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(b) In the case of a real space the proof is simpler. The set £,
= {{eR: |o+Lyl > o]} (B is the real field) contains at least one of the
rays [0, + o), (— oo, 0] and by assumption o is negative. Then, ' 2
for some positive integer k.

Remark. It can be easily seen, by taking the supremum mnorm
on (% for example, that there may be no positive integer & such that
Iz 4 w®yll > ll2|.

ProrosrrioN 2. Let X be a real oy compler normed vector space and
let A be a linear operator from X imto self such that ||A»| < ||| for oll
we X (i. e. A is & contraction). Let 2, u be eigenvalues of A such that |A] = :
and A # u. If w and v are eigenvectors of A corresponding to A and u, respect-
fvely, then u is orthogonal to v.

Proof. Let a be an arbitrary scalar. We have for all positive inte-
gers I,

% -+ av]) = 1A% (1 4+ av)]) = [ %2+ apo].
whence, denoting o = u/i,
(*) I+ o (av)]| < o+ o).
If |ul < 1, then |o| <1 and letting in (*) & — - oo, we obtain. [|u] < |u -
+av|. If |x| = 1, then we have 0 < argw << 2n (since o 1) and making
use of Proposition 1 we obtain from (x) that |u] < [« -+ av|.
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Some examples in harmonic analysis

by
B. E. JOUNSON (Newcastle upon Tyne)

Absteact. The papor consists essontinlly of five oxamples as follows.

(1) A Segal algobra on a comamutative group which is not *closed.

(2) A Wienor-ike Sogal algebra which. is not *closed.

(3) A group algobra such that tho ideal of functions with Haar integral zero
does not have an unbounded approximate unit.

(4) A group I' with a closod normal subgroup ¢ and a G-invariant subspace B
of I (I") such that 7' is not elosed wheve T'is the canonical map of It (I') onto Lt (I'/@).

(8) A compact group G such that the kernel of the convolution product map
from L®(G)&L*(G) is not the closed linear span of the tensors gxa@y— e® axy,
ae DHE), p, p e L®°(G).

In this paper wo give a number of examples arising in various parts
of harmonic analysis. The first four are connected with the work of
H. Reiter.

1. Symmetry and *symmetry in Segal algebras. A Segal algebra
S([B], p- 16) is & dense left translation invariant subset of L* (&), G & locally
compact group, which is a Banach space under some left translation
invariant norm || | dominating the L* norm and such that the left regular
repregentation of & on § is strongly continmous. § is symmetiic if in addi-
tion || |Ig is right invariant and the right regular representation is strongly
continuous. If & is abelian every Segal algebra iy symmetric.

Tho Sogal algebra § is *symmetric if it is stable under the hermitian
involution* on I'(G). We shall construct an example with G =R of
& (nocegsarily symmetric) Segal algebra which. is not *symmetric.

Lot fe'(R). Define

Sy = {g; ge I*(R), frge Oo(R)},
9l == lgly+ 1% gl

whero fige 0, ((1) meany f g differs from o 0 function on & set of meagure
zero and | ||, is the ¥ norm. As 8, contains all continuous functions ‘with
compact support, Sy is dense in L*(R) and it is easy to check that Sy is
2 Segal algebra. Congider the case

f(@) = (wllogal)t 0<a<i,

= 20 or 2 >%.
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fxf is zero outside (0, 1) and, for any > 0, fis the sum of an L' function
on (0, &) and an L™ function on [, 4) so that fxf is continuous outside
[0, 2¢]. Thus f+f is continuous on B\{0} and zero on (— oo, 0]. If 0 < ¢
< % then

t
(Ff) (1) = f lwloga (¢ —w)log (t — o) *dw

1
= [&7H(1— &)~ log étlog (1 — &)1 ¥ dé
[]
-0

ag t-> 07

because the integrand is dominated by (log2)~*&~H1 —&)~
S*f is also continuous at 0 and feS;.

In a similar way we see fkf* is zero outside (— %, ) and continuous
on RN\{0}. As f is monotonic on (0, ) we have, if 0 << }

¥, Thus

b3
(Ff*) () = [ f(o

13

i
j f(z)2dw
i

—>Jf(w Ydw = oo  ag t->0%
0

so that fxf* is not continuous and f*¢S;.

2. Assymetry of a class of Wiener-like Segal algebras. Let @ be-a locally
compact group and I' a discrete subgroup such that the left coset space
@/I" is compact. On #"(G), the set of continous complex valued functions
on G with compact support, we define the norm.

fls = sup 3 If o)
yel'
The completion of 4" (@) in this norm iy the Segal algebra § with which
we are concerned ([5], p. 23).

Let H be a compact group, I" a group of automorphisms of H and
let hoe H with I'hg = {yhy; y« I'} infinite. Let & be the semi-direct product
of I"and H, that is the produet space I'x H (F has the discrete topology)
with multiplication (y, b) (' , By = (yy', y(W)R). Identifying I' +with
{(y, €); vy« I'} and H with {(¢, h); he H}, We see that the pair &, I satisty
the conditions of the preceedm paragraph and we shall show that in
this case the Segal algebra is not symmetric.
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If fe (@) then
s = sup )17 (, 1)

:Jel‘
and, beeause ¢ is unimodular, if 2 == (¢, hy) then

1Re1flly = sup > 1f(@p)|

@yl

}j 7 (2)]

""" < 105 vhall.
7
Lot Hy, Wy, ... be disjoint open subsets of H and yy, y,, ... elements of
I'with, ')qltoelbf[()l all 4. Clearly if ¢ = j then y; 5 y;. Let v, bea continuous
function ¢ — LO l] WJth quppoﬂ: contmned in {y;}x B, and_ v;(ys, viho)

Zl ijm]’”f('}’: h) ' == B oy (v, B <70 if he T, for some k>4,
Jart

=3 0 otherwise.

Howover

- $1 i~ = oo

| Ry-10 5 > Z W (y4, i
so that & is not symmetric.

Examples of pairs H, I satisfying the above conditions abound.
We could take H = Z%, considered as a space of bilateral sequences of
0% and 1, I"as tlm powers of the shift and h, tho characteristic function
of Z*,

3. Approximate unmits in the augmental.ion ideal of a group algebra.
The augmentation ideal Ly(G) of LM (@) is {f; feI*(@), [fdi = 0} where
A s w left Haar meagure on the hmn.lw compact group ¢ We shall say
that o Banach algebra A has o bounded right approximate unit if there
i 0= 0 such that it aed, s> 0 then there iy ecd with |el <0 and
flo—ae] < & A has a vight appr oximate unit it for all aed, e > 0 there
i eed wm L@ ae| < & that is cach element of A lies in the closed right
ideal it gencratios, By the Cohen factorisation theorem ([1], . 199), if
4 hay » bounded right approximate unit then every element of A is the
product of two others. In the convolution algebra L*(T) a product is
& continuous function so this algebra cannot have a bounded approximate
unit bub the usual construction for a bounded approximate unit in I*(T)
gives an unbounded approximate wnit in L (T). Thus some Banach algebras
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have unbounded but no bounded right approximate units. In [3] it was
shown that G is amenable if and only if Ly (6" has a bounded approximate
right unit. In this example we will show that if G = F,, the free group
on two generators a, b then Ly(G) does not even have an unbounded
approximate right unit.

It will be convenient to 1op1esent elements of I*(F,) as linear combi-
nations of group elements. Let 7 = ¢4 a—b—bae Ly(T,). We shall define
a function ¢: Fy — {0, 1} such that for all g in &

o(g)+o(ag) —o(bg) —o(bag) = 1.

Tt peLy(@)* is defined by
‘P(“j%g) = Za,0(g)
and X means X(ge@), then p(r) =1 and
p(rx Zoyg) = p(Z(ay+ ayg,— oy, — a(bzt)‘la)g)
= 2(aﬂ+ aa—-la_ ab—lg - a(ba)—-lﬂ) 0’(9)
= Zay(0(g) +o(ag) — o (bg) — o (bag))

= 2a, =0.

where a,¢ C

Thus 7 does not lie in the closed right ideal it generates.

To define o, for ge F, let Jg| denote the sum of the absolute values
of the exponents of @ and b when ¢ is written in reduced from, so that
le] =0, |a?ba™"| = 4 and so on. We define ¢ by induetion on |g| taking

o(g) =11if |g] <1 and when [g| = n+1, n>1 we take o(g) = 1 if

(i) g = ak, ', or bR, |h| = n,

(ii) g = bah, |b| =n—1, o(h) = o(ah) =1, o(bh) = 0 or g = ba"'h,
(B =n—1, o(h) = o(a""h) =1, o(bh) =0
and o(g) = 0 otherwise.

Note that for all ge F, we have o(bg) < o(g); this follows by (i) if
|bg| < igl, is obvious if o(bg) == 0 and by (ii) in the remaining case. Pub

)+ a(ag) — o (bg) — o (bag)..

Suppose |g| < lag]. Then o(ag) =1 by (i) (or by specific definition if
g =e) and by the above remark (c(g), o(bg)) = (L, 0), (0,0) or (1,1).
In the first of these cases o(bag) = 1 by (ii) and so v(g9) = 1 whereas in
the second and third o(bag) = 0 and again 7(g) = L. A similar argument
applies if |g] > lag|.

T(g) = olg

4. Translation invariant subspaces which are not mapped onto closed
subspaces by the canonical quotient map. If I' is a locally compact group
and ¢ a closed normal subgroup with a left Haar measure A then 7': LX)
~ ILMI'|G) is defined by (Tf)(2G) = [f(zg)dA(g)
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If @& is amenable then the image under 7' of a closed & invariant subspace
of L1(I") is a closed subspace of L*(I'/@) ([4], p. 177).

TreOREM, If Ly(G) does not contain an appromimate right unit then
LY(T), where I' = Z xX @, contains a closed G invariant subspace B such
that TH is not closed.

Proof. We shall consider & = {(0, ¢); ge G} = I'and M (G) as embed-
ded in M(I') in this way. Choose ge Lo(G) with || =1, |*¢ —g| =6
> 0 for all ¢'e Ly(G) and pe LY(@) with |y == [pdi = 1. For ne Z* let
fae M) bo defined by

In(my 9) = @(g),
Ial—m, 9) = 0" y(g),
Salmyg) =0 |m| #n

and let B be the closed right ¢+ invariant subspace generated by {f,; ne Z*}.
We shall show that '

(fa* Do(@) = (f*x L&) N Kerl'.

Clearly the first set is contained in the second. If F lies in the second
sefi then I'F' = 0 and there is a sequence {a,,} from L*(G) with f,* a,, - F.
Thus L'(fp*ay) ~ TF = 0. As

T(fuxam) (—n) = [ [ 07 p(hg)an (97" 8A(9)dA(R)
= n“lf wdlf O A4
= n"‘f O @A,

this implies [a,,di 0 a8 m —oco go that lim f*(a,—vfa,dd) =f
m

and fo#(a,— v/ o, di) is in fxLo(G).

As a Banach space I*(I) is the direct sum. of a sequence of copies of
IN@), Ker T is a direct sum of its intersections with these copies and I
is a direet sum. of the (f,,*Ll(G))‘ (by a direct sum of Banach spaces
Eyy Eay oo wo mean {w: we &y XLy X ooy T|wyll < oo} with norm (o]
= X||w,ll) wo soo .

A(fo B O KexT) = d(fy, (fur ING)™ N KerT)
= d(fm.fn*Lo(G))
> inf |pxp’ —0l
7' e Ly(&)
=94,

where d denotes the distance from the point to the subspace.
T gives a one to one map 7 of the Banach space B/H n KerT onto
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TE. It TE is closed then v is & homeomorphism. However ||f, -- 7 N Ker 7|
> 0 whereas
T~ =(fat+ B 0 Kerm)(—g) =g
=0 otherwise

-1

if n=g>0,

50 that [[7(f,+F N KerT)| = n~"— 0 a3 n - co. Hence = iy not a home-
omorphism and so T'F is not closed.

5. Failure of the multiplier result in L& L=, The theory of multlp—
lier spaces introduced by Figd—Talamanca is now well developed. The
basis of the theory as given by Rieffel [6] is that, with the usual identifi-
cation of the operator space & (I, F*) with the space (K@ F)", the opora-
tors from L2 (@) into LY (@) which commute with right translations corres-
pond to those elements of (L7 (&) & L*(G)}" which. are zero on tensors of the
form @g®y— ¢ gy where pe LP(G), ye LY(@), ge G and @g and gy denote
the right and left translates of ¢ and y. Thus these operators can be iden-
tified with elements of (I?(¢) &g LU ®))* (for convenience we are assuming
G is unimodulau and LYG) and LY (@) arve paired by the bilinear form
fa(g)v(g™")dg). The most difficult part of this theory is to show that
if s deflned on P (& LYG) by = (p®@1yp) = @*y then Kers is the closed
linear span of the tensors of thc form pg@vy — gy so that L (GF)QeLYUG)
can be identified with Imz. In a similar way operators from L*(@) into
I7(@) commuting with convolution by L*(G) functions can be identitied
with the dual of the quotient of IZ*(G)®L%UG) by the closed linear span
of the tensors pxa®@y—geRa*y (acL'(G)). However in most cases an
operator commutes with translation if and only if it commutes with
convolution with L(@) functions.

Certain cases in which p and ¢ are infinite are not covered by [6]
and some of the results are false in these cases.

LeMMA. There ts a non zero functional in L (TY* which iy translation
invariant and zero on C(T).

Proof. Let r,,7,,... be an enumeration of the rationals and Ho
= ,L;J] {6 we R, r;—u| <27 'x}. T I i3 any non void open arc in T and

Wy, <.vy e T then I contains a point of {w,6"; ¢eQ} and hence some
non void open subarc I, of w,H,. I, in turn containg a non void open
subarc I, of w, B, and so on. Bventually we find a non void open are I,
contained in I nw, B, ... nw,B,. Lot y be the characteristic function
of E, and f a convex combination of the translates of y by the w;. Then.
f= 1 on I, so if le C with |f— 21|, < % then [1—A| < }. However if

% —f % () dz then k< = so that

o

[ 1fe®)do = [ f(&*)an = k<=

[
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and ||f— Al << im])li(w 2m)A] < k437 < 4n and henee |4] < £, which
contradicts |L—A] <} Thus in L®(1 ) thv olosod convex hull I of the
translates of g is distance at least 1/4 from the constant functions. Henee,
by the Tlahn—Banach theorem there is 8 in L (T)* with (1) = 0, Ref («)
2z 1for all @ in K, Liet M be a translation invariant mean on I°(T), the
space of all bounded functions on T'([2], Theoren 17.5), and define

a(f) = M)

wheve (8f) (w) = f(wf), fe LT, weT.

. (Jluunly ae 17U, a in translation invariant, (1) = 0 and Re a1
on K so that a / 0. a | C(T) is thus, by uniqueness, a multiple of Lebesgue
measure and so v zero beeause al) is zero,

When  the multiplier  result  Ker o = Span{g*a®@ p — @ axyp; ¢
e L7 (), we L'N(G), ae LY(G)} holds, 7' iz an operator from ILP(¢) into
LYY whieh commutes with convolution by L' (@) functions and ¢« L(@),
pe LY(G) with gwy = 0 then (T(g), y) = 0. A similar remark applies to
operators commuting with translation. When p = ¢ = oo we define the
convolution wky, ae LU({), ye L¥(G)* by (a*y, F) = (y, Fxa), FL¥(G)
and the translation gy by (gy, F) = (p, Fg). In particular if y is translation
invariant then gy = o and if y is zero on C(@) then axy = 0.

Let 7, s L®(TY)NC(T) such that »xs == 0 (we could choose r, § such
that #(w) = #(—w), 8(w) = —g(—w) for all we T} and lot o, ve L°(T)"
with o, 7 = 0 on C(T), o(r) 5 0, 7(8) # 0. Define X' by T'(F) = o(F)v
o that 7' is an operator from L®(T) into L*(T)". Because o is zero on
C(T) we see that T'(axF) = 0 and because axv = 0 we see that axT (F)
= 0 forall a in LY(T), F in L*(T), and so I commutes with convolution
by L'(T) functions. However ks =0 and (I7,s) = o(r)z(s) 0 so0
Kers is not the cloged span of the tensors pxa® v—oQ axy, ¢, pe L (T,
ae LV(T).

In a similar way defining 7': L®(T) - I®(T)* by T(F) = a(F)2
where a is the funetional in the Lemma and 1 the Lebesgue inegral A(F)

an
= [ P dw, wo have ¢gT(F) = a(F)gh = a(F)1 and T(gF) = a(gl)A

0
= a(MA 8o that 7' commutes with translations. However if ¢e L®(T)
with a(p) v 0, A(p) == 0 then gl = 0 and (7(p), 1) = a(p) A1) #0 %o
that Ker o is not the closed lineanr span of the tensors pg® p—o® gy, ¢,
pe L, ye'l.

Note that in the first of these examples if #* 8 a translato of » and
a(#) = 0 then T'(r') = 0, T'(#) % 0 so that T does not commute with
tranglations. In the second example if ae LY(T), Ie L), (1) 50,
a(F) = 0. then, because ax B is continuous, we have 2'(ax F) == 0 whereas
ax T (F) = a(F)A(a) = 0 so that 1' does not commuate with convolution
by a. :

6 — Studia Mathematicae XLVIIL2
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On commutative approximate identities
and cyclic vectors of induced representations

by
A, HULANICKI and T. PYTLIK (Wroclaw)

Abstract. It iz shown that overy locally compaet group has a commutative
approximato identity for Ly (6) which consists of contintons positive functions which
deereaso vory rapidly at infinity. This is applied to a construction of a eyclic vector
for a reprogentation of a loeally eompact first countable group induced by a cyelic
reprosentation.

The aim of this paper is-twofold. To show that every locally compact
group has a commutative approximate identity for I,(G) which consists
of continuous positive functions which decrease very rapidly at infinity
and apply this to a construction of a cyclic vector for a representation
of a locally compaet first countable group induced by a cyclic represen-
tation.

A congtruction of commutative approximate identity for a ¢*-algebra
was given by J. F. Aarnes and R. V. Kadison [1]. Their method uses
C*-algebras technique and does not apply to the group algebras. It would be
interesting to know whether there exigts an approximate identity for
Ly (@) consisting of commuting continuous functions with compact support.

The fact that for a first countable group representations induced by
cyclic representations are cyclic was first proved by F. Greenleaf
and M. Moskowitz [b] and [6] and a construction of a cyelic
vector for such representations was claimed by the authors [7]. Unfor-
tunately [7] makes use of a statement in. [2], p. 49, which is false, as it
has been recently discovered by R. Goodman. The construction presented.
lere avoids this difficalty and (for induced representations) improves the
construetion given in [7].

Very briefly the idew is the following., For a Lie group G the funda-
mental solution u(g, t) = p*(g)_of the heat equation is a one-parameter
semi-group of non-negative functions p%, that is p°xp’ = p*** for all
positive real s, . Moveover phf tends to f as t tends to zero, and for a fixed
t the function p' decreases fagter than exponentially at infinity. In ghort,
functions pf, te R*, form an approximate identity for L;(@) consisting
of commuting rapidly decreasing functions.
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