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Abstract. In this note we consider the algebra of continuous functions O (T, F)
mapping the 0-dimensional Hausdorff space T’ to the complete rank one nonarchime-
dean nontrivially valued field F. The first two sections of the paper are concerned
with the development of analogs ,§ (T) and » (T) of the Stone—Cech and realcompacti-
fications of 7. An analog of the Gelfand-Kolmogoroff theorem is presented. The
kernels of homomorphisms of G (T, F) into F are characterized in a fashion analogous
to Hewitt’s characterization for real algebras, where F is a complete diseretely valued
field whose residue class field has nonmeasurable cardinal.

In the final section it is shown that in the case wheve F is complete and diseretely
valued with residue clags field having nonmeasurable cardinal, the algebra O(T, F)
endowed with compact-open topology is F-bornological if and only if 1;(1’) =1

In the present note we study algebras C(7', I') of continuous functions
with pointwise operations from a 0-dimensional Hausdorff space T to

‘& complete rank one nonarchimedean nontrivially valued field #. ¢(T, ')

carries the compact-open topology and is therefore a locally F-convex
([12]) topological vector space. Nachbin ([9]) and Shirota ([11]) obtained
a necessary and sufficient condition for real algebras O(X, R) of contin-
uwous functions mapping the Tychonoff space X into the real numbers
L to be bornological: C'(X, R) is bornological if and only if X is a @-space
(as defined in [5] or [6]). Here, in. Theorem 7, we obtain a necessary and
sufficient condition for C(Z, F) to be F-bornological (in the sense of [12])
when I is a complete discretely valued field whose residue class field
([11) has nommeasurable cardinal ([5]). To accomplish this, we bypass
the real-number-dependent machinery used in analyzing the algebras
(X, R).

Throughout this paper I' denotes a 0-dimengional Hausdorft topol-
ogical space, F' a complete rank one nonarchimedean nontrivially valued
field. Our use of “0-dimensionality” is that there is a base for the topology
congisting of closed and open (clopen) sets. The F-valued characteristic
function of a subset & of T is denoted by k.
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1. Maximal ideals of O(T, ). In this section we develop an analog
/§(T) of the c]assie&l Stone—Cech compactification §(T) of T. We also
develop an analog v( ) of the classical realcompactification v(T) of T
We list (Theorems 1-3) relationships between the points Seﬁ ) and
maximal ideals M of the algebra C(Z, F) analogous to those of [5].
The validity of Props. 1-3 enables us to omit the proofs of Theorems
1-3 (cf. [5], pp. 10-108).

DEFINTITON 1. A subset B of T' is a O set if there oxists a countable
collection. of clopen sets (8,) such that B = () §,. A subset I of T'is
an F-zero set if there exists fe O(T, F) such that B = f~*(0). Wo then
also denote B by 2(f).

PROPOSITION 1. B s an F-zero set if and only if B is a C, set.

Proof. If  is an F-zero set, then B = 2z(f) for some fe C(T, I') and
B = {teT| |f() <1/n}.

Conversely, it # = (8, where each g, is a clopen subset of 7T, then
choosing we F such that |a| <1 and setting f = 3 a"kgg,, we see that
#(f) = B.

From Prop. 1 we see that the F-zero sets are the same for any field
F and may be referred to simply as zero sets. We now show that disjoint
zero (C;) sets can be separated by clopen sets.

PROPOSITION 2. If E N L =@ where B and L are C, sets, then there
exists a clopen set S < T such that B = 8 while I = C8.

Proof. For the sake of the proof, we choose F to be a field such that
V-1 ¢ F (e. g. a p-adic number field @, where p = 4n -3 for some positive
integer n). Since B = z(f) and L = 2(g) for some f, g C(T, F'), we observe
that as V —14¢F, then z(f2-+g% =@. Consequently & = f2/(f*+g?)
eC(T, Ty and the set § = {tT [ | ()] < 1/2} will satisfy the conditions
of the proposition.

DerINITION 2: Let T be a collection of nonempty Cs-sets such that

(a) If By, Bye T then B; N Hpe X,
and

(b) it B, e T and H, = B, where E, is a C; set, then Fye X. Then T
is called a z-filter. If T is maximal under set inclusion, then T is called
a z-ultrafilter.

As an intersection of finitely many (even denumerably many) C; sots
is a G, set, it can be shown that every #-filter can be extended to a z-ultra-
filter.

ProPOSITION 3. The mapping M —Z(M) = {&(f)] fe M} establishes
a 1-1 correspondence between the mamimal ideals M of C(T,F) and the
z-ultrafilters on T.
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Proof. We note that the proof of the analogous statement as pres-
ented in [5] would be applicable to this situation if it could be shown
that when f, ge M, then 2(f) n2(9)eZ(M). Thus we show that when
fr 9 M it follows that z(f) N z(g)eZ(M).

‘We begin by showing that if f, ge M then 2(f) Nn2(g) = @. I 2(f) N

N z(g) = @, then by Prop. 2 it follows that there is a clopen set S« T
guch that 2(f) = § while 2(g) = CS. Let
£ 0 if te S,
Clrmt it e o8,
‘0 ] if te 08,
T =00 it tes.

Then ff' g9 = kpe M which is contradictory.
We now show that if feM and 2(g)-= 2(f) for some geC(T,F),

“then it follows that ge M. To do this we simply observe that 2(g) N z(h)

# @ for all he M and therefore the ideal generated by M and the function
¢ is a proper ideal. Thus ge M.

Now we can show that if f, geM then 2(f) N 2(g)eZ(M). To begin
we note that 2(f) = () S, and 2(9) = (W, where the sets S, and W,
are clopen subsets of 7'. Choosing aeF such that 0 < |a| < 1 and setting
f= Ea kos, and ¢ = 26&“""’1750,,, , we observe that z(f) = z(f),2(g)
= 2(9), and #(f' +¢) ==2(f) nelg) = #(f) N 2(g). Since f'+¢'< M, the
proof is seen to be complete.

DrFINITION 3. Let F' be a local field and V =
valuation ring of F. Let $ = {f<C(T, F)| f(T

e: T— V9,

{acF| |a] <1} be the
) = V} and consider the map

T (f(t)seg-

As in [7] the mapping e of T into the product space V* is a topological
embedding. We define the closure e(T)of e(T) in 79 to be the F-Stone—
Ceeh compactification of T and denote it by /§F(T).

By standard arguments we may show that the compactifications
ﬂp ) are equivalent compaemﬁcahons of T for all 7, so we may refer
to this compactification of T as ﬂ (T) — the nonarchimedean Stone-Cech
compactification of 7.

As in [7], if T and T* are both 0-dimensional Hausdorff spaces,
a eoﬁntinuouﬂs function f:T — T can be extended to a continuous function
fr B(L)— B(T™).

We now list a group of results whose proofs are similar to proofs of
analogous results in [5]. We emphasize that unless otherwise stated, #
is any complete nonarchimedean nontrivially valued field.
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TaEorEM 1 (“Gelfand-Kolmogoroff”). There exists @ 1-1. correspondence
between the points Se;S'(T) and mazimal ideals M of C(T, F) where

s> {fe O(T, F)| secl (T)z(f) = M(s)

establishes the correspondence.

DEFINITION 4. The nonarchimedean realcompactification »(T) of T
is defined to be the collection of points se 5(1’) such that if (W,) is
any denumerable collection of clopen neighborhoods of s in /§(.’L’), then
() (W) AT 0. T8 5(T) = T, then T is called a G-space.

THBOREM 2. The following statements are all equivalent.

(a) s& v (1),

b) If 2(fu)e M(s) (n =1,2,...), then Ne(f) e Z(M

e) If =(f)eM(s)(n =1,2,...), then (M&(fy) # 9.

TueorEM 3. If ¥ is a local field, then M (s) is the kernel of a homo-
morphism of C (T, F) into T if and only if sev(T).

THEOREM 4. If f is a continuous funcmon taking T’ into T and f is the
continuous extension of f taking B(T) into B(T*), then f ( (M) = » (1),

Proof. Let se»(T). To show that f(s)e»(T*), it is shown. that: if
(W,) is a denumerable collection of clopen neighborhoods of f (8) in ﬂth
then (YW, N T* #@. To demonstrate this we observe that as sey(1),
it follows that f~{\W,, N T*) = NfH(W,) nT #0.

2. The homomeorphisms of O (T, F) inte I'. A set § is said to have
nonmeasurable cardinal [6] if every ultrafilter T of subsets of §, closed
with respect to the formation of denumerable intersections, is fixed
(ﬂit # ©). This iy equivalent to the requirement that every countably
additive 0—1 measure on the o-algebra of all subsets of § be concentrated
at a point of §. A “measurable” cardinal has never been exhibited. More-
over, the collection of nonmeasurable cardinalg is a subclass of the class
of all cardinals which is closed with respect to the standard operations
on the class of cardinals [5].

In this section we show that Theorem 3 can be generalized to inelude
all fields F such that is F complete, discretely valued, and the residue
class % ([1] or [10]) has nonmeagurable cardinal. As a complete discretely
valued field F is a local field if and only if & is a finite field [10], we seo
from the above remarks that this constitutes a considerable broadening
of Theorem 3.

PropostrioN 4. If M(s) <« C(T, F) and M (s) s the kernel of a homo-
morphism h toking O(T, F) into F, then se»(T).

(s)),
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Proof. It is sufficient to show that if (S,) is a pairwise digjoint clopen
cover of T', then S;¢ Z (M (s)) for some integer j. To prove this let ae F
be such that 0<|al <1 and let f = S’a kes,,- Since f—h(f)kre M (s),
then 2(f—h(f)ky)eZ (M (s)). But 2{f—h(f)ky) = 8; for some j.

THEOREM 5. Let F be a complete and dzscv etely valued field whose residue
class field & has nonmeasurable cardinal. Then M (s) = C(T, F) is the kernel
of & homomorphism of C(T, F) into T if and only if s v(T).

Proof. To prove this we must show that if g¢ I (s), then for some
ael, g—akpeM(s). Let (a,),.ybe a collection of representatives of %
and choose a scalar be F such that |b| < 1 is a generator of the value
group |F*| of F.

Since F = U bV, then T = U g7 (¥ V) and, as Z(M(s)) is closed

under the formatlon of denumemble intersections, it follows that for
some integer j, ¢7' (' V)e Z (M (s)). We observe that ¥V = U (bla,+

nell
+ b1V, Since for any subset H of U, Sy = U (b4, +b7"1 V) is a clopen

subset of F, we see that the sets H =« U such that 9 (8g) e Z (M (s)) are
an ultrafilter of subsets of U. Since U has nonmeasurable cardinal, there
exists ue U such that ¢~ (W a, o0 V) e Z(M (s)). Similarly, there exists
u; such that g~ (b a,, + b a, +b’+2V eZ(M( s)) In this way we construct
a nest S, = %o+ +b’+"a , 0TV of subsets of 7' such that
diam§, — 0 and g~ (S,)e Z(M(s ) As F 1s a complete field, M8, = {a}
for some aeF and 1t follows that ¢~'(a) = (M) g7 (S, eA(JII( s)).

Exavprr 1. In [8] Michael %howed thab if an algebra 4 <= C(X, R)
is “closed under inverses” (if feA and f'eC(X, R), then f'e 4) and
A satisfies conditions (a) and (b) below, them the nontnwal homomor-
phisms of 4 into R are generated by the points of X as evaluation map
homomorphisms.

(a) Given fy,...,f,e A such that (M=(f)
Giy ey Jne A such that ¥ fig; = kg, ™!

(b) There exist gy ..., h,ed such that for any a,,...

=, then there exist

) Gye R,
e

Nz(h;—a;k,) is compact.
i=1

The proof of ([8], p. 1) may be applied to the setting of this paper
and it may be noted therefore that if 4 = (T, F) is closed under
inverses and 4 satisfies (a) and (b), then the nontrivial homomorphisms of
4 into F are generated by the points of 7.

By Prop. 8, it A = C(T, F), then A satisfies (a). If we take T = F,
then C(F, F) satisties (b). Thus F is an F-@ (in the sense of [2]) space.

TueorEM 6. If F is a complete discretely valued field whose residue
class field has nonmeasurable cardinal, then F is a Q-space.

2 — Studia Mathematicae XLVIIL2
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Proof. Apply Theorem 5 and Example 1.

Tt is known that a complete discretely valued field may be constructed
whose residue class field % has arbitrary cardinality. From the results
of this section, it can be shown that if the statement of Theorem 5 iy
true for all complete discretely valued fields, then all cardinals are non-
measurable.

3. The algebra ¢/(T, ¥) with compact-open topology. In thiy section
we examine the topological algebra C(T,F) (endowed with compact-
open topology). Principal among the results obtained (Theorem 7) is
a necessary and sufficient condition for C(T, F) to be F-bornological
when F' is a complete discretely valued whose residue clasy field & has
nonmeasurable cardinal.

DerFINITION 5. Let F be complete and discretely valued and let
(@y)ycr De a complete set of representatives for the cosets of the residue
class field of F. We may agsume that U is totally ordered and that the
representative determined by the first element of U is the gealar 0. Choose
an element e F such that |#| < 1 is a generator of the value group |7
of I, For any two elements, a and b, of F there is ([1]) an integer N and
sequences (&) and () y of representabives such that

- Vv 3 — 02
a= 2_,“%'” b = 2%%
SN =N

We define sup(a, b) to be a if uy > Ay or if a,, = a, (i =N, ..., j) while
U1 > Ajpp. Under these circumstances we also say that inf(a, b) ==
If a = b we take sup(a, b) = inf(a, b) = a. ‘

We note that if |a| > |b], then sup(a, b) = ¢ and inf(a, b) = b. Pro-
positions 5 and 6 concerning this notion of sup and inf follow casily.

PRrOPOSITION 6. If F is a complete discretely valued field and f, g e O(T', I)
then the functions defined by sup (f(¢), g(t)) and inf(f(2), g(¢)) are conti-
NUOUS.

ProposITION 7. Let F be a complete discretely valued field and lot V
be an absolutely F-convex subset of T with the following property: there is
a positive number a and « compact subset K of T such that sup |f(1)]|
or f wanishes in some neighborhood of K implies that feV. Then there is
& positive number b such that sup |f(K)| < b implies that fe V.

DerFINITION 6. For f, ge O(T, F) we say that f< g it inf(f, g) = f.
The dnterval [f, g] is the set {he (T, F) | f<h < g}.

Note that inf(f,g) =f it and only if sup(f, ¢)
he[f, g] only when |f(#)| < [h(2)] < |g(¢)| for each te T.

Specializing van Tiel’s notions of ,bornivorous” and “bornological
space” to funetion algebras yields:

and

=g. In addition,
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DEFINITION 7. An absolutely F-convex subset V of C(T, F) is an
F-bornivore if it absorbs every bounded subset of C(Z, F). If all F-borni-
vores are neighborhoods of 0, then C(T, F') is F-bornological.

Note that intervals [f, g] are bounded in C(T, F) and are therefore
absorbed by bornivores. We may now present our principal theorem.,

THEOREM 7. Let F be a complete discretely valued field whose residue
class field & has nonmeasurable cardinal. Then C(T, F) is F-bornological
if and only if T is a (:)—space.

Proof. First assume that 7' is a (}-spaee. To prove that O(T, F) is
F-bornological, it suffices to show that if V is an absolutely F-convex
set which absorbs all intervals [f, g1, then V is a neighborhood of 0. Con-
sider then such an interval absorbing absolutely F-convex set. A closed-
hence compact-subset K of ,§ (1) is a support set for V if when f vanishes
on an open superset of K n T, it follows that feV. Clearly ﬁ (T) itself
is a support set for V. Since for any ae F there is a scalar b ¢ F such that
[0, aky] = bV, it follows that for some r > 0, sup |f(T)| < r implies that
feV. If we show that there is a support set for V which lies in 7' then, by
Prop. 7, V is a neighborhood of 0.

Let $ be the collection of all support sets for V. It is readily shown
that if L, Ke$H and L N K =@, then O(T,F) =V.IE L NnK #@ and
: then L and K N C8 are
digjoint. Thus there is a clopen set U < ﬁ(T) such that L < U while
K n0S < C0U. Let feC(T, F) be a function which vanishes on 8 nT.
Since fhynr vanishes on (SUCU)NT and KNnT<=(SUOU)NT,
if follows that fky~peV. Similarly fngnTeV and therefore feV. Thus
it follows that L N Ke$.

It is clear that L = (M $ is a support set for V. It will now be shown
that I = T. Let se ﬁ(T)—T Since T is a Q space, it follows that there
is a sequence (W) of clopen neighborhoods of s in ﬂ ) such that MW,
c /§(T) —T'. We may assume that W,,., c W, for all n. For each 7 suppose
that f, vanishes on (B(T)—W,) N T and f,¢V. Let ue F* be such that
lu] < 1 and consider g = sup(u"f). Since | JT —W, = T and f; vanishes
on T —W, for all k > n, it follows that ge C(T, F). Since [0, g] = aV for’
some aeF and u"f,<[0, g] for every m, then f,e«V for every » such that -
la|/lu|" < 1. This, however, contradicts the way in which the f, were
chosen and. it follows that /5:(1’) —W,e $ for some #. T}lus s¢Land L <= T.

To prove the converse suppose that I' is not a @-space. Then there
iz some se»(T)—T. By the results of Theorems 4 and 6, every function
feO(T, F) can be extended to feC (»(T), F). By the Tietze-Rllis extension
theorem ([4]) or the results of [3], the mapping h(f) = f(s) is a discontin-
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wous homomorphism of O(T, F) into F. If it can be shown that % is
bounded, it follows that (T, F) is not bornological.

It X = O(T, F) is bounded and h(X) is unbounded, there must be
a sequence (f,) from X guch that | 7,.(8)] = oo. Letting W, = {s'¢ (1)
17(8)] = 1fu(8)| =13, se MW, and since se5(T), it follows that MW, N
n T ;ﬁ @ Thus there exists te (YW, N T and since |f,(¢)] - oo, & i3 not
bounded and the proof is done.

DEFINITION 8. A closed set X < T is relatively F-precompact if all
functions in C(T, ¥) are bounded on X.

PROPOSITION 8. A closed subset X of T is relatively F-precompact if
and only if el X < »(T).

Proof. Suppose first that there is a point se 0»(7) such that s is in
the closure of X. Let (W,) be a descending denumerable sequence of
neighborhoods of s such that MW, NT =@. Choose acF such that
ja}> 1. Let 8, = (W,—W,y) nT and f = Da"kg . It is clear that f
is unbounded on X and therefore X is mot relatively F-precompact.

Suppose conversely that X is not relatively F-precompact. Letb
feC(T, F) be unbounded on X and 8, = {teI] |f(t)] > n}. Consider
aget ¥ = {l,eT [ tye 8, N X} where with no loss of generality we may

“assume the relationship %, # #; if 4 < j holds. As /3( is compact, there

exists se /3 T) such that se elyq Y. Thus, of course, se clyy X. However,
se clyy 8, for all integers » and therefore §, belongs to the z-ultrafilter
Z(M(s)) for each integer . Since (M8, =@, it follows that se Cv(T).

From the preceeding result it can be seen that relative F-precom-
pactness of X iy independent of the field F and we may therefore refer
to X as relatively precompact.

ProrosrtIoN 9. If T is a Q-space, then every relatively precompact
set is compact.

Proof. To prove this it must be shown that X is closed in f} .
However, since T = »(T) and Ay X = »(T), the proof is scen to be
complete.

In [2], [3] it is shown that if ' is complete and discretely valued,
then C(T,F) iz F-barreled if and only if every relatively precompact
subset of T' iy compact. R. L. Ellis proved this result for spherically com-
plete fields and never published it. By the result of Proposition 8 wo see
that the property of T which is necessary and sufficient fox C (7, F) to
be F-barreled (F a spherically complete field) is entirely dependent on

T and its relationship to S(T). Thus we have the following result.

TaEOREM 8. Let F' and K be spherically complete fields. Then C(T, F)
is F-barreled if and only if O(T, K) is K-barreled.
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TroorEM 9. Let I be a complete discretely valued field whose residue
class field has nonmeasurable cardinal. Then if C (T, F) is F-bornological,
it follows that C (I, ') is F-barreled.

Proof. We apply Theorem 7, Proposition 9, and the comments
following Proposition 9.
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