (veplacing tl.n.e P quasi semi
variation by ;) that for every 4« % and s> 0 there exists a compact
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Baire set K and an open Baire set & with K < 4 « ¢ and m,(G¢—K) < .
Thus we obtain a sequence {U,},.y of open Baire sets with the sequence
{My(U,)}ney converging to 0. For every f, in £%(n) satisfying (2)

]ff"dm\ < sz(fn)ﬁg(Un) ;

Of course the latter becomes arbitrarily small.

Conversely assume (1) and (2) hold. Let {d,},. d.m. @ and let U,
be as above. Going to a subsequence if necessary, let us agsume #i,(4,) > ¢
for all ». Pick j large enough so that whenever the support of f is a subset
of Uy and N,(f)<1, |[fdm| < &/2. There exists some ze¢* and somo
finite set of disjoint subsets B; of 4, such that [(;'m(Bi)mi, 2| > & with

Np( Dy @) <L I f = g o then |[fdm| < e/2 which contradicts
T i

| [fdm| > e. Consequently the sequence {,(4,)},.y converges to 0.

We now study the case for ¢ = 1. Also for ¢ # 1 we may ask the
question for what kind of operators on %% (u) is the g-semi variation of
the representative measure right continuous?

If U is a continuous (in the norm of ¥%(u), 1< p < ) operator
with U < u, from #%(u) into ¥, then we introduce the operator (U, y*>
from &%(u) into the scalar field R defined by

Uy =<0 YD (1hed).

- THEOREM 5. (1) If U is a continuous and compact operator from LL (u)
into F'with U < u, then the representative measure of U is countably ad-
ditive. R

- (2) Let .U be a continuous operator from LL(u) into F (p # o) with
U < it andlet Te %,,1. If there exists a soalar valued set function A satisfying
the O, condition with (U, y"> 4, << A(4) for all A in € and with
Uminf[[KT, 4*D4 llp = KU, 4> all, for every A, and A in € for whioh the
sequence {u (A, —A)} .y converges to 0, then the represemtative measure
of U is g-variationally semiregular.

Proof. First we show statement (1). Since U and y* are continuous
and since (U, y*> has its range contained in R it follows that || |<T; ¥4l lleo
= KT, 4"l and that KT, 454l < KU, 950l < . Now U(f)
= [fdm where m is finitely additive (see [1]). It is eagy to see that
U Y™ () = [fdimn,. Thus [|[KT, vl [l = M, (T) which is finite.
By [1], m,. will be countably additive if and only if for every sequence
{@ntney I £ (1) which is decreasing and converging to 0 a.e. implies that
the sequence {<U,¥">(p,)}nay converges to 0. Since

KT, 4 ()] < [@allsiigs ()

e ©
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and the latter goos to 0 for we N, it follows that my. is countably additive.

Since U7 is assumed compact it follows that U* is alto. We now show that
& is compact in the topology generated by p,, m. yﬁﬂLet {Wataea PO @ n,eE
in o, Without loss of generalily we iy assume {fg}... converges to %
in the weak* topology. By compactness of U, U () converges vto‘ U™
in the norm of (,%72 (,M))*. Sinee my has values in o dual space (in the scalar
field here) there oxists a fumily A, of dixjoint sots of @ and scalars oy,
;] = 1 such that

mow (1) =

Uy~ u*

(X midda i IR

=[S D g iy 4D
| gy U =" )| e
S O R

Since the latter becomes arbifrarily small for # in N , it follows that ¢
is compact in the topology generated by P, Uﬂ}ng.f the compzugtness
of ¢* and the fact that my is countably additive, it is easy ’go give an
argument by contradiction to show that m is countably additive.

To show (2) we know from [1] sinco Te%,, that U(f) = [fam
where 4, (1) is finite, It in eany to check that

e

T3 9> all == KU 4"l == (Map)g(A)-

Tt then follows from the last part of Theovem 1L that m has a right conti-
nuous g-setni variation.

5. Some concluding remarks. It would be interesting to further stl}d.y
these topological xpaces associated with these measures. The tf):g)ologlci&l
spaces under considerntion, ny has been seen, need: not bcf metnzablg in
fact they nood not even be Hausdortf. It would be interesting tjo consm.elt
the requivement that (o 8,) ov (o% 8,,) bo ];)ﬂ:l‘%l:comp&(‘«t, Igleb?,’compaclz
or any of the other “compuetness type” conditions. W%m'b is the effec
of these conditions on tho corvesponding operator defined on L)t
The compaet oporators wre thon w subelass of the }cnlm& of ppm‘:ﬂ;@ﬂ 5O
oblained. Lot us emphusize agaln that to go beyond the marelros?mcted.
petiting of compactnons, wo found essential the resulty of Orlies in [6].
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Received May 27, 1972 (538) Abstract, Bonseh gpace ia uniformly non< if and only if it is B-convex if
and only if # () is not finitely representable in it If all B-convex Banach spaces are
reflexive, thon B-convexity 18 oquivalent to supoer-reflexivity. The non-reflexive
space J which i isomotrically isomorphie to J' ** {5 not only not B-convex, but posseses
a property which is sufficient but not nocossary for non-B-convexity (e, is finitely
represontablo in J).

It has long been known. that a Banach space is reflexive if it is uni-
formly non-square. It is not known whether a Banach space is reflexive
if it is uniformly non-I®. It is shown that if this conjecture iz correct,
then o Banach space is super-roflexive if and only if it is uniformly non-#,
The sgpace J that is nonreflexive and isometric to J* might have been
a prime candidato for o counterexample to this conjecture, butb it is shown
that both ¢ and I are finitely representable in J. It also is shown that,
it 2 and every uniformly non-lf) Banach space iy reflexive, then
every uniformly non-i{ space is super-reflexive.

DEFNITIoN L. For n 2 and &> 0, a normed linear space being
(n, &)-convew means that there does not exist a subset {w, ..., w,} of the
unit ball such that, for all choices of signs,

leﬂ:maﬁ-"ﬂ:wn” > n(l~—e).

For n3> 2, a uniformly non-t{ normed linear space iy & normed lineax
space that is (n, s)-convex for some & > 0. A B-convew normed linear space
is a normed linear space that is uniformly nond{) for some » = 2.

A B-convex Banach pace is known to bereflexive if it has an unoondi-
tional basis (seo [37, Theorem IIT.6, p. 142 or [9], Theorem 2.2), or
(in the resl case) if it can be endowed with & partial order under which
it becomes a normod Riesz space (equivalently, a normed linear vector
lattice; seo [B]), Beck proved that a Banach gpace is B-convex it and
only if a certain law of large numbers is valid for random variables with
ranges in the space [1], which implies that B-convexity is igomorphically

* This research was supported in part by NSI' Grant GP —28678
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