icm°

STUDIA MATHEMATICA T. XLVIIL. (1973)

Observability for the one-dimensional heat equation

by
SZYMON DOLECKI (Warszawa)

Abstract. Lot « be a solution of the heat equation on 8 x[0, 7]. On the closed
linear span of {u(d, -)} in a linear topological space we define the linear mapping:
A i w(d, J=>u(-, T). In dependence on topologies in the domain and in the range
we examinoe measure and motric properties of 9s, for which 4y is well-defined and
bounded. Some related questions and an optimization problem are also concerned

1. Introduction. Consider a bounded open set § in R™ with piecewise
smooth boundary 88. Let » be a solution of the heat equabion
i

1) = = 4 #ef; 1> 0

with the homogeneous boundary conditions:
(2) w(@, 1)+ a(@)u, (@, 1) =0, >0

ab all the points of 48 where the outward normal derivative u, is defined.
Depending on topologies in the domain and in the range, we ask wheth-
er the mapping

(3) Ag gt wagom—rw(s )

is well-defined and continuous (£ < 8).

In [4] V.J. Mizel and T.I. Seidman posed the following question.:

“Toes the temperature variastion at an end of an insulated rod de-
termine continuously the temperature distribution along the rod%”

Assuming that the domain and the range are L*-spaces and that
8 = (0, 1), uy(0,8) == u,(1,1) == 0, they showed that there exists a Ty
such that for all 7 > 7', the operator A, is well-defined and bounded.

W. A.J. Luxemburg and J. Korevaar proved ([2]) that the same
operator is well-defined and bounded for all T'> 0 and for any pair of
L, (1<p< o) or O spaces.

The Mizel-Seidman paper [3] prosents generalizations to the mulbi-
dimengional case, where S is an insulated m-ball. They proved that Aps,z
is compact for any 7' > 0 provided that the domain is L), (2<p < o0)
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and the range is L, (1 < #< oo) and that u,|0g = 0. The present paper
considers the continuity of the operators A, p(dsg), where de[0,1]
(8 = [0,1]). Tt gives the formula for the extreme time of obscrvation,
i.e. for the number T, such that A, is well-defined and bounded for
T > T, (for any pair of L, (1< p < oo) or € spaces) and is not bounded
for T'< T,.

It shows that the Lebesgue measurg of 9s, for which 7'y = 0, is one;
however, the other Js form a dense subset of [0, 1]. Solutions of the very
problem for other sets § and of several miscellancous questions are also
presented. The last section iy devoted to an optimal observation problem.
It is worth underlining that many proofs are partially based on the dio-
phantine approximation theory.

2. Continuity criteria. To begin with, we examine the case of §
The condition (2) takes the form

= (0,1).

2" (0, 1) = au,(0,7), = Puy(1,1)

0<a —f< oo; 4 = cou, meany that u, = 0. A solution of (1)-(2')
can be expressed by an absolutely convergent series:

u(1, 1)

(4) u(@y 1) = ) 0y pa(@)exp(—Ayt)

=1
where, respectively, 1, are the eigenvalues and v, the cigenfunctions

dz
such - that |y,lc =1 of — T with the conditions (2). Let X

denote L, (0, T)(1 < p < o0) or 0(0, T) and let ¥ denote L,[0,1](1< ¢
< o) or ([0, 1]; thus 4, 7 (see (3)) is the mapping from a subset of X
into Y.

o exp(—iT) .
If the series 2 p(=AT) is convergent, the oper-
= ()]
ator Ay g is well-defined and bounded for T' > T for any (X, Y>.

(b) If this series 'Ls divergent, A, v is not bounded for T' < T amd for
any (X, Y.

'If there is an # such that v, (9) = 0, then AM, is not well-defined
zu:Ed we put Ty = co; if for all n v, (9) # 0, then the Canchy-ITadamard
criterion for Dirichlet series (see 8. Rolewicz [6], page 235) and Theorem 1
give:

COROLLARY 1. The time of observation T, is given by

THEOREM 1. (a)

limint 2281 ()

n e

(5) T(9) =
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To prove Theorem 1 we shall ficed a lemma based on the consider-
ations of [21
Tieb {4} be & sequence of complex numbers satisfying the conditions

1 1
(6) < 00

d |y

There are g and ¢ such that
(7) Mw"’" zm‘ e
(8) Red, > 614,

Lot & = {Dy, Dgy gy ...} add Xgo== {Cu(Dy,"), w(By, )y >}, where w

is of the form (4) (we8). Xz is a subspaco of P X & With Lhe l or gupremum
Jee=1

product norm and with any sequence of norms in Xy
TLmvma 1. Under (6), (7), (8) and the following conditions: ) for each n
there is a positive number By, and there is a I such that v, is continuous at Py
and that
(9) Byl (9r)| 2
b) there is an & so that

(10) 213.,,ch1)
Ay is well- defined and bounded for any Y.

Proof. To sec that Az is well-defined, note that Wn(q?k)l > 0 and
that by [2] (page 36)

lo] < {dulopn (Be)1) 7 e (D5 )l

where d,, is the distancoe between. o n and the closed linear hull of {5} ,.n
in 1\]0-']?10'(']11, gpacos. Since dy, > 0, Jullx, =0 implies that ¢, =0,
n =1,92,... Now we shall prove the continuity:

glm~mly,  myn =1,2,..,

AR N>,

lpa ()

(—Rol, (T —e)) < oo

“”(' i -T)”,)" s S" |(’71! |W’1II| I’UXP( - Be ZnT)
< mx (P(8), 1) 3 0l 1y (9)| Byoxp (—Ro 2, T)
2| By, exp(— Rod, .'1')] el

where P is the Lebesgue measure on B™ and P’ is a constant, The series
in square parentheses converges boeause of (10) and of the estimation
for every ¢ and for cach A:

(11) a7t exp (26 Red,) a8 w—»00

(see [2], pago 30).
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TEyua 2. For each Y and for arbitrary e > 0

2
(12) [l > gl as m—»oo.
We recall that v, are defined under (4).

Proof. We ghall observe only that for ye¥. il < Wi < W,
and we shall list six different forms of eigenfunctions according to vari-

ous {a, f>.
1) (oo, —ood: Ay = wn?, p,(w) = cosnnm.
2) €0, 0>: 1, = ©*n?, p, () = sinmne.
) {0, —o0): 4y = n+1/2)2, 9, () = sinw(n-+1/2)2.
) <0, 85, 0 < —f < o0, I (BVA)THsin V2, + cosVE, = 0, y,(2)
= sml//l .
B) o0, By 0 < —f < 0, In: (BVA)eosVE, + sinVA, = 0, y,()
= cosl/l .
6) (ayfdya < 00, —f < 00, Ay: (B—0)ViyeosVi,— (1 -+ afi,)sinV7,
=0, 1/),,( ) = eos(l/znm—arccos I/A a: VI41,dY).

Proof of Theorem 1. By the former proof, {,} fultil (6), (7), (8).
To prove part a) we put in Lemma 1, B, = |y, (9)]%

exp(—4, 1"
b) If 2~p—(———"-—l= oo, then it is not trme that there is an

lwa (D)
N such that for all n> N 951%(—(-7%‘?—) <=
Yn
sequence {n,} for which the opposme inequality holds. We multiply both

sides of thig inequality by n} and we have

pod thus there must be a sub-

- exp| — A (T — &))

[ (9] for m, large enough.

> n,

Now, 4, i8 not bounded if there is a subsequence {ng} such. that

Anqt))”I’
HeXP( - ln«tﬂx

at HA-?T eXP

p(ng) =

tends to infinity.

exP(— 2 T)lyuly . exp(—2,1)n

o I Ollexp (=20l T ()]
inequality is a consequence of Lemma 2 and of the remark that
£

But p(n) =

a8 n—>o0, The lagt

r

1p P/
exp( — Ayt dt) <]/ <
(f p(-hn)d "< o<

ay n—»oco.
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3. Some properties of the function «(T)
(X, T

TenoruM 2. Let B be an open interval in whioh o(T) is bounded.
Then w is condinuous in H.

Proof, Let o be an arbitrary positive number and let 1'y, 'y Delong
to 2. Then

= |4y gl Wo fix # and

| ()~ (To)] = [l A gz~ 14ozlll < 40,2, — Aoz,
||(A4) = Aom) vl
gy T T oL
u el
and
(Ao — Apay)ully << ‘> [6a] 1l loxp (= A5, T'y) — @xp (— A, L)
1 oxp (— A, T'y) ]
i AT L — T
[ Pt (L —ex (1o 22 o

= (L IV) [l

where Iy denotes the sum of the first N words of the above series and ™
denotes the remainder of the series.
- Iere without loss of generality wo agsume that I, > Ty, then

e Y ST

S dulya(9)]

We choose an e such that 7, —2e¢H and such that (11) holds for » > N.
As there cxists_ a T such that T'¢B, T,—2¢> 1T (o(l')< o),

- 1 .

2-9}}?—( | “( 1)1| -2¢) converges (by Theorem 1a,b). It is possible to
P (P

enlarge N in order to oblain IV <

depend on |1 — D[
Now wo demand that Ly =< n/2.
Then the following moqunyllt, must hold:

,[ p ORI >]
= ~—4 a1 Iy, (91

< /2. The above estimation does not

(=14

|1~ exp(
It s fulfilled if we tako T’y such that '

N
Lo (N e (= AT ) v

/A L R o L [ ot N for = 1

|,1.g l]] << 7 log (l (2 : dnnl’(/)n( ) . r 2 1

1 Al OXD( Anl )) ) X
T,-=10 ~] o 2 \ ''''' for Ty < Ts.
|1y <= 0g ( ( .‘-J dwl%(ﬂ)l g '
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THEOREM 3. When Y = L*[0,1], o is decreasing in K, where I is
an open interval in which w is bounded.
Proof. The operator C: %H—GX—]-&:@?;)« W (T > 1) is‘ of norm
exp(—A,2") " i
smaller than one.

e, Dl Il )y

o(T) = 1y gl = sup — 2oy ke )
w2l = B s e PR 8, e
e (-, X"
< 10gsup 2 T g o).

e (D, Mo,z
4. Measure and metric theorems. We start with a lemma from the

diophantine approximation theory. Let |x|| = inf|x—n|, P be the Ie-
besgue measure. neZ |

LemmA 3 (S. Rolewicz). Let

(13) ae[0,1], »>1, 0<p<l/4,
Then
(14) P(I) = P{#e[0,1]: |pd—all < u} < Bu:

TEBOREM 4. For P-almost all 9s, Az, is well-defin
. o o -, - 6d W d "
or all T > 0 and for any (X, Y5, i.e. 1 A f nd bounded

(15) P{9e[0,1]: Ty(#) = 0} == 1.

Prc?of. At first, note that 2 e —Bll < sin (@ —B)| < wijw— ]| and
that y, is of the form: p,(#) = sin(V4,x—8,) for some §,. Let
Ty = (9% Ipa(9)] < nlexp(~1,1))
< {19; 2| Vi —E
|

and let 0 = {#: Ay, (9) # 0}

CTe

< nlexp(— 2,11")}

By Lemma 3, P(I},) < 4n’exp(—1,1") for ich impli
p(—21,1") for large n, which implies 61
convergence of 3'P(I,). Assuming ’chad;L T<T we ha’Ne ? ¥

¥n

ERCE }V/ né\len(ﬁ)I = nfexp(—4,1)}N Q
= liniinf{q?: lp, (9)] = nlexp(— 2, TN Q

= liminf(T,)°’N 2 = (limsupl,)°n Q.
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By the Borel-Cantelli lemma P (limsup r,) = 0. We must prove that @
is of full measure. In fact, 0% = (J{9: v, (#) = 0} is a countable set
thus of measure 0. Taking a ﬂcquarﬁcc {T (T, —0, T, > T,y q), we have
{De[0, L] Do(8) == 0} == (;]l{ﬂ: 4 g,m,ll < oo}, becauge I'< 1" and
[ 4gnll < oo imply that ||A,:,,~H < oo (Qorollary 1). The proof is complete:
o countable intersection of full measure sets is of full measure.

Tumormy Bb. The set of all 98 for which Ay is not bounded for any T
is dense. The norm of the operator Ag i w(d, -)>lim(u, T is 0.

Tn eases 1) and 2) (Lemma 2) we can 'ﬁormuleuf':m

TuBoREM Ba. If 0 < ¢ << oo, then the set of irrational ds for which
fdpll = oo and To(B) = ¢ is dense;
and

TemowaM 5. Let ¢ be a number (0 << o< co). The set {91 To(d) = ¢}
is dense in [0, 1].

Tn July 1972 Professors V.T. Sos and H. Wirging proved in two
different ways that for every ac[0, 1] and for each sequence {pa} (0> 0)
thero exists o ¢ such that the following inequality holds for infinitely
many :

(16) I — all < ¢
Wirsing’s idea constitutes the core of the following:

Proof of Theorem 5b.(1) By Theorem 1b it is sufficient to prove that

2 93‘?_%:_(‘%1%@_) ) is divergent for a dense set B of ds. We shall show that
Yn 3

(17) exp( —oxp (1)) 2 ya (D)l

has infinitely many solutions for &el.

As we regard the form of ¢, (proof of Lemma 2), our task is to prove
the proposition: For cach closed interval ' < [0, 1] and for each sequence
{Ctns iy P b (o= 00y A [0, 17, ¢, > 0) there is & 9 <F such that
(18) lot, @ — iyl << P
has infinitely many -solutions. Actually, we define W, == B and for W,
woe choose xy, , 5O that ("lﬂn~1~1Wn) modl = [0,1]. Then we put

Wair = {0eW,: ”“Ic,,,k{&"' alc”.\_ln < (f’h‘w}.l}'
Of course, each W, is closed and non-empty and W,, o W,,.q; thus MW,
< F is not empty. . ”

() Professor A. Schinzel noticed that it is much easiexr to consider & for
which Ag  is not well defined.
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Proof of Theorem ba. (For preparatory remarks see Cassels [1].)
For every #¢R there is a unique sequence 1 =g, < gy<... (finite
iff 4 is rational) and a sequence p, < P, ... such that

(19) “Qn'ﬁ” = mn'ﬂ_'.p'n'a
(20) @ner B << g B,
(21) lgdl = lgadll for 0 < g < gnia

(—2,1 Is called a best approximation). There is the one-to-one corregpondence

qb
between # and its continued fraction [a,, ay, a,, ...], where a, is an inte-
ger, and a, an integer greater than 0 for » > 1, For n > 2 we have:

(22) Py = avzpn+p71-1?
(23) Gny1 = U Qn -t Gpy-
‘We shall quote three important statements:
1
(24) gl < ——y
1
' 1
(23) lgn @l > 5.
" 241

(26) If & = [ay,ay,a,,...,a,, Upypzy oo ]y 0 = [ag, @y, ... ay, bupay o001y
then [9— &< 2-"2,

The proper proof will be carried out for case 1) (Lemma 2), because
cage 2) is analogous and much simpler.

Note that for any sequence a,, “oey Oy WO CAL ChOOSe Gy, Gy, By g
in such a way that p,.,, p, +s are odd. Then, restricting a,,., (r > 2) to
even numbers we obtain a sequence of odd numerators Ppgr (122 2). In
fact,

if p, odd, p,_, even, we put
if p, even, p,., odd -
if p, odd, p,_, odd —

4y, 04d, @y, cven, @,., even;
@y, 04d, a,., 0dd, @,., even;
Gy, €VeN, ., 6VeN, 4, , &Ven.

The situation where p,, p,., are both even cannot oceur, for two
successive best approximation numerators are relatively prime. This
follows from the equality |g, +1Pn = @pPural =1 (3e0 [1]).

Given ¢,_;, g, for which p,_,, p,, are odd, we take the smallest even
int_eger a, such that

27 Qnt1 = G Gn+ Guy = g, 0xp (n*g20).
Then. :
(28) Tn1 < gn(exp (v gh0) +2).

icm
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By (24) and (27) o
1 exp (— w*gne
P < <
g1l P o

or, beeause p, is odd

exp(—w'gio) _ oxp(—7g,0)
9 = :

llgn 2 2 1

n 2 2

(29) In <

By (28) and (27) for large n

> 24, (exp (v ¢5,0)+2)] 7! > ghexp (- ga(c+e)).
2441 ) ;

(21) entails for all large g
(30) lg®ll > g*exp(— =g (c+e)).

Hence the following series is convergent for every &> 0:

llgn 91 >

o Sreidter .

% 1
3573
It has already been mentioned that 2| — 4l < |cosme| < =|ow— 3ll. The
final discussion of proof 1b and (29) imply
[EX:

2 || ="00.
A

(32)

(31) and (32) imply T'o(9/2) = ¢; the application of (26) concludes the

proof.
Lot & be an infinite sequence of &,¢[0,1], X = €(0,T), ¥ = 0[0,1],
= ( = f. There is a = such that |4z, = oo for all T > 0.
1

N
BXAMPLE, Py =1, D4,y = 3-8 " +dy,

(33) e, = (sin(rmndy)exp(—nin’t), sin(mndy)exp(—rtn’t), ...,
(34) “‘A‘E,T(G’IL)H - eXp(:—rc”nzT) )
fleal sup |sin (7o 9| .

o
Putting ¢, = 97 we have |g, =0, f k< n, and |g,0l <32 *,
exp(—n'gnT)

it k> n. Thus |4ggll> ———3:3—(!;———~— is equal to infinity.

5. Other observability problems for a rod. The following theorem
resolves the “mobile observer problem?”:
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THBOREM 6. For every ae(0,1) and for every b (0 < b < o0) and for
T~ 0 such that a+bT <1, A: u(a+bt, O)>u(, T) is well-defined and
CONINUOUS.

Proof. By (4) and the initial considerations of Lemma 2

(35)  w(a+bt, i) = 3 $6,008(V7,(a -+ bt)— o) oxp(—Ayt)

,Ma

W

= Vo, [exp(i (Vi a— o)) exp((i V2, b—A)1)+
+exp (—i(V Ay & — ay)) exp ((— V2, b — 4,)1)].

The sequence iVi,b— Ay, —iVi,b— 4, satisties (6), (7); (8).
We have |3 ¢, v, (@)exp(— AnT)\|<Z|cn!e¥p 2,T) and

lea] = |onexp (i (Vipa—ay))].

By (35) leal

recall (11).

Tt seems obvious that the temperature observed at a fixed point is,
in fact, the temperature mean value over a certain segment of the rod.
There arises the problem, whether, given @, be[0, 1], the variation of

1
< E-—[]u(a—kbt, ). To complete the proof we should only
nl

b
af w(®,*)dz determines (-, T) gontinuously.

b
a) The set of {a, b> for which A,pp: [u(w, -)de—>u(-, T)

a
is well-defined and continuous for each I >0 and for every (X, X is of
Sfull measure.
b) The sét of {a, b) for which A, is not well-defined is dense.

Proof. We have

b
fu(w, tde = ZGnexp(~lnt) S0 (/b

a

THEOREM 7.

ay) —$in (V2,6 —ay)

Vi, ’

where w ig of the form (4), v, (%) = cos (V?L,_Im-a a,). By virtue of Lemma 1
slightly modified, 4,3n,, is well-defined and continuous if

Z Viexp(— 4, (T +5/2))
< (8in (VA b — a,) —sin (V2,6 — a,)]
1s convergent, which occurs if there is an N' such thafo for all n = >N

— )

(36) Jsin( Vznb—a,, — sin( I/—na—a,, > n*exp(

icm
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and if for all n
(36°) sin (Va, a— ay,) # sin(Vi,b— a,).

Finally (36) holds for all {4, b>eQ = liminf £2,,, where
Dy = {<a, by: |28 (3V7, (b —a))sin (4V 2, (0 + a) — —B,)| = n*exp (— A1)}

5 {@, by: sin 3V, (b—a))|

nexp(— 32,7 noexp(—+4,T) }
B 'md sin (§ 4, (a-b) ) B e
_'/2 % (3 ﬁil ‘/2
== 0 and that

Now, it is sufficient to prove that P(llm sup Q25

37 P(4) £ P{<a, b): \/(sm Va, b-—(xn) = gin(Vi,a—a,))} = 0,

¢ {{(I/, b>: H%‘/Zﬂ b+a’ - < W/OXI) 1/2 n%T } U

<a7 b> \ %I/AM b+ nexp( _—-}%%T)}y ﬂn = an_}" E‘.
Ve 2
Since det "—i i = —2, the Lebesgue measures of the components
of the above sum are equal to the measures divided by 2 of
Vi, - —1,1[2
{(bﬁa, pyay: |F/nOE A=l  nexp(—hHT) )}
™ Ve
V)2 —8, nexp(—A,T/[2)
— (b— — 2, T2
{(b——-a, boad: |3V 9| _ rep(=hI] )}
I Ve
— 9 2, T2
;nﬂ-{@: ‘I/An ‘1 H nezm—ﬁﬂﬂl )}XI'O 1],

respectively. By Lemma 3 P(£2) < 8nexp( — A, T/2), hence by the Borel-

Cantelli lemma P (limsup £27) = 0.

Now we are going to prove (37 ). We tix n and we choose a closed sub-
interval of [0, 1], where cos( 1//1 b—B,) is monotonous, and a closed inter-
val, ‘where cos( l/l a—p,) i3 monotonous. Taking the greatest intervals
of ths property, we have a finite number of them covering [0,1). In
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each pair of the intervals we consider a function @ = f(b) such that
08 (Vb —B,) = c08(Vi,a—pB,). Since f is continuous, its graph is closed
in [0,1]%[0,1]. Joining the graphs corresponding to all pairs of the
intervals and to each n, we get a Borel set containing 4. Since the b-section
of this set has a countable number of points for all b, P(4) == 0. The b) part
of the theorem is trivial.

The observation of the temperature and the temperature derivative
at any point gives complete information about the temperature distri-
bution.

TuEOREM 8. For each and I > 0 the operator A: (u (9,
—u(, T) is well-defined and bounded for emy (X, ¥>.

6. Observability on a circle. In this section assertions similar to
those of Theorems 1, 4, and 6 and of Corollary 1 will be presented. First
of all, note that the circle observation operator is not well-defined unless 5
has more points than one. Indeed, this becomes clear when we reprosent
a solution of the heat equation for a cirele in the expanded form:

(38) w(z,t) = y(c o8 @ 4 b, sinwnaw) exp (— ©'n*t),  we[0,2), 1> 0.
exp(— w*n*T)

Il (& —7)||
tinutty of Ag.p (I >T) for amy (Xoy Xy, X and any 1, or sup-product
norm.

)y (B 0)>

TeHEOREM 9.a) The convergence of 2 entails the con-

b) The divergence of the series implies the discontinuity of the oper-
ator (I" < T).

COROLLARY 2. Let

To(, 7)) = Jog(in(9—)i) .

=) ,hz ?
Ay .0 is well-defined and bounded for T > T, and is not bounded for T'< T,

Proof of Theorem 9. a).
Iy Tlp < D (loal + b)) exp{ — )

(39) —liminf

1
< 2 { [len cos wnd -+ b,, sin wnd|® -+ (o, cos wnz + b, sin wnr|P TP
=~z

max e, cos wny -+ b, sinwny|
X=bB,T

X (Jey] + b)) exp ~nwm>]

exp(—mn*nT)

<su
(@,}32 FEEATA;

|
X
S max(Icos(nfn,—a,,)|,|cos(7m-r—a,,)]))

XI<w (B, *); ulz Plx

icm
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: .
where a, = a;rcoos»-—-———-——— By (11) the operator A, p iz well-defined
0 1 T |0n] ( LAN/ 4

and bounded if there is an s such that

N oxp (—wtn? (T — '
(40) E — D[~ (T ) 0.
infmaix (| cos (nnd — a,)], [cos(rnw — ay,)l)
<oy
The denominator can be estimated from above and below by
1
infmax( o — -2 _X l, e — e — ),
Capy ' kit 2 T 2
which is equal to
. n(d—1) (% —17)
win | M5 2029 20) — Smis—.

TeEEOREM 10, P{(P, w): To(d,7) = 0} =1 where P is the normal-
ieed Lebesgue measure on [0, 2) X [0, 2). »

TeroREM L1, The “mobile observer problem” for a circle has the affir-
mative answer.

7. The case of a nonhomogeneous rod and its applications. Quite
gimilar results can be obtained for more complex problems. For instance,
the practical temperature prediction all over a helicopter landing platform
on & ship can be reduced to the following form:

ou

— e AU = oY,

5 we[0,1], >0

(41)

. "
where o, v are numbers, y is the characteristic function of (0, 1), 4 = e
2

0
for o<l and 4 =a'— for o>1; a>0, k> 0.

o
Boundary and consistency conditions are given.:

(42) w(0, ) = @4(0, 1) = 0,
(43) w(l~y8) = u(l+,1),
(44) (L= 1) = Ty (L4, 9). *

We have proved that the eigenvalues of — 4 satisty (6), (7), (8).

8. Optimal observation. Let & be a finite sequence ((d, 9y, ...\ 9x,
dxe(0, 1)), We endow Y and each Xk = {u(dy, )} with the supremum

norm, the product norm of X = P (X,cnlm{exp(—al) exp (—A,1)})
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being also of the supremum type. Assume o = oo = f. We define

the mapping
(45) Azt DDy, ), BBy, 7). D (e, 1),

where 4 is the projection of w on lin{w,exp(— 4,%), p,exp(—4,1)}. The
general optimal observation seems to be very difficult, and thus we deal
with the restricted operator.

The optimal observation principle claims:
THEOREM 12. )
a) For any & we have {dy, 9,) such that |44, s, 7l < | Az .
b)
(46) ' int 457 = exp(~T).

c) 7 increasing, 95 decreasing

||A0T,ﬂ?’Ti|+exp(—n2T) iff imd? =1 and lim9P = 0.

-

d) int |45,z > exp(~ 1),
Proof. Here we write 5 = (@y, @y, ..., y).
int ||dgq] = '
1, @500
sup le;cos o -+ c,c082 )
inf gup — e .
& (oo mﬁ::‘xoggfwlclcosnmnexp (=*(Z"— 1)+ ¢5008 2 T, exp (4" (T" 1))

Substituting T = »*T", t = =’t’, we convert this expression into:

cosma, el et +

(47) sup infmax sup cos2 re,, 6'T e

@T0. ¢ 1+ Je| 1 |ef
: at N
. = sup infmaxH (@,, o).
(oy,%,) ¢ m

Firstly, we examine the function y(f) = ag~*+be~*. If ab > 0, then |y|
iy decre:msmg. If ab < 0, then yhas the only extreme point ¢, such that

—ly —a . . .
= -I/Tb . Besides, ﬂi [w(@)] = oo, %Lrs, ()] = 0. In our case

e 1 g e
a = _—"‘00871'2’61’ b = 008 2 we41' —ty __ _~I/ CCOBTTO "
1+l ’ T wnd ¢ 4008 2700
(cos2n@ws£0). If ccosmreos2nw > 0, then H(z, 0) = ¢ cos e+
' 1+ e]

+ cos2 mzet?)

15 + H takes the same form if ¢cosmacos2 nw < 0 and
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—4dcos2me o,
a) ¢ —— &” and cosmweos2na > 0,
cosmw
—4co82ma
L) 03— T and cosmmeos2nm < 0.
COSTD
\ (4 p . .
T cos2ma == 0, H(w,c) = ’m[—coanmefl. Thus, tending to plus in-

finity with fixed », we enter the area where H is of the above mentioned
form. Since lim H (1, ¢) = |cosna|e’, (47) is not greater than ¢”. To prove
0=>+00
d) note that for each & there is a ¢ such that H (z, ¢) < ¢**. This is obvious
—1—4e"
when # # 0orl. Bubt H(0,—1—46") = PR ¢ + 5T 4eT &
and H(l, —0) = H(0, o). .
To prove a) and b) note that infmax (H (0, 6}, H(1, 6)) = e”.
[

<"

¢) For all large ¢> 0 H(0,0) < e” and H(L, o) < e”.

"9, Acknowledgements. I wish to express my gratitude to Professor
8. Rolewicz, without whose suggestions and care this work could not
have been carried out, and to Professors S. Hartman and A. Schinzel
for their help in the diophantine approximation problems.

Referonces

[11 J. W. 8. Cassels, An iniroduction to diophantine approwimation, Cambridge
1957, . :

[2] W. A. J. Luxemburg and J. Korevaar, Hntire functions and Miimte-Szdsz
type approvimation, Trans., Am, Math Soc. 57 (1871), pp. 23-37.

[8] O0.A. JMagmmencras B. A Comommmros, H. I Vpanbuesa, Junel-
wwe w weasuaunelinue Ypasnenus napabouteckoso muna, Mocksa 1987.

[4] V.J. Mizel and T. I. Seidman, Observation and prediction for the heat equation,
J. Math Anal. Appl. 28 (1969), pp. 803-312.

[6] =, — Observation and prediotion for the heal equalion II, J. Math Anal. Appl.
38 (1972), pp. 149-166.

[6] 8. Rolewicz, Metrio linear spaces, Warszawa 1972,

Received October 15, 1972 (604)


GUEST




