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a definition of topological sum of two topological gpaced, we refer to
Dugundji [3].

Levwa 6. If X, Y are compact Hausdorff spaces then ¢ (X, B™ s
tsomairio with C(Y, R") if and only if the sum of n copies of X is homeo-
morphic with the sum of n copies of Y.

Proof. It is verified that O(X, R™ is isometric with ¢ (¥, R" if
and only if C{X Xn, R) is isometric with C(Y¥ xn , R). Hence from Ba-
nach-Stone theorem X X# is homeomorphic with ¥ xn i.e. the topolo-
gical sum of » copies of X is homeomorphic with the topological sum
of » copies of Y.

It is known that for each integer m > 2, there are non-homeomorphic
compact metric spaces X, ¥ such that X x # is homeomorphic with ¥ x 7y
Hanf [4]. A concrete description of such spaces X, Y, n =2 is provided
in Sundaresan [10]. More generally there exist compact metric spaces
X, Y such that X x% # ¥ Xkiork = L2,..,n—-1,and X xn = ¥ xn
Kroonenberg [6]. ’

It follows from Lemma 6 and preceeding remarks that there are nomn-
homeomorphic compact metrie spaces X, Y such that O(X, R") is iso-
metric with 0(Y, R") for n £ 2. This justifies the additional hypothesis
on the isometry in the preceeding theorem. ;
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Decompositions of set functions

by

L. DREWNOWSKI (Poznan)

Abstract. Let # be a ring of sets. With each set He # a collection of classes
9 < &, consisting of disjoint sets, is associated in such a way that the set & of all
resulting pairs (#, 2) satisfies certain very natural conditions. The & is then called
an additivity on # (Section 2). Notions of S-additive and G-singular group valued
seb functions are next introduced and investigated to some degree; when specifying &
one obtaing, e.g., notions of c-additive and purely finitely additive or n-continuous
and 7-singular funetions. For a very important class of the so called exhaustive
(= strongly bounded) set functions a decomposition theorem (3.11) is proved, whose
special cases are the Hewitt—~Yosida and Lebesgue decompositions for group valued
functions. Analogons of general and special decompositions are established also for
gome nonadditive functions (sumbeasures) and for Fréchet-Nikodym topologies
on # (Section 4). By the way a theorem is given (2.14") which contains the Vitali-
Hahn-Saks, Nikodym and Brooks-Jewett theorems. '

Introduction. Let # be a ring of sets and let u,  be additive real-
valued set functions on # with u bounded and 5 = 0. We say that u is
n-continuous and write u < 5 if, given ¢> 0, there is 6> 0 such that
ju(B)| < e whenever 5(H) < 6, BeZ. At first sight it is not seen at all
that the properties “u is countably additive” and “u is 7-continuous”
have much in common. However, it can be proved ([10]; [7], II) that
u <9 iff p(B,) ~ 0 provided E, M and n(E,) — 0,(H,) = #Z. The latter
condition can be equivalently formulated as follows: if (#,) is a disjoint

o0 n
sequence of sety in #, Be#, | J B, F and 7;(E\7UE,C)—->O, then
fe==1

M=l

p(B) = > u(B,); the resemblance with the definition of countably
A=l

" additivity is striking. Thiz observation was first made and employed by

W. Orlicz in his study of absolute continuity of vector valued set fune-
tions [10]; it motivates the general notion of S-additivity introduced
in Section 2. Also, it had suggested a quite natural conjecture that it
should been possible to obtain the well known Hewitt—Yosida and Lebesgue
decompositions of additive set function in o unified faghion. This is realized
in the present paper for exhaustive additive set functions with values
in an arbitrary abelian complete topological group &. The method we
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use seecms to be new even in the sealar case: lattice mothods are ox-
cluded — instead of them completeness of @ is exploited, assumption
of boundedness of a set function is replaced by its exhaustivity — a Pprop-
erty the importance of which was only recently brought to light [2], [5],
[7], [9], and the relation < plays the leading role in definitions, theorems
and proofs. For example, our definition of a purely finitely additive
set function u: # — @ sounds as follows: w is p.fa. if the conditions
A & —@ iy o-additive, 4 < Hy imply 1 = 0.

0. Basic notions, terminology and mnotations. Iiverywhere in the
sequel Z ig a ring of sets (- or o-ring if explicitely stated). I# AB <N
then oAF :={AdNB: Ade s, Bed}; in the case # = {B} we write
A B instead of oA {B}. The operations G, Ay = (difference) are defined
similarly. 2 is the generic notation for a class of pairwise disjoint sots
from # and 4 = 4(%) denotes the set of all such classes. 4, is the set
of all finite classes Ze 4, 4 o the set of all at most countable @ in 4. It
D1y Dye A then 2, < 9, means that for every Dye 9, there exists D, e 9,
such that D, < D,. It is clear that < partially orders 4, and more, that 4
is directed by <, for 9, < 9,4 9, for arbitrary @,e 4, ¢ =1, 2.

If 4 is a set then the class of all finite subsets F of 4 is dencted by
F(4).

Let @ be a topological abelian group. Then a(R;@) denotes the
group of all additive set functions pr & —>G and ca(Z;Q), ea(%;R)
are its subgroups consisting of all countably additive and all exhausting u,
respectively. Recall that ue a(2; @) is said to be ewhaustive [7] (= strongly
bounded [11], [2], [5]) if u(®,) - 0 for each disjoint sequence (E,) < &.

If @is a weakly sequentially complete -locally convex linear space
or & Banach space which containg no subspace isomorphic to Gy, o1 if #
is a ¢ring and @ is separable normed linear space, then ue a(%; @) is
exhaustive iff it is bounded [5]. :

If Z iy a o-ring then ¢a(Z; @) < ea(%; G); in general this is no longer
true if # is merely a ring ([7] II).

As concerns the definitions and results cited below, the reader is
refered to [7].

A topology I' on # is called a Fréchet-Nikodym topology (shortly :
FN-topology) if # (with the sSymimetric difference A I = (BNF)y U(F\EB)
a8 addition) is a topological group under [" and if, moreover, the operation
of intersection (#,F) - EnF is uniformly continuous on %. Thus
(#; A, N) equipped with I'js 2 topological ring with the uniformly con-
tinnous multiplication N. Tt 7 38 & submeasure on & (Le, 7: & - [0, oo]
and 74(@) =0, A =B =y(d)<n(B), 54 VUB) < 9(4)+9(B)), then
I'() is the FN -topology on # determined by 7, that is by the Fréchet—
Nikodym ecart (4, B) e n(4AB). Every FN -topology I"on # ig generated
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by a family (»,: t<T) of submeasures on # and, conversely, with each
such & family a unique FN-topology, denoted I'(;: teT), is associated.

If pea(Z;@) then p < I means that u is f-ooa'btiaz1¢ous, Which_is
equivalent with I'-continuity of 4 at @ as well as with uniform I-contin-
uity of 4 on . For each pe a(%; &) there exists the coarsest FN-topology,
I'(p), with respect to which 4 is continuous. If & is a base of neighbourhoods
of 0 in G then the classes %y = {B<%: u(F)e U for each F < E, Fe#},
Ue%, constitute a base of neighbourhoods of @ in (%, I'(u)). Anothe}‘
way to describe I'(u) is the following: Let a family (Hf:._ teT) of quasi-
norms on @ determine the topology of @ Then I'(u) = I'( ut: te T), where
the submeasure u’ on Z, called the submeasure majorant for u with respect
to |-];, is defined by the formula w'(B) = sup{lu(F);: F < B, Fe%}.

If u, v are topological groups valued additive set functions then u
is »-continuous means that u < I'(v) (equivalently, I'(u) = F(v))., a‘nd
we write 4 < ». If one (or both) of u, » is a submeasure then v-contlnmt;y
of y is defined in the same way. u and » are called equivalent, u ~ v, if
# <Ly < u, le., I'u) = I'(v). i

An FN-topology I' on £ is said to be ewhaustive (order continuous)
if each infinite disjoint sequence (K,) < # is I-convergent to & (respec-
tively, if B, @ implies B, N @); similarly for submeasures. )

If peea(Z; G) or peca(#; @) then I'(u) is exhaustive or order conti-
nuous, respectively. )

Let H be the set of all submeasures on # with the order relation <
defined in the usual way: u; < 1, iff #,(F) < 9,(F) for each He. (H, <)
is a complete lattice: if @ 5= If = H then the supremum \/I{ and the
infinum AM of M in H exist and are defined by the formulas:

VI (E) = sup{u(B): pe M},

AM(H) = inf{u,(B,)+...+p,(Bn)}, Be,

where the infinum is taken over all finite (disjoint) decompositions
By, ..oy By, (ByeZ) of B and all sequences gy, ..., uy (u;el). )

In particular, gy A pe(B) = inf {p, (F) + ue(BE\F): Fe#, F < E}. Bvi-
dently, if uy, pye H then uv uy ~ gy -+ ps.

Note that it 2, 9e H and 2 < g then A ~Aan<npand A< Av g ~ 1.

The sot of all FN-fopologies on # is a complete lattice under order
relation <; the frivial topology {@, %)}, in what follows denoted often
by 0, and the discrete topology P(2#), ave the least and greatest FN-topol-
ogies on Z, respectively.

Tt is easy to verify that if I'; = I'(5: $eT,), ¢ =1,...,n, then

Lyvo vy =T v..vn: (b oy ty)e Ty Xoo XT,)
=T+ ng: (b eeny t)e Ty X X T)
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and
I“',J\.‘../\I’ﬂ =T(ml At (b ey ) el X X T).

1. Preparatory lemmas. In all of thig section, with the exception
of Lemma 1.5, G1is a complete Hausdorff topological abelian group. As
concerns summability in topological groups we refer to [3].

L1, LeMMA. An additive set function u: & — G is ewhaustive iff for
each De d the family (,u(D): De D) is summable in Q.

Proof. Let ue a(%; @), De 4. We show that (y(f)): De @) satistios
the Cauchy condition for summability. Otherwise there is a neighbourhood
U of 0 in & such that for each @'¢{(2) thero exists 2" ¢ {(F\2’') with

#U2")¢ U. It is seen that an infinite sequence (2,) = {(2) can be found,
such that 2, N9, =@ if n # m and u(UD,)¢U, n =1,2, ..., contrary
to the assumption that we ea(%; ). The converse implicaA;ion ig- trivial.

The sum DZ,LL(.D) of a family (u(D): De9), where Ded, will be

D

frequently in the sequel denoted by u(2).

Remark., A family (: teI) of elements of @ is summable iff the
additive set function &: {(I) - @ defined by means of the formula & (J)
= Zm,, J e f(I), is exhaustive.

12 Levma. Let peea(R; @), (D,)gecd (thus o 5= = D,ND, = @),
Then for each closed nezghbomhood U of 0 in @ there ewists Ioe’f(I such
that if J = INI, and for each ied, 9,c 4 and \JD, = D,, then

D u@)e U
€

The particular case: U
norm on @ and &> 0.

Proof. Suppose that it is not so for some T. Thus, given Kef(I)
there is J < INK and a family (2,),,, where 2,4 and (JZ, < D,
such that 2 #(D,)¢ U. Then we can find J'<f(J) with the property

that Y’ M(PZ ¢ U and next, for each te J”, a class 2}¢ {(2,) in such a way
that Zﬂ(@ ~M(LJJ U2)¢U.

Now it is evident that starting from an arbitrary Ke f(I), repeating
the above argument to the set K' =K uJ’, etc., we obtain a contra~
diction.

1.3. ImvMA, If peea(Z;Q), Ded and U2 < B, where Ee#, then
for each continuous quasi-norm |-| on G we have

|#(D) < u(H),
(B = 2)| < u(B).

= {we @ |2| < &}, where |-| is & (continuous) quasi-
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1.4. LeMMA. If peoa(Z; @), @ # 4y, 4 and 4, is divected by <,

then lim u(9P) ewists.
Ded

Proof. We are going to prove that (u(2): e 4 o) is a Cauchy net
in & Let |-| be a continuous quasi-norm on G and suppose that (e(2
DeA ) does not satisfy the Cauchy condition with respect to |-]. Then
there exists a sequence (2,) = 4, and a number > 0 such that

9, < D, <
and
W(@n—{-l)"'fu( 1 =1,2,...
Applying 1.2 to the class @, we find P §(2,) such that
| Y (#(@.5D): Deay)[<ei2, n=1,2,..,
where 9, = 2,\9;.

D)l > 3e,

Let B' = U9y, 9, =E'A79, (n =1,2,...). Since u(P!) = u(B")
and u(92,) = Zy(@ AD) = u(IL) +D§1,u(9 O .D), we have
(Dryy) — (D > 26, n=1,2,...
Now, again by Lemma 1.2, there is 2;¢{(2}) such that
[Z(#(@;AD):‘ Dedy)<ef2s, n=2,3,..,
where 92, = 9;\9,. Let B* = J 9;, 9%, = 9L AR (n =2,3,...). We

have u(23) = u(B?), E* = B,
I/“(gn-H)

lu(BNE)| = [u(2)) ~ u(25)| > e+(3[4)e

Continuing we find a sequence (E"), .y in # such that B"| and |u(E"\NE")]|
>¢ for m =1,2,... A contradiction.

LeMMA 1.5, Let G, H be arbitrary commutative topological groups and
let u: #—@Q, 2: # —~ H be additive set funciions. Then A < u iff for each
cowtinuons quasi-norm ||| on H there is a continuous quasi-norm |-} on G
such that

B> et+ef2, n=2,3,...
and

I2( < (),
where u denotes the submeasure majorant for u with respect to |- |.
Proof. Sufficieney of the condition is obvious.

Nocessity. According to ([7] I; 2.8) there exists a sequence (|-|,)
of quasi-norms on @ such that

N <1 = S BB

n=1
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where x' is the submeasure majorant for u with respect to |- |,. Let

L= D270 e ) L e [ L)
n=1
Clearly, u < n, where ;i is with respect to] -|. Since 27" (& 4-... 47" x
XA+t 4u") < p (n =1,2,...), we have 5 < i Thus 4 < N
and hence [|A(:)] < u(z).
Remark. The above lemma, modified in the obvious way, is valid
also if 2 is a submeasure on %.
2. G-additivity and G-singularity, Given a sct 6 < B XA(R), lot
us denote
Cll] = {9cd: (B, 2)eC}, R
and

dg = S[H].
EeR

2.1. DEFINITION. An additivity on % is a set S = % x 4 (#) such that .

the following conditions ave satisfied:
(al) 4; = ds and | {B} xS[E] = &.
e

(22) It e, cG[B], then J 9 < B.

(a3) If Be2 and 2,, 9,¢S[H] then 9, 2,¢S[H].

(a4) If B,FeR, F < B and 9<G[F] then FAFS[F].

(a8) ¥ By, Bye R, B,NE, =0 and D;«S[H;] (4 =1,2) then
9,V 2,¢G[E, UE,]. .

(a6)If BeZ, 9<G[F], and each De P is the union of two disjoint
sets Dy, Dye &, then 9* = {D;: De D, i = 1,2}eG[H]

: It follows from (a1) and (a3) that for each Ec% the class G[H]
Is nonempty and is directed by the order relation < defined in Section 0.

2.2. EXAMPLES OF ADDITIVITIES. 1) G ={{B,2): B<#, De 4; and
U2 = 5.

2) ‘Gc‘—_—' {=, @).: Hed, D¢ A, and (U2 = E}. More generally: let m
be an infinite cardinal; then &, = {(B,2): Be®, Fec 4, card(D)=sm
and U2 = B} is also an additivity on &.

3) G, ={(F,2): Be# Dedand U9 = I}.

4) Let A" Dbe an ideal of #. Then Sy(A) = {(B,D): BeR, De Ay,
U_@ < ) anq ENUZeA} and G, (A), Gp(A), Gu(H#) — defined in
a gimilar faghion —are additivities on 2.

5) Let I' be m} FN-topology on #. Given a class & =, call a set
Ee.%_ to be a f—unzon of &, B = (I') U &, if for every neighbourhood #
of @in (2, I') there exists &4« f(¢) such that BA|J &’ % whenever Eqpc &
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€f(&). (Thus B = (IMlm (&' & <f(#)), ie., T isthe limit in (&, I')
of the net ({_&": &< {(¢)). Then &,(I') = {(B, 2): Be &, e d,, D < B
and (I U 2 = B} as well as G,(I), similarly defined, and also G, (I"),
Syua(I), in the definitions of which we require that | J @ = B, are addi-
tivities on . Special cases of these additivities are obtained if I' = I'(y),
where 7 i8 a submeasure on #Z. The 7-additivity on £ is, by definition,
S(n) = GE(I’(n)). Note that if @e 4,, (D,: neN) is an enumeration of 2

n
(DunD,, =@ ifn #m) and P < B, then(y) U2 =B i n(B\ D)
~ 0 asn — oo. k=1
6) Let @ be a topological group, and let & = ea(%; @). Then the addi-
tivity generated by & is, by definition, G (P) = {(H, 9): B<Z%, De 4,
U2 < F and for each uecd and F — B, Fe, the family (u(DNF):
De ) is summable in @ and Z(u(D NF): De D) = u(F)}.
2.3. Let & be the set of all additivities on #; & is (partially) ordered
by the set inclugion =. Evidently, S; and &, = {(#, 2): E<Z, De 4,
U2 < B} are the least and the greatest elements of &, respectively. It
is also clear that if &,, S,¢ ¥ then the supremum and the infimum of
{8, 8y} in (&, <) exist and are, respectively, i

GivG, =J {E} x{2:nDy: 2;<S,[H], ¢ =1,2}
and EeR
G1AB, =G, NG,

If(S,: tel)is afamily of additivities then A &, exists and = M) &,.

wl el

Therefore (&, <) is a completie lattice.

In the remaining part of this section @, H are commutative topolo-
gical groups and & is an additivity on £.

2.4. DerINITIONS. A set function u: # — G is said to be S-additive
if for each ZeZ# and P« G[E] the family (u(D): De P) is summable
in G and

D w(D) = p(B)
De2
or, equivalently,
lim u(ENU2) =0,
B'e§{(D) .
where f(2) is obviously considered with the directing relation <. An
FN-topology I' on # will be called S-continuous if

(I') lim (B\NU @) = 0
9'§(9)

for each He#, ¢ S[H]. In particular, a submeasuve 5 on # ig G-contin-
uous if

lim y(EI\NU2) =0,
Def(2)

Be®, D S[H].
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2.5. We explain the sense of S-additivity in the case of additivities
given in 2.3. Let u: Z - @ (¢ Hausdorff).

The &;-, S,y G- and G, -additivity of u is simply the finite, countable,
m—and complete (total) additivity, respectively.

The G¢(A )+, Bo(A )=y Gp(AH)- and S, (A )-additivily means the &,
efic., -additivity, respectively, together with the property He 4 = u(H)
= 0. Notice that &;(A#) = S,V S(A).

If 7 is a submeasure on # then &(x)- or, shortly, n-additivity of u
means simply that .

(B,) =« %, B, and %(H,)N\0 = u(H,) -0

if 4 is a submeasure then the same condition is equivalent to ©(#)-conti-
nuity of u. The notion of x-additivity has ity origin in [10].

It is obvious that 4 < I' implies &,(I")-, ete., -additivity (or -conti-
nuity) of u. And also, if I" iy an G-continuous FN-topology on £ then
u < I implies the S-additiviby (or S-continuity) of u.

Notice that &, -continuity of an FN-topology or submeasure is nothing
else as ity order continuity.

I I' is associated with a family (n;: teZ) of submeasures then.
is G-continuous iff each 7, is S-continuous (comp. with ([7] IXI; 8.1).
Hence, given an additivity © on %, there exists the strongest S-conti-
nuous FN-topology F(G) guch thm an FN-topology I' is ©-continuous
ift I' = I'(S).

2.6. TEHEORBM. If u: # — G is S-additive then the topology I'(w) is
S-continuous.

Proof. First, let |-| be a continuous quasi-norm on @, and let
be the corresponding submeasure majorant for u. Obviously, u: # - (G,] + |)
is G-continuous. We claim that u is S-continuous. Otherwise there exist
Ee#, 9¢S[F] and a number ¢ > 0 such that for each 2'<{(2)

RENU ') > ¢;
hence
(Fg) > e
for some Fg c ENU D', Foek.
Let us fix some 92'ef(2), Since PDAF,HeS[Fy] and
= Z(u(DNFq): De D), there exists 2"« {(2\2") such that
8 (g U 2")| > e

For ' U9"” we can repeat this argument. It is therefore evident, that
an infinite disjoint sequence (2,) = f(2) and a sequence (F,) = £ can
be found such that

Fy e U Dy, |uT,)] > e,

w(Fg)

n=1,2,..

icm

Decompositions of set functions 31

It 2 =) (2,AF,) uU(@ =7, u(g\ugn)(ee[ﬁp then u ()

n=1
= 3 w(D), hence u(F,) = > w(D)y—>0. We have obtained a contra-

De2* DeBp ARy,
diction. The assertion of the Theorem now follows, for I'(4) is generated

by the family of all such w's.

2.7. COROLLARY. If uea(%; @) is o-additive then I'(u) is order contin-
wous ([7] III; 8.4).

9.8. COROLLARY. Let pea(Z; @) and rea(R; H), or let A be a sub-
measure on X. Then:

(a) p is S-comtinuous iff u < I'(S).

b) If w is S-additive, & < p then A is S-additive (or G-continuous), too.

2.9. TEEOREM. Let 7 be an arbitrary submeasure on &, and p be an
exhausiive submeasure or ueea(®; G). Then the S-additivity (or S-conti-
nuity) of u is equivalent with ils 7-continuity in each of the following cases:

(8) & = &,(I'(m);

() & is a 6-ring and S = Sy (I'(n)v SH(A);

(c) # is a S-ring and G = S (A"),
where N, = {Be#: n(H) =0}

(Note that S,(A}) < By () v Sp(Hy) = S (T'(m)):

The meaning of the S-additivity (or S-continuity) of 4 in cases (a),
(b), (e) is the following:

(@) (B, n(B,)%0) = u(B,) ~ 0

(b) (B M0, n(E, 0} = pu(B,) — 0, and 5(B) =0 = u(B) = 0.

(e) p is c-additive (or order continuous) and

n(E) =0 = p(B) =0. ‘

Proof. In the case w is a submeasure the Theorem is a corollary
to ([7], IT; 6.1). So let ueea(#; G). Obviously, u < » implies that u is
S-additive. The inverse implication is less trivial.

(a) We assume that p is G,(n)-additive, i.e.,

(En\, 7 {(H, N 0) = u(H,) -0.

In order o prove that u < y it sutfices to show that if || is a quasi-norm
on G and u the corresponding submeasure majorant for u, then

(%) (B, 9(H,)%0) = B(B,)N0

The implication (x) being proved, we shall have u < 5 by ([7], IL; 6.1 (a)).
If (%) is not valid then there exists a sequence H,, 7(#,)x0" such that
AE,)>¢e>0,n=1,2,... Hence for every n<N we can find a set
F, < B, with |,u(11 ) > e Ifnls fixed then T, NH,» and 5 (F,NH,,) 0
(m — 00), 50 |u(F,NF,)| —0 (m — o). Since ly(I’ NE ) = p(Fa)l—
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— |p(FNE)|, we have [u(F,NH,)| > ¢ for sufficiently large m. Now it
is clear that a sequence 1 = ny < %, << ... can be found such that

o Fy By, ) > 2, B =1,2, ...

This however is impossible, for the sets F,\E,  are disjoint and
ue ea(Z; @). Similary, u < 7 in the case (b) follows from ([7], II; 6.1 (b))
and in (e) from ([7], II; 6.1 (c)) (see [7], III; 8.5).

2.10. ProrosItioN. Let G be complete and Hamsdorff and let T be
a family of comtinuous additive mappings f: G — H, total on G, i.c., if
v @ and f(x) =0 for each fe T then @ = 0. Then o function peeca(#; @)
is S-additive iff fou is G-additive for each feT.

Proof. Indeed, if DcZ, 2¢S[H], then u(2) exishy by 1.1. Hence,
assuming that all fou are G-additive, we have

foull) =fou(@),feT, so u(B) = u(9).

As a consequence of Theorem 2.9 and the preceeding proposition we
have

2.11. CoroLLARY. Under the assumptions of 2.10, if ue ea(#; &) and 7
is a submeasure on &, then u < 7 iff fou < for each feT.

One immediately obtains special cases of 2.10 and 2.11 when G is
a locally convex linear space and T a total set in its conjugate.

2.12. DeriNrtIoN. A family (u: teT) of G-valued get functions
(or submeasures) is said to be uniformly G-additive (S-continuous) if
for each HeZ and Pe G[E], lnn ,u,(D\UQ) = 0 uniformly for teT.

2 13 TemOREM. Let (u;: te T) be a family of uniformly exhaustive
G-valued additive set functions (or submeasures). If each of u, is S-additive
(S-continuous) then the family (u,: te T) is uniformly S-addstive (uniformly
S-continuous).

Proof. To prove the uniform S-additivity of the family (u,: teT)
if suffices to show that, given a quasi-norm |-| on &, the corresponding
family of submeasure majorants (p: teT) is uniformly S-continuous.
The family (u;: teT) is uniformly exhaustive ([7], II; 4.2) and each o
is &-continuous, by 2.5. Therefore we can assume that x4, are submeasures,
and have to verify that u(X) =stupy,(E), EeZ, is an G-continuous

X S/

submeasure. Clearly u is exhaustive. Suppose y is not S-continuous.
Thus there exist He#, 2« S[H] and &> 0 such that

4 w(BENU D) > ¢
for each 2'¢{(2). As in the proof of 2.6 one easily obtains a sequence

(t,) = T and a disjoint sequence (2,) = f(2) such that s, (U 2,)> ¢
n =1,2,... A contradiction.
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The above Theorem and a theorem of Brooks and Jewett [2], espe-
cially the version of this result presented in ([9]; 4.3) imply the following

2.14. COROLLARY. If # is a o-ring and o sequence (u,) < ea(Z; &)
28 such that each u, is S-additive and the limit

ILI'(.E) = }Lil'ﬂ /’Ln(E)
exists for each HWeR, then p, w,, neN, are uniformly evhaustive and wni-
Sformly G-additive.

Particular cases: (a) & =&;. (b) © =&, (The Nikodym theo-
rvem ([7], IJIX; 8.6), ([9]; 3.1). (b') & = &,,, m = ¥, (The generalized Niko-
dym theorem). (¢) & = G(n),  is a submeasure on # (The Vitali-Hahn—
Saks theorem [2]; Th. 3, [97; 4.4): Tf p, <9, » = 1,2, ..., then u, u, are
uniformly 7- contlnuous) () is a consequence of 2. 9 a.nd the foregoing
proposition.

All these cages and the Corollary 2.14 itself are included in the follow-
ing general theorem of Vitali-Hahn-Saks type.

2.14/. TanorEM. Let I' be an FN-topology on a o-ving Z. and let (u,)
be a sequence of exhaustive additive G-valued set functions on & such that
each u,, is IT-continuous and the limdt

p(B) = limp, (B)

exists for each Be&. Then w, u, (neN) are uniformly ewhoustive and uni-
formly I'-contimuous.

Proof. Let ||| be a continuous quasi-norm on @. Then for each
ne N there is a I-continuous submeasure 7, on # such that ||z, ()] < 7,
(comp. with 1.5 and [7], I; 2.8). It is obvious that for each ne N we

have ||lu,(:)| <5 = > 27 "min(l, ,) and 5 is a I-continuous submeasure
n==1

on #. By the usual Vitali~Hahn-Saks theorem (case (¢) above), the set
functions w,: # — (&, |*)); weN, are uniformly s-continuous, hence
uniformly I-continuous. Q.E.D.

Setting I" = I'(S) one obtains from 2.14" the Corollary 2.14.

214, Remark., In o similar fashion it can be proved that if (u,)
is a sequence of uniformly exhaustive additive G-valued functions on
a ring &, each j, being I-continuous, then u, are uniformly I'-continnous
(comp. the proofs of 2.9 and ([7], IL; 6.1)).

2.15. PROPOSITION. Suppose that S and an FN-topology I' on & are
related in such a way that the G-additivity of an (arbilrary) group valued
set function u defined on &, implies u < I. Then the uniform G-additivity
of a family (u;: teT) < a(X; &) implies its uniform I-continuity.

Similarly for submeasures.
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Proof. Let F(T; @) be the group of all functions f: T — @, equipped
with the topology of uniform convergence on 7. The uniform S-additivity
of (u;: teT) is equivalent with the S-additivity of the set function u: #
- F(T;®) defined by the formula u(®) = (g (H): teT), and this in
turn implies ¢ < I, i.e., the uniform I-continuity of (y,: teT).

In the case y; are submeagsures we agsume the uniform G&-continuity
of (u;: teT) and consider the submeasure u = \/ ;. It is S-continuous,

el .

hence w; are uniformly I™continuous.

In the next Theorem one easily recognizes the result of Diestel [5],
mentioned in Section 0 (proved here in a slightly different way than the
original one), and the well known theorems of Pettis on “weak” measures.

2.16. THROREM. Let & be a o-ring and X a Banach space. Let pe a(X; X)
and let 3 be a submeasure on Z.

(a) If uis bounded and separable valued (i.e., the set u[R] is separable),
then u is exhaustive.

(b) If u is weakly o-additive, i.e., " ou is o-additive for each a™*< X*
then u is o-additive.

() If wu is bounded and separable valued or o-additive, then the weak
n-continuity of u implies n-continuity of u.

Proof. (a) We can assume that X is separable. Since u is bounded,
#*opu is exhaustive for each #*e X* ([7], IL; 4.14). If x is not exhaustive
then there exist a disjoint sequence (#,) = £ and a number &> 0 such
that ||u(B,)| > & n = 1,2, ... Let a sequence (@) < {#*: |#*|| < 1} be so
chosen that |2} (x(B,))> & n =1,2,... Since X is separable, we" can
assume that the sequence () is pointwise convergent on X to some
@y «X*. Contrary to 2.14, the sequence (0 u) is not uniformly exhaustive,
for [zho u(H,)| > e.

(b) In view of 2.10, we need prove that x is exhaustive. It is clear
that y is bounded. Let (E,) be a disjoint sequence in £, and let & be the
o-ring generated by (#,). Then u[£] is separable, hence u(H,) — 0, by (a).

(c) follows from (a), (b) and 2.11.

Remarks. 1) The Theorem is obviously valid without the assumption
that X is complete. Besides, (a) and (c) remain true if “u is separable
valued” is replaced by “X is weakly sequentially complete (or D ¢p)”
(see Section 0).

2) The following observation is a corollary to 2.14: If # is a ¢-ring,
X a normed linear space, (u,) 2 8sequence of bounded additive set functions
onZto X and o (H) = lim u, (B) exists for each ¥ ¢ %, then u, (n = 0,1, ...)
are uniformly bounded, i.e.,

SUP{HMW(E)”' EE‘%: n = 0711 ...} < oo.
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To see this, consider u, as set functions from # into (X, ¢(X, X*)) and
apply 2.14 (G = &), ([7], II; 4.5, 4.8) and the fact that ¢(X, X*)-boun-
dedness implies boundedness in the norm topology of X.

We close this section with the definition of &-singulariby and some
remarks on it.

2.17. DEFINITION. An FN-topology I' on £ is said to be S-singular
if the only G-continuous FN-topology coarser than I" is the trivial one,
0 = {0, %)}, in other words if I'a I'(&) = 0.

An additive group-valued set function or submeasure u on # will
be called G-singular if the topology I'(u) is G-singular.

Probably more adequate name for the defined property of I' or u
is extremely mom G-continuous or non-G-additive; we shall use it some-

- times.

The following facts are quite obvious.
1) I' is G-singular iff each submeasure both &-continuous and I'™-
continuous vanishes on Z.

2) If I' is G-singular and I'y < I" then I is &-singular.

3) If u is G-singular and u, < u then u; is S-singular.

4) If u is G-singular then the relation 4 < u for an S-additive set
function taking valued in a Hausdorff group or an &-continuous sub-

measure A is possible only if 4 = 0. The converse statement is true if p
is a submeasure or ue ea(%; @), where G is complete (see 3.4).

5) Suppose that 7 is a submeasure on £. Then 7 is S-singular iff
any S-continuous submeasure A on # such that 1< # is identically zero.
“QOnly if” follows from 1). “If”: Let 1 be an &-continuous submeasure
on & such that 4 < 7. Then 1 ~ 1A 5 < 7 and, obviously, 1A 7 is G-contin-
uous. Therefore AA# = 0 and hence 4 = 0.

6) Suppose that &,, G, are subgroups of a topological group &, and
let an additive set function u maps % into Gy as well as into @,. Then the
properties of x4 “to be GS-additive” and “to be S-singular” do not depend
on the choice of the @; we wish consider as a range of u. Thus, in par-
ticular, these properties preserve if ome replaces G by its completion G.
Tt was just the reason we did not take the condition from 4) as a defi-
nition of G-singularity of u.

If G = &, then, following Hewitt and Yosida [8], an additive &,
gingular set function u may be called purely finitely additive. Let us
note, however, that this is not an appropriate term for the extremely
non-c-additive part in the general Hewitt—Yosida decomposition estab-
lished in 3.12 (a)~—rather “purely exhaustive” would be the better,
the more $0 as an analogon of H~Y. decomposition holds also for sub-
measures (see 4.3, 1).
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If 7 is submeasure on Z then ingtead of “S(n)-singular” we shall
say “n-singuler”, in accordance with the standard use of this torm. Thus,
e.g., & submeasure 4 is #-singular iff any submeasure » < A and simul-
taneously < % is equal to zero, and iff, by 5), 1A 5 = 0.

3. Decompositions of additive exhamstive set functions. Throughout
this section @, H are topological commutative groups with & Ilwusdortt
and complete (unless otherwise is explicitely stated), and & is a fixed
additivity on a ring #. Furthermore, with only a fow excoptions, we shall
deal with additive exhaustive set functions only. -

Let pe ea(Z; G). By 1.4 for each e there oxisty tho Lmit

W (B) = lim w(9).
2G| K
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- Let us note that if ue< ea(#; @) then x is G-additive itf Sg = p. There-
fore S maps. ea(#; ) onto the subgroup of ea(#; ) congisting of &-
additive functions, and Sof ==§ (ie., § iz a projection).

3.2 THROREM. L(,t Aeca(#; ), uecal#;@). If A< uand A is G-
additive then
2 < 8.

The same &8 true if A is w-comtinuouns and S-continvous submeasure on .

Proof. Let ||| be o quasi-norm on JI. 8ince 4 <€ p, in virtue of Lemma
1.5 thore iy a quasi-norm |+| on @ guch that [|A(:)| < #. Take e > 0 and
let 8 = 0 bo such ’l;lmﬂi

() - () = |]A )= e, Hek.

It is clear that u'e a(Z%; @). From 1.8 it follows that for each 'qmuﬂiqmmri We. claim that L
|*] on @ we have |u'(H)| gﬁ(E), Ded. Hence, u being an exhaustive L . Su(l) < § = A = e, Hek.
submeasure, u'eea(#;6) and 4 < u. The mapping u - u' of ea(#; ‘

into ea(%#; @) just defined will be denoted & (or S, if needed). Thus Su () Suppose that a sot We# is such ﬁmt

= glg[l]l;]#(@) yBed, and Su < p. Bvidently 8: ea(#; @) - ea(#; &) is Sp(H) < & bub |m(,1fj)u e e-by, where y > 0.

additive (linear if & is a topological linear space). ‘ In view of () it must be u(H) > 20 and hence [u (1| > 26 for some I« %,
3.1, Lmvya. For each peoa(%; @) the function Su is G-additive and e R, ‘

H-0ONtinALOUS. U Lot @< GLE] bo such that |u(@)] < 6 and | (DAT| < §. Sinco 4

Proof. Let |-| be a quasi-norm on @. Let He, DeS[H], and lot
e > 0. According to Lemma 1.2 there is Dy< f(2) such that if @, S[D]
De 9, then E AU 2

() <e as well ag
Sz ) (@) <8 and (@B F)| < a,

for every 9’ = 9\9,. Let 9*<S[H], @ < 2* be such that
- 18p(B)— (DY) < 6/2
Sinee u(2%) =]3}J;(@’50D), for each @lsf(.@, Dy = Dy, wo have

is B-additive, thore exints @ e §(2) for which.

< p[2

Lot us denote | @* == B, I =« FNF Wohave |u(IM| < 6, [u(FT N < 8
a.nc’l [A(ENE)] < /2. Iron‘m ()] 3 (Y] — | (F ABY] > 8 and sy
< RCE)] 2 JAENE A A < by -+ 12D, s0 A1) > e Thus, dssum.-
ing that S (HY < 8 and [A(W)]| > & wo have found two disjoint sobs P,
' < W oguch that A(EY] > e and [p(d")] = 8. Ropoeating, sinco S/»(E’)

'{S"(E)“‘Z“(@*;‘D)I = I{S”(E)‘W“(@*)} +{u(@") ~ EM(-@""AJ))}] < 8, there are disjoint subsots B% I of 7' for which [A(H")] > s and
Deay

Dy : | ()] = 8. Continuing in thix mmamner we get o contradiction, for p
Shot ‘ #2*AD)| < fetde = ¢, € ea(; (). Tho proof in the ewse 1 i o submeasure 18 alinogt unchangoed.
] ' FoOTENE 3.8, QoronrAnry. If G, I are complote and peoa(#; @), deca(Z; 1),
by (). Henos then A < u tmplies SA < Spu.
: [SM(E ZS,M(D)‘( ' ‘ R Indeod, 2 € p = 84 €4 <€ p = 84 < Sp, by 8.1, 3.2,
COonsequently, o o ‘ . 3,4, PROPONIEION. A funcidon ve sa(#; &) i3 S-singular iff

(a) (Aeoa(®; (), A <, A is S-additive) = A == 0, and iff
mm=2mm- (b) 8 == 0 ’
Dez '
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Proof. Obviously, &-singularity of » = (a), and (a) = (b), by 38.1.
Now assume that (b) holds. If # is an S-continuous submeasure on £ and
7 <7 then 7 < 8% by 3.2. Hence n = 0 and, in a consequence, I'(»)
is G-singular, i.e., » iy S-gingular.

3.5. COROLLARY. Let T be a total set of continuous additive mappings
f: G—~H. If veea(Z; @) then v is S-singular iff for is S-singular for
each feT.

P‘roof. If » is G-singular then S8» = 0, hence §(fow) == 0 for each
feT, ie., for are G-singular. The converse is proved similarly (we can
assume that H is complete). :

3.6. COROLLARY. Let X be a separated locally conven linear space. If
veea(X; X) then v is S-singular iff a*ov is G-singular for each x*eX™.

This follows immediately from 3.5, for we can assume now that X is
complete.

3.7. COROLLARY. For each pe ea(R; @) the function u—Su is S-sin-
gular and p-continuous. .

Proof. u—8p is G-singular, for S{u—S8u) =0. Its u-continuity
follows from 1.3: |u(B+2)| < u(B) = u—Su < .

Notation: 8'u = u—Su.

3.8. THEOREM. Let ue oa(#; @), Ae 6a(R; H). If A < u and A 18 S-gin-
gular then

A< 8u.
Proof. We begin as in the proof of 3.2 and claim that
SuB)< 6 = [AB|<e, Fea.
Suppose that for a set ¥ we have
Su@ <6 and AB)>ety, »>0.
F[‘hen Wcla can find F < F such that |u(F)| > 26. We can assume that H
is complete. By the definition of 8’'x and the equality SA = i
P e S[F] such that : y 0 there Js
lu(F)—pu(2)| < 8 A @)l < »/2.
Hence for some 2'¢ {(92), denoting | ) 2* = " and B\F* g
= = II', we have
e (BNFY) < 8 and IA(FY < p/2. Consequently, u(FY)] > & ar{d 1A
> ¢, and gimilarly as in 3.2 this easily leads to a contradiction.
3.9. CoroLLARY. If G, H are complete ea(R;Q 3 1
A o S y y beea(R; Q) Aeea(R; H) and

3.10. TurorEM. If G, H are complete and ue ea(Z; G), reea(Z; H),

and

then

A<u Yf A <Su and &1 <u
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Proof. “If?: Since S < pu, 8’4 < g, wo have A < pu. “Only if”
follows from 3.3 and 3.9.

3.11. MAIN TunorEM. FHach ueea(#; @) can be uniquely writlen in
the form

o= A4v,

where A, veoa(#; @), A is G-additive and v is S-singular. These functions
are namely A = Su, v == 8§ p, both u-continuous.

Proof. I A, » are a8 stated then Su--4 == v—8 u. Since Sp—2
Sy—88'u = 0. Hence
A = Sp and v = 8'u,

3.12. Particular cases in the Theorem 8.1L.

(a) 8 = B, = The HEwIrr—YO0SIDA DECOMPOSITION: A i8 o-additive,
v is extremely non-o-additive (== purely finitely additive).

(b) G = &(n) = The LEBESGUE DECOMPOSITION: 7 is y-continuous,
» is p-singular, where 4 is a submeasure on 2. Here 4 can also be & quasi-
normed group valued additive set function, for &,(I'(n)) = &(n), n being
the submeagure majorant for 4 with respect to the given quasi-norm.

Tt should be strongly marked that the functions A and » in 3.11
are not merely G-additive and G-singular, respectively, but, also
ewhaustive.

3.13. Remarks. 1) The Ilewitt—Yosida and Lobosgue decompori-
tions of additive exhaustive set funections with values in o Banach space,
almost in the form stated above, were obtained by J. J. UhL [13] (seo
also [5]). The only difference is in dofining the notions of pure finite
additivity and n-singularity: Ubl reduces them to scalar case via compo-
sitions of the given vector function with continuous linear funectionals.
This, however, in virtue of 3.6, is equivalent with our definitions of these
notions. (While preparing this paper, the authors acquaintance with [13]
(at that time in print) was based on the preprint of [5])

As concerns the oarlier related results of Brooks [L], they were yet
ungatisfactory: his Theorom 1 (FH~Y. docomposition) involves X*™ and
Theorem 2 (T decomposition) is too restrictive, though its hypothesos
corregpond to thoso made in the clussical sealar case ([6]; ITL. 4.14).
The lattor was goneralized by Davst ([4]; Theorem 3.1) to gealar valued
finitely additive set funetions on an algobra of sets.

As was (implicitely) montioned in the Iutroduction, tho original
definition of a purely finitely additive set function and the proof of the
H-Y. decomposition were based on lattice properbies of ba (#; R) (= e
(#; R)) and ca(%; R) [8] (see also ([12]; § 17.3) and [14], IV. 2). Bvi-
dently, by 2.17 Remark 5, the definition we use here is equivalent with
the original one if @ = R (or @& = ().
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If pe bat(#; R) then the unique c-additive part of u can be defined
by the formula A(H) Ini{z‘u : (B,)eS,[B]}, Be%. It is quite

natural that the question of Wham 2 procedure could replace that of taking
infimum if we had no order on &, quickly led to the observation that
2 u(B,) form a Cauchy net if we take more and more finer decompositions
of H. Thls was just the origin of the pregent paper. :

2) The results established in this section remain valid without the
agsumption that ¢ or/and H are complete--it suffices to require the
existence of Su or/and SA. Let us note also that it may happen for a func-
tion ueea(Z; @), where @ is not eompleto, that for some Ze¢G[H] the
values u(9) belong to the completion & of ¢ but not to ¢, and yet Su(B),
evaluated in G ig in @. Therefore the decomposition. of x into an S-addi-
tive part A and an G-singular part », if exists, is unique, and both 1 and »
are then ,u-continuous. ‘ ,

3) Let 77, 7, be two Hfhuqdmff topologies on G compatible. with
its group &‘rrueture, such that 7, =« 7, and (&, 7,) is complete. Further,
let pe oa(#; (G, Ty)). Then, 0bv1011&1y, we ea(d; (G, 7)), boo. Tt is evident
that the decompomtlons of u exist-under 7, and 77, and are identical.
Consequently, if u: 2 —(G,7,) is S-additive and u: # — (G, ) is
exhaustive, then u: # — (@, 7,) is G-additive. (This follows also from
2.10.) . ) ‘
4) For each teT let & be a complete topological group and let
e ea(Z; @). Then ﬂ w: # - [[6 is a,ddltwe and exhaustive. It ig

el
clear that S( [T m) = [T (Sw).
T 1T

5) Buppose that G,, &, are additivities on # and let »S’l, 8, be the
corresponding operators in ea(Z%; G).

a) If G, c &, then Spp < S;u and 8y < Syu for each e ea({Z; G).
Indeed, since G,-additivity implies G -additivity and S,u is S,-additive,
we have S,u < 8;u by 3.2. Similarly, S,-singularity implies 69 singu-
laxity and therefore S;u < S;u by 8.7 and 3.8.

b) &,, &, being arbitrary, the operators &y, §;, 8., S} are pairwise
commutative and S, = §,8,, where §, corresponds to tho additivity

=G, v&,.

Let pe 6a(%; ). Then p = 8, u+S1p and next §,8,u = 8,188, g -
A+ 8,8:8; . Bub 8,8, 4 is Sy-additive and 8,8, u is &,-singular, for 8,8,
< 8y and 8,874 < iy, by 3.1 and 3.7. Hence 88,85 = 8,8, 4 and
8,8,8; 4 = 0. Consequently, 88 =8 ;S‘l/,a The remaining cases are
treated similarly. In order to prove that §, = 8,8, let us first observe
that &g-additivity of a function Aeea(Z#: @) is equivalent to its join
S, and Sy -additivity. For, if 1 is &;- and S,-additive, He %, De Go[E],
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then there are Jle Gy [ 1], Dye @[ W] wuch that @ == @, A By, and. we

have
D) = A = N N uD Dy = Y AD).
Z(U lemzl M2 1)}%31 p‘;?'éu s g %@ )
Thus, if Ae ea(#; G) i Syadditive then Sy4 == 88,4 = 4. Heneo, given
we oa(#; @)y wo have Syu = 8,8,8,p = S()S.lbd:u == 818 4.
3.14. ProvosicronN. Suppose that ¢ family (p: te D) of additive set
jwn,at')?mw from & to G 18 uniformly o /WMMZW/ Thew for cach 17¢ %, D e S,
- S0 De @) and Jl:g\;l WD) == Sy (K umiformly  in .
Henoe the family (Spy: teX) ds 'Lmdorml’a/ owhwusting  and nmfown,h/ &-
additive.
3.5, Tumonwum, Let A be o o-ring and Tot p,e oa(9; @), n =1,2,
Suppose that for cach Wed thore emisls

po(H) = lim fn, ().
n
Then the family (p,: 2 0,1,2,...) i uniformly exhausting as well as
(Bpgs 1= 0,1,2,.. ), M’M
Spag (H) = lim Sy, (H),
N g (1) == 1im 8’ gy, (H)

for ecach K e v

- Proof. The assertion Lollows from the Brooks—~fewett theorem and
the preceding proposilion. (or considor tho mapping == (i, fiay-++y tho)s
& —0(@), whore ¢(@) is the group of convergent soquences of elements
of G (togother with their limits) equipped with the topology of umform
conyergenco on Nu{oh.

3.16. CororXARY. If # and w,, n =1,2,..., are as in the Theorem
above, and all u, are S-additive (vesp. G~smgul(w), then w, s S-additive
(resp. S-simgular).

3.17. inal romark. All results ostablished in thix section remain
valid in @ little more general situstion when ingtead of exhaustivity
(or uniform. exhaustivity) of seti funetions wnder considerations one
asswmes (and suilablo modifies assertions) that these properties hold
only locally on @, i.o. on onch algebra @yree (B 1 el Fed}, ek,
Then, moreover, n o-ring in 3.15, 3.L6 can bu replaced by o d-ring.

Thus, o.g,, andor thoso cirenmstances Sp 18 constractod in thoe follow-
ing way: Tor onch He lot 8 up beo tho G-additive paxt of py == ul#y,
and then put Su(W): == Sypp(l).

4. Decompositions of exhanstive submeasures and FN-topologies.

Lot # be u ring of sols, S an additivity on %, es(2) tho set of all exhaustive
submeagures on #. Fox eaclh ye os(%) wo dofino two submeasures Sy and
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8’7 by means of the formulas:
8y(B) = inf sup{n(U2): 2'<{(2)} = Iim lm 5 2').
2eS[H) DeS[H] D'ei(D)

8'q(B) = sup int{n(ENU 2): 9'<§(92)}, HeR.
DeC[E)

4.1. TaroreM. Let ye es(%). Then S, 8y < 1, henoe the submeasures
S and 8’y are n-continuous and exhaustive. Moreover:

(a) The submeasure Su i8 C-continuous and if A is an S-continuous
submeoasure on # such that A < #, then A < 8.

(b) The submeasure 8'n is S-singular and if » is an S-singular sub-
measure on R that v < 1, then v < 8’y

(e) 7 ~ 8y+8'n(~8nv 8y and if A is an S-continuous and v an
S-singular submeasure on & such that  ~ A+v, then A~ S, v ~ 8.

Proof. (a) We have to prove that if Fe®, e S[B], then

lim Sq(E\NU 2) = 0.

D'¢f(2)
Suppose, on the contrary, that

inf Sy(ENU 2')> 6> 0.

P'ef(2)
Since 8y (X) > ¢ and P« G[F], there exists 2, « {(2) such that n{{ 2> «.
But 87(E\ U 2,) > sand 9\, S[EN\|J 9], so we can find D, ¢ {(2\2y)
such that 7{lUJ 2,)> & Now 8n(E\U (2, U 2,))> ¢, ete. Continuing in
this manner we obtain a contradiction with the assumption that # is
exhaustive.

‘We proceed to the proof of the second assertion in (a). Let us take

an arbitrary ¢> 0 and choose J > 0 such that

(+)
‘We claim that

(B < 6 = AB) < e.

S(B)< 6 = AB)<e, HeA.

Otherwise there is HeZ with Sy(B)< d and A(E)>e+y, y> 0. Let
PG [P] be such that

sup 7(U 2') < 6.
24f(@)

Since 1 i3 S-continuous, we can find 2’¢ {(2) for which
MENUZ) < yf2.
Hence A(lJ 2):> e+7/2 and 9({J 2') < 8, a contradiction with (+).

e ©
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(b) Let A be S-continuous and A < &7 Supposo that for some
He® wo have A(H) = &> 0. Lot 4> 0 be such that A(F)< ¢ whenever
§'n(Fy=< 8. Thus 8'n(H)> 6, and there exists Z<G[H] such that
7(BNU 9') > 8 for each @' < §(@). Bince A is S-continuous, we can find
9 ¢ (@) with (U 2') > e Wence 89 (J 2')> 6. Let us denote B, = () 2/,
Ay =N D' Wo have g(4y) > 8, 8'9(B) > 8, A(B) > e, and BynA,
= 0. Applying the same argument to the set 7, we shall find a set &, < H,
such that 7(dg) > &, &' (1) = 8, A(Hy) > ¢, whore 4, = H,\H,, ete.
Thus wo koo that there oxists o disjoint sequence of sots 4,,e# such that
g(dy) > 0, w1, 2, ... Thiv howoever iy inpossible, for » is exhaustive.

We are going now to prove the second statement. Given &> 0, let
6> 0 he such that

N(B) << 6 = v(H) < o.

Suppose that for some He# we have 8’y (B) < & and »(B) = e+ p, where
0 <y < oo Since §» =0, there is PeGS[A] with

sup(»(U 2'): 2« ()} < v/2,

Hence for some '« (D) wo have »(F) < (2, n(BH\F)< 8, where I
= |J 2. Thorefore »(E\I)> ¢4-y/2 and y(H\NF) <, a contradiction.

(¢) We know already that Sn is S-continuous and §'n is S-singular.
Since 3(9n+8'q) <l n< Sy--8"y, wo have also Sy+8'n ~7. Let
4, » be as stated in (e). Binee A < and » <, we have 1 < 8y and
» <87, by (a) and (b). On the other hand 8y, 8’7 < A-v imply 8y
< B(A+7) = QA+ 8 = SAand 8’y < §'(A+») = 8'A+8» = §'». There-
fore A ~ Sn, v ~ 8.

The next result charactorizes Sy and §'y in terms of order relations <
among SuLMEAILEN.

4.2. PROPOSILION. If ¢ 63(%) thon

(@) 8 = \V{A: A is an G-conbinuous submeasure on X and A< nh

My 8y == \V{A: A dv S-singulor submeasure on & ond 2 < 7}

Proof. Supposo that a submeasure A is G-continuous and A<
Lot Hed, DS [H]. T8 2’ «§(@) thon A(J 2') =i n(U 2'). Binee 4 is S-con-
tinuous, wo have A(H) - sup{n (U 2'): 2’ «§(2)}. Nenco A(H) < 8n(H),
and (a) follows from the fact that Sy itself is G-continuous and = 7. The
proof of (b) is quito similar,

4.3. Bpocial casos in 4.1 Lob neos(#).

1) The Howim=YosInA DrooMpositioN of i: Putting & = B, wo
see that 8 is an order continuous submensure and S’ 7 o “purely exhaust-
ive” submessure, i.e., it A is an order continuous submeasure on # such
that A< 89 (or even < 8'7) then i = 0.

int{n(BNU 2'): 2 §(2)) < 6.
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*2) The LEBISGUE DECOMPOSITION of #: Let u be an arbitrary sub-
meagure on. # and let © = G(u). Then 4.1 gives us a decomposition of 5
into a. u-continuous part Sy and ‘a u-singular part §'7. o

- If u, » ave submeasures on #Z then we write » | u to denote that » is
u-singulax, i.e., v A @ == 0, by the final remarks in Section 2. Thus » [ u
iff g2 .| ». From the formula for v A g it follows that » | u iff for each e
and &> 0 there exists o set # < I such that p(F) < ¢ and (NI < o
This characterization of u-singularity can bo simplified if some additional
assumptions. on %, u, » are made.

4.4. PROPOSITION. (a) If Z is a field or if ve os(2) then v | u-iff for
each &> 0 there is a set I, ¢ & such that u(I') < & and »(A) < & whenevor
AnF, =0, :

(b) If Z is a o-field and v is. o-subadditive, or if & is a o-ring and v is
order contimuous, then v | 1o iff for each &> 0 there is a sot B,e Z such that
WY =0 and v(A) < ¢ whenever A NE, = 0. ' B

(c) If & is a o-field, v is c-subadditive and Ny = {BeR: p(l) =0}
18 a o-ideal in & (or vice versa), or if % is a o-ring, » 18 order continuous
and A, is 4 o-tdeal i A, then v | e off there ewists a sot Boe 2 such that
#(ly) = 0 and v(4) = 0 whencver A NE, = .

- ~Proof. The “if” parts of (a)~(c) are obvious. We gshall therofore
assume in what follows that » |_u. (a) In the case £ is a field it iy nothing
to prove. 8o let v ¢ 3(2), and take e > 0. By using the method of exhaustion
¢ef. [7], 1X;.4.7) we can find a set B <% such that »(4) < ¢/2if 4 N7 = @,
Then any set F, c B with u(F,) < &/2 and »(IN\T,) < ¢/2 has the roquired
property. . - R .

(b) It suffices to put B, = (M Fy-n. (If £ is a o-ving and » is order
: e n=1

continuous then » is o-subadditive and exhaustive (61, I1).
(¢) The set By, = |J By, has the required property.
i . n=1 :
4.5‘Rema,rks. 1) Suppose & has the following property:
(_*) I (B, 2)e@, Dye? (n=1,2,...) and 1 =my<my<...
2" = (2 \{Dy: me N}) U{Dyp, U... UDp, 12 & = 0,1,..} e S[H]
(For example: &;;, &(u).) Let ees(#) and let Sy be the submoeasure
defined as at the beginning of this section. Then

(+) Sn(B) = int{ Y n(D): <GB}, Be.

De2

thoen

In order to prove this equality, let 1(Z) denote the value of ity right
side. It is obvious that 8y (H)< A(H). Conversely, if @<S[F] then the
class {DeP: n(D)> 0} is at most countable, for # is exhaustive; let
Dy, Dy, ... be an enumeration of this class. Given &> 0, let a sequence
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1 o= Mg <2 Mg = «on Do steh Whab oy (D) - /2% (b7 1), whoro Dy =D, U

myg

U Ul o for % o 0 (ef [7], 105 4.1). Dofine 9* ag in (x) above, Then

Z g (DY (D) e eebwap (U 2): 27 e§(9)).
IHMe™
Therefore AL - Sy (H).

9) Tt is cload that tho oquality (1) holds always it 9 in additive.
Thon also Sy and § g wire additive and 5 - Ny |- & 5. Toneo if e oa(.%; .R-),
3 0, then the docomposition o - S8 ig-idontical with that in
Mheorern .11, Tn this ease i6 cawn be supposed in 4.2 (a) that Az ave addi-
five, and thax wo obtain o definition of 8y of tho kind used in [8]. Thon.
for arbitzury 1eea(#; B), Sy could o defined ws Sy* — 87, where 't (1)
e (v 0) (M) = wup {n (F): ez 10y Hedhyyn™ o (~ .

3) It sees(#) thon the decomposilion » ~ 8n--8'n with respect
to @ in identien] with the Lobosgue decomposition (4.3 (b)) of 5 with respect
to = Sy I fact, sinco Sy < poand 8 | p A.Sv,oH«S'q; is @ Lebesgue
decomposition  of i with regpect to p. Let 8, 8, bo the operators on
08(2) ansociatod with &(u). Tn virbue of 4.1 (e), nvm)]im;l 1o @ = Q(M}, wo
have 8y ~ S, and 8y ~ Sy, Honco S,y v S-continvous and 8,7 is
G-ingular, In view of 4.2 it wust ha S,n o0 Sy, Sy = 8 (A smn}ar
romark applies i 5 e ea(@; (), where ¢ i u comploto normed abolian
group (p == 8n).) ;
C4) TR e es(9) ov g en(%; @), where ¢F is o8 above, and W.Nﬂm%-‘v
(rosp. =+ A-l-v, A, ve ca(#; () with » being A-gingulay (rogp. A-singular)
then A-1-» i o (rosp. the) Lebesgue doecomposition of g with respect to
the submoasuro 4 (vosp. A). In parbicular, it 5eea(2; R) (== ba(%; R))
then the Jordan doecomposition g == g - (-9’ is the Lebesgue decom-
position, of # with respoet to #'. Therefore, il 2 18 & o-ring and neoa(Z; R),
wo derive from 4.4 (e) the oxistonco of o ot o2 such that 5" {»Eo) = ()
and 5~ (A) == 0 whenover A Nl == &, Lo, the Hahn decomposition of 4.

A decomposition of n submongure g into an 6-0011'(&11}1011& part 2
and. an S-gingular parl # 8 nob unigue; procisely, iti Js 't}:'uque “up to
equivalent walmonsures?, But I'(y) = I'(A)v I'(v), and it i8 casy to' nee
that the topologlod on the yight side neo doternined uniquely. This obgor-
vation iy gonornlizod in Gho following theorom. ‘ ‘

4.6 oot Ll 17 bo an owxhaustive W -fopology on 9. Then thu?re
avists o undque pair 1"y, Iy of WN-topologios on 9 suoh that Iy ds S-oontin-
wous, I'y is Gsingular amd 1" -+ I'yv Ty .

© Proof. Twt (i ¥s 1) bo tho family of all I‘-continqous gubmeasures
ol %, Then 1" == I'(ny: te ') and oach 7, is exhaustive. .l’ut Iy = 1"(817',:\
te ), Iy == I8yt te ). Tt i8 cloar that 1"y is S-continnous a:?ld Ty is
G-gingular, Sinee Iy, [y <l' we have Iy Ly = 1'(8n,+ 8 (8, 1)
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e« T xT) = I. But for each te T we have 5, ~ Sy, +8'7, 80 I'c I'yv I,
On the other hand, if I' = I"v I'* where I" is G-continuous and I is
S-singular, then each I'-continuous submeasure must be I'-continuous.
Congequently, I = I3, ¢ = 1, 2. Conversely; let # < I;. Then there exist
sequences (4,), (v,) of submeasures I"- and I™-continuous, respectively,

each of them bounded by 1, such that n € y = §2~"(An+ v,) (see [7],
=]

) ! n
I; 2.18).' S{nce Sy =322, < ', 8’y = 27", < I, we have < 8y
<IM(fe=1)ory <8y <I?({fi=2). Hence I, = I, i =1, 2.
4.7. THEOREM. Suppose that @ is a complete topological abelian group
and lot peea(Z; G). Let |-| be a continuous quasi-norm on G and & the
corresponding to it submeasure majorant for u. Then:

(@) Sy = 8.

(b) 8y =8%.

(0) Iy = I'(Su) and Iy = I'(8'p) form the decomposition of I' = I'(u)
described in 4.6.

Proof. (a) Let (B, 2)¢@. If 2'<{(2) then |u(F nU 2')|<a(U 2)),
hence

lw(FA 2)| < sup{a(U 2): 9« §(2))
for each F' = B, F < #. Since the family (up: F < B, F<®), where uy(4)
= p(AdNF), Ae, iz uniformly exhaustive, we have

glelg[;] w(FAD)| = |8u(F)|

uniformly for F < E. Therefore

[Sp(F)| < Su(B), FcF
and .

(+) Su(B) < Su(®).

It Sul) <o’ <o <a<Su(H) then |Su(F) <o’ for each F c H.
’I:herefore we can find e S[F] such that 9, < P« S[E] implies |u(F A
n*@)| < a' for each I < B. Lot us fix 9 G[H] with 92, < 2. There exists
2*ef(2) such that 9* < 9'<f(2) implies |[u(F D) <a, Fch
Hence u(lJ 2')< a. In a consequence Su(E)s; a. Thus we gee that the
strict inequality in () is impossible.

The proof of (b) is similar.

(e) I'(8g) is G-continuous by 2.6, I'(8 ) is S-singular by definition
?.17, 8o we have only to show that I'(4) = I'(Su)v I'(8' u). This, however,
is  eagily derived from (a) and (b).
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4.8. Remark. Lot us recall that we have denoted by I'(S) the strong-
est G-continuous FN-topology on #. It is evident that the Theorem 4.6
can be formulated as follows: If I"ig an exhaustive B‘N-'bopology on &
then there exists a unique pair iy, I', of FN-topologies on # such that
I, e @), I'ha I'(&) = 0 and I Iyv Iy, XE g i8 8 submeasure on &
then I'(y) = I'(&(n)) by 2.9. It follows that every exhaustive FN-topol-
ogy I' can. be uniguely decomposod into the “p-continuous part” I
(I'y = I'(n)) and the “y-yingular paxt” [y (I'yA ') = 0). Obviously this
is an analogon of Lebesgue decomposition. Lot us note however that the
following question concerning the general Tebesgue decomposition is
still open: Suppose that I is an arbiteary FN-topology on # and let
ueea(d; @) (lot I bo an exhaustive I'N-topology on ). Is u (vesp. 1)
decomposable into a I'y-continuous and a I-singular parts?

We know only, by the resulty of this paper, that it is the case if I
= I'(8), in particular if I" = I'(n).

Added in proof (3. 6. 1973). Decompositions of exhaustive additive set fune-
tions are congidered also in the recent papers of Tim Traynor: Decomposition of
group-valued additive sot funclions, Ann. Ingt. Fourier, Grenoble, 22 (1972), pp. 131-140
and A general Howitt~Y osida decomposition, Canad, J. Math., 24 (1972), pp. 1164-1169.

By author’s overlook in Remarks 3.13 the (nccessary!) reference to [11] is
omitted.
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Absgtract. Lot L (H, 1) be the ket of bounded linear operators from the Banach
gpaco B to the Banneh spaco J0 LI m i o moasure delined on a ring € of subsots of 7'
with values int L (/, 1), for oach y* in the dual 2%, ono defines a mesatres Myx from
% into J¥. Algo for cach A in % one may define a semi-norm Dm,4 o0 I din terms
of the g-variation of myx. Topologics aro defined on the unit sphere &* of F* utilizing
those semi-norms. We then investigate tho rolationships of these topologies to the
propertios of the moeasures. Wo congider when tho topologies ave Iausdorlt and when
they are compact. Wo then econsider operators on 24 (4) (1 < p « co) using thoe above
topologics. For example, if U is & continuous oporator from 24 (u) into B and it U is
abrolutely eontinuous with respoect o 4 then U is compact it and only if the associaboed
topology makes ¢* compact. Additional results for continnous and eompaet oporators
U which are sbsolutely continuous with vospoet to g are obinined.

1. Introduction. The recont definitive work by W. Orliez in [6]
generates additional intorest in the relationship of topologies placed on
the unit sphere ¢* of u dual space J™ to the meagsure theoretic properties.
In particular, in [4] and [6] & topology associated with a measure is defined
a8 follows.

Lot L(H, I') be the set of boundod linear operators from the Banach
space B into the Banach space ' and lot % boe o ring of subsets of a non
empty set 1. It m is a mearure defined on % with values in L (H, &), then
for each .4 in % a semi-norm p,, , is defined on the dual ™ of I by

I
Dun, . (Y7) = My (A)

where m,, denotes tho variation of the measure m,. that maps % into the

dual B and is defined by ‘

My (A) = {m(d), y*>.

The colloction P of all sueh semi-norms for A in % generatos a topology
in the usual way. This topology when restricted to o, the unit sphore
of B, turns oub to ho of interest. Also of intorest is the topology gen-
erated by p,, 4 for A in % where m is now an clemont in the sot » (¥, I)
of finitely additive set functions from % into L (B, ). Among the numerous
resulty contained in [4] and [5] one main property seems to be central
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