

STUDIA MATHEMATICA, T. XLVIII. (1973)

Topological algebras of continuous functions over valued fields

b

EDWARD BECKENSTEIN, GEORGE BACHMAN, LAWRENCE NARICI

Abstract. In this note we consider the algebra of continuous functions C(T,F) mapping the 0-dimensional Hausdorff space T to the complete rank one nonarchimedean nontrivially valued field F. The first two sections of the paper are concerned with the development of analogs $\hat{\rho}(T)$ and $\hat{\nu}(T)$ of the Stone-Čech and realcompactifications of T. An analog of the Gelfand-Kolmogoroff theorem is presented. The kernels of homomorphisms of C(T,F) into F are characterized in a fashion analogous to Hewitt's characterization for real algebras, where F is a complete discretely valued field whose residue class field has nonmeasurable cardinal.

In the final section it is shown that in the case where E is complete and discretely valued with residue class field having nonmeasurable cardinal, the algebra C(T, F) endowed with compact-open topology is F-bornological if and only if $\hat{r}(T) = T$.

In the present note we study algebras C(T,F) of continuous functions with pointwise operations from a 0-dimensional Hausdorff space T to a complete rank one nonarchimedean nontrivially valued field F. C(T,F) carries the compact-open topology and is therefore a locally F-convex ([12]) topological vector space. Nachbin ([9]) and Shirota ([11]) obtained a necessary and sufficient condition for real algebras C(X,R) of continuous functions mapping the Tychonoff space X into the real numbers R to be bornological: C(X,R) is bornological if and only if X is a Q-space (as defined in [5] or [6]). Here, in Theorem 7, we obtain a necessary and sufficient condition for C(T,F) to be F-bornological (in the sense of [12]) when F is a complete discretely valued field whose residue class field ([1]) has nonmeasurable cardinal ([5]). To accomplish this, we bypass the real-number-dependent machinery used in analyzing the algebras C(X,R).

Throughout this paper T denotes a 0-dimensional Hausdorff topological space, F a complete rank one nonarchimedean nontrivially valued field. Our use of "0-dimensionality" is that there is a base for the topology consisting of closed and open (clopen) sets. The F-valued characteristic function of a subset E of T is denoted by k_E .

120

1. Maximal ideals of C(T, F). In this section we develop an analog $\hat{\beta}(T)$ of the classical Stone-Čech compactification $\beta(T)$ of T. We also develop an analog $\hat{\nu}(T)$ of the classical realcompactification $\nu(T)$ of T. We list (Theorems 1–3) relationships between the points $s \in \hat{\beta}(T)$ and maximal ideals M of the algebra C(T, F) analogous to those of [5]. The validity of Props. 1–3 enables us to omit the proofs of Theorems 1–3 (cf. [5], pp. 10–108).

DEFINITION 1. A subset E of T is a C_{δ} set if there exists a countable collection of clopen sets (S_n) such that $E = \bigcap S_n$. A subset E of T is an F-zero set if there exists $f \in C(T, F)$ such that $E = f^{-1}(0)$. We then also denote E by z(f).

PROPOSITION 1. E is an F-zero set if and only if E is a C_{δ} set.

Proof. If E is an F-zero set, then E = z(f) for some $f \in C(T, F)$ and $E = \bigcap \{t \in T \mid |f(t)| < 1/n\}.$

Conversely, if $E = \bigcap S_n$ where each S_n is a clopen subset of T, then choosing $a \in F$ such that |a| < 1 and setting $f = \sum a^n k_{CS_n}$, we see that z(f) = E.

From Prop. 1 we see that the F-zero sets are the same for any field F and may be referred to simply as zero sets. We now show that disjoint zero (C_h) sets can be separated by clopen sets.

PROPOSITION 2. If $E \cap L = \emptyset$ where E and L are C_{δ} sets, then there exists a clopen set $S \subset T$ such that $E \subset S$ while $L \subset CS$.

Proof. For the sake of the proof, we choose F to be a field such that $\sqrt{-1} \notin F$ (e. g. a p-adic number field Q_p where p=4n+3 for some positive integer n). Since E=z(f) and L=z(g) for some $f,g\in C(T,F)$, we observe that as $\sqrt{-1}\notin F$, then $z(f^2+g^2)=\emptyset$. Consequently $h=f^2/(f^2+g^2)$ $\in C(T,F)$ and the set $S=\{t\in T\mid |h(t)|<1/2\}$ will satisfy the conditions of the proposition.

DEFINITION 2. Let $\mathfrak T$ be a collection of nonempty C_{δ} -sets such that (a) If $E_1, E_2 \in \mathfrak T$ then $E_1 \cap E_2 \in \mathfrak T$, and

(b) if $E_1 \in \mathfrak{T}$ and $E_1 = E_2$ where E_2 is a C_δ set, then $E_2 \in \mathfrak{T}$. Then \mathfrak{T} is called a *z-filter*. If \mathfrak{T} is maximal under set inclusion, then \mathfrak{T} is called a *z-ultrafilter*.

As an intersection of finitely many (even denumerably many) C_δ sets is a C_δ set, it can be shown that every z-filter can be extended to a z-ultrafilter.

Proposition 3. The mapping $M \to Z(M) = \{z(f) | f \in M\}$ establishes a 1-1 correspondence between the maximal ideals M of C(T, F) and the z-ultrafilters on T.

Proof. We note that the proof of the analogous statement as presented in [5] would be applicable to this situation if it could be shown that when $f, g \in M$, then $z(f) \cap z(g) \in Z(M)$. Thus we show that when $f, g \in M$ it follows that $z(f) \cap z(g) \in Z(M)$.

We begin by showing that if $f, g \in M$ then $z(f) \cap z(g) \neq \emptyset$. If $z(f) \cap z(g) = \emptyset$, then by Prop. 2 it follows that there is a clopen set $S \subset T$ such that $z(f) \subset S$ while $z(g) \subset CS$. Let

$$f'(t) = \begin{cases} 0 & \text{if } t \in S, \\ f(t)^{-1} & \text{if } t \in CS, \end{cases}$$
$$g'(t) = \begin{cases} 0 & \text{if } t \in CS, \\ g(t)^{-1} & \text{if } t \in S. \end{cases}$$

Then $ff' + gg' = k_T \epsilon M$ which is contradictory.

We now show that if $f \in M$ and z(g) = z(f) for some $g \in C(T, F)$, then it follows that $g \in M$. To do this we simply observe that $z(g) \cap z(h) \neq \emptyset$ for all $h \in M$ and therefore the ideal generated by M and the function g is a proper ideal. Thus $g \in M$.

Now we can show that if $f, g \in M$ then $z(f) \cap z(g) \in Z(M)$. To begin we note that $z(f) = \bigcap S_n$ and $z(g) = \bigcap W_n$ where the sets S_n and W_n are clopen subsets of T. Choosing $a \in F$ such that 0 < |a| < 1 and setting $f' = \sum a^{2n} k_{CS_n}$ and $g' = \sum a^{2n+1} k_{CW_n}$, we observe that z(f) = z(f'), z(g) = z(g'), and $z(f' + g') = z(f') \cap z(g') = z(f) \cap z(g)$. Since $f' + g' \in M$, the proof is seen to be complete.

DEFINITION 3. Let F be a local field and $V = \{a \in F \mid |a| \le 1\}$ be the valuation ring of F. Let $\mathfrak{H} = \{f \in C(T, F) \mid f(T) \subset V\}$ and consider the map

$$e: T \to V^{\mathfrak{H}}, \quad t \to (f(t))_{f \in \mathfrak{H}}.$$

As in [7] the mapping e of T into the product space V^5 is a topological embedding. We define the closure e(T) of e(T) in V^5 to be the F-Stone—Čech compactification of T and denote it by $\hat{\beta}_F(T)$.

By standard arguments we may show that the compactifications $\hat{\beta}_F(T)$ are equivalent compactifications of T for all F, so we may refer to this compactification of T as $\hat{\beta}(T)$ — the nonarchimedean Stone–Čech compactification of T.

As in [7], if T and T^* are both 0-dimensional Hausdorff spaces, a continuous function $f:T\to T^*$ can be extended to a continuous function $\hat{f}:\hat{\beta}(T)\to\hat{\beta}(T^*)$.

We now list a group of results whose proofs are similar to proofs of analogous results in [5]. We emphasize that unless otherwise stated, F is any complete nonarchimedean nontrivially valued field.

THEOREM 1 ("Gelfand-Kolmogoroff"). There exists a 1-1 correspondence between the points $s \in \hat{\beta}(T)$ and maximal ideals M of C(T, F) where

$$s \to \{f \in C(T, F) | s \in cl_{\widehat{\rho}(T)}z(f)\} = M(s)$$

establishes the correspondence.

DEFINITION 4. The nonarchimedean realcompactification $\hat{\nu}(T)$ of T is defined to be the collection of points $s \in \hat{\beta}(T)$ such that if (W_n) is any denumerable collection of clopen neighborhoods of s in $\hat{\beta}(T)$, then $\bigcap (W_n) \cap T \neq \emptyset$. If $\hat{\nu}(T) = T$, then T is called a \hat{Q} -space.

THEOREM 2. The following statements are all equivalent.

- (a) $s \in \hat{v}(T)$,
- (b) If $z(f_n) \in M(s)$ (n = 1, 2, ...), then $\bigcap z(f_n) \in Z(M(s))$,
- (c) If $z(f_n) \in M(s)$ (n = 1, 2, ...), then $\bigcap z(f_n) \neq \emptyset$.

THEOREM 3. If F is a local field, then M(s) is the kernel of a homomorphism of C(T, F) into F if and only if $s \in \hat{\nu}(T)$.

THEOREM 4. If f is a continuous function taking T into T^* and \hat{f} is the continuous extension of f taking $\hat{\beta}(T)$ into $\hat{\beta}(T^*)$, then $\hat{f}(\hat{\nu}(T)) \subset \hat{\nu}(T^*)$.

Proof. Let $s \in \hat{v}(T)$. To show that $\hat{f}(s) \in \hat{v}(T^*)$, it is shown that if (W_n) is a denumerable collection of clopen neighborhoods of $\hat{f}(s)$ in $\hat{\beta}(T^*)$, then $\bigcap W_n \cap T^* \neq \emptyset$. To demonstrate this we observe that as $s \in \hat{v}(T)$, it follows that $f^{-1}(\bigcap W_n \cap T^*) = \bigcap f^{-1}(W_n) \cap T \neq \emptyset$.

2. The homomorphisms of C(T, F) into F. A set S is said to have nonmeasurable cardinal [5] if every ultrafilter \mathfrak{T} of subsets of S, closed with respect to the formation of denumerable intersections, is fixed $(\bigcap \mathfrak{T} \neq \emptyset)$. This is equivalent to the requirement that every countably additive 0–1 measure on the σ -algebra of all subsets of S be concentrated at a point of S. A "measurable" cardinal has never been exhibited. Moreover, the collection of nonmeasurable cardinals is a subclass of the class of all cardinals which is closed with respect to the standard operations on the class of cardinals [5].

In this section we show that Theorem 3 can be generalized to include all fields F such that is F complete, discretely valued, and the residue class k ([1] or [10]) has nonmeasurable cardinal. As a complete discretely valued field F is a local field if and only if k is a finite field [10], we see from the above remarks that this constitutes a considerable broadening of Theorem 3.

PROPOSITION 4. If $M(s) \subset C(T, F)$ and M(s) is the kernel of a homomorphism h taking C(T, F) into F, then $s \in \hat{v}(T)$.

Proof. It is sufficient to show that if (S_n) is a pairwise disjoint clopen cover of T, then $S_j \in Z(M(s))$ for some integer j. To prove this let $a \in F$ be such that 0 < |a| < 1 and let $f = \sum a^n h_{CS_n}$. Since $f - h(f) h_T \in M(s)$, then $z(f - h(f) h_T) \in Z(M(s))$. But $z(f - h(f) h_T) = S_j$ for some j.

THEOREM 5. Let F be a complete and discretely valued field whose residue class field k has nonmeasurable cardinal. Then $M(s) \subset C(T, F)$ is the kernel of a homomorphism of C(T, F) into F if and only if $s \in \hat{v}(T)$.

Proof. To prove this we must show that if $g \notin M(s)$, then for some $a \in F$, $g - ak_T \in M(s)$. Let $(a_\mu)_{\mu \in U}$ be a collection of representatives of k and choose a scalar $b \in F$ such that |b| < 1 is a generator of the value group $|F^*|$ of F.

Since $F = \bigcup_{-\infty}^{0} b^{j}V$, then $T = \bigcup_{-\infty}^{0} g^{-1}(b^{j}V)$ and, as Z(M(s)) is closed under the formation of denumerable intersections, it follows that for some integer j, $g^{-1}(b^{j}V) \in Z(M(s))$. We observe that $b^{j}V = \bigcup_{\mu \in \mathcal{U}} (b^{j}a_{\mu} + b^{j+1}V)$. Since for any subset H of U, $S_{H} = \bigcup_{\mu \in \mathcal{H}} (b^{j}a_{\mu} + b^{j+1}V)$ is a clopen subset of F, we see that the sets $H \subset U$ such that $g^{-1}(S_{H}) \in Z(M(s))$ are an ultrafilter of subsets of U. Since U has nonmeasurable cardinal, there exists $u_{0} \in U$ such that $g^{-1}(b^{j}a_{u_{0}} + b^{j+1}V) \in Z(M(s))$. Similarly, there exists u_{1} such that $g^{-1}(b^{j}a_{u_{0}} + b^{j+1}a_{u_{1}} + b^{j+2}V) \in Z(M(s))$. In this way we construct a nest $S_{n} = b^{j}a_{u_{0}} + \dots + b^{j+n}a_{u_{n}} + b^{j+n+1}V$ of subsets of T such that diam $S_{n} \to 0$ and $g^{-1}(S_{n}) \in Z(M(s))$. As F is a complete field, $\bigcap S_{n} = \{a\}$ for some $a \in F$ and it follows that $g^{-1}(a) = \bigcap_{n} g^{-1}(S_{n}) \in Z(M(s))$.

EXAMPLE 1. In [8] Michael showed that if an algebra $A \subset C(X, R)$ is "closed under inverses" (if $f \in A$ and $f^{-1} \in C(X, R)$, then $f^{-1} \in A$) and A satisfies conditions (a) and (b) below, then the nontrivial homomorphisms of A into R are generated by the points of X as evaluation map homomorphisms.

- (a) Given $f_1, \ldots, f_n \epsilon A$ such that $\bigcap_{i=1} z(f_i) = \emptyset$, then there exist $g_1, \ldots, g_n \epsilon A$ such that $\sum f_i g_i = k_T$.
- (b) There exist $h_1, \ldots, h_m \in A$ such that for any $a_1, \ldots, a_m \in R$, $\bigcap_{i=1}^m z(h_i a_i k_r)$ is compact.

The proof of ([8], p. 51) may be applied to the setting of this paper and it may be noted therefore that if A = C(T, F) is closed under inverses and A satisfies (a) and (b), then the nontrivial homomorphisms of A into F are generated by the points of T.

By Prop. 3, if A = C(T, F), then A satisfies (a). If we take T = F, then C(F, F) satisfies (b). Thus F is an F - Q (in the sense of [2]) space.

THEOREM 6. If F is a complete discretely valued field whose residue class field has nonmeasurable cardinal, then F is a \hat{Q} -space.

Proof. Apply Theorem 5 and Example 1.

124

It is known that a complete discretely valued field may be constructed whose residue class field k has arbitrary cardinality. From the results of this section, it can be shown that if the statement of Theorem 5 is true for all complete discretely valued fields, then all cardinals are non-measurable.

3. The algebra C(T,F) with compact-open topology. In this section we examine the topological algebra C(T,F) (endowed with compact-open topology). Principal among the results obtained (Theorem 7) is a necessary and sufficient condition for C(T,F) to be F-bornological when F is a complete discretely valued whose residue class field k has nonmeasurable cardinal.

DEFINITION 5. Let F be complete and discretely valued and let $(a_u)_{u\in U}$ be a complete set of representatives for the cosets of the residue class field of F. We may assume that U is totally ordered and that the representative determined by the first element of U is the scalar 0. Choose an element $\pi \in F$ such that $|\pi| < 1$ is a generator of the value group $|F^*|$ of F. For any two elements, a and b, of F there is ([1]) an integer N and sequences $(a_{u_i})_{i \ge N}$ and $(a_{\lambda_i})_{i \ge N}$ of representatives such that

$$a = \sum_{i \geqslant N} a_{u_i} \pi^i$$
 and $b = \sum_{i \geqslant N} a_{\lambda_i} \pi^i$.

We define $\sup(a, b)$ to be a if $u_N > \lambda_N$ or if $a_{u_i} = a_{\lambda_i}$ (i = N, ..., j) while $u_{j+1} > \lambda_{j+1}$. Under these circumstances we also say that $\inf(a, b) = b$. If a = b we take $\sup(a, b) = \inf(a, b) = a$.

We note that if |a| > |b|, then $\sup(a, b) = a$ and $\inf(a, b) = b$. Propositions 5 and 6 concerning this notion of \sup and \inf follow easily.

PROPOSITION 6. If F is a complete discretely valued field and $f, g \in C(T, F)$ then the functions defined by $\sup \{f(t), g(t)\}$ and $\inf \{f(t), g(t)\}$ are continuous.

PROPOSITION 7. Let F be a complete discretely valued field and let V be an absolutely F-convex subset of T with the following property: there is a positive number a and a compact subset K of T such that $\sup |f(T)| \leq a$ or f vanishes in some neighborhood of K implies that $f \in V$. Then there is a positive number b such that $\sup |f(K)| \leq b$ implies that $f \in V$.

DEFINITION 6. For $f, g \in C(T, F)$ we say that $f \leq g$ if $\inf(f, g) = f$. The *interval* [f, g] is the set $\{h \in C(T, F) \mid f \leq h \leq g\}$.

Note that $\inf(f,g) = f$ if and only if $\sup(f,g) = g$. In addition, $h \in [f,g]$ only when $|f(t)| \leq |h(t)| \leq |g(t)|$ for each $t \in T$.

Specializing van Tiel's notions of "bornivorous" and "bornological space" to function algebras yields:

DEFINITION 7. An absolutely F-convex subset V of C(T, F) is an F-bornivore if it absorbs every bounded subset of C(T, F). If all F-bornivores are neighborhoods of 0, then C(T, F) is F-bornological.

Note that intervals [f, g] are bounded in C(T, F) and are therefore absorbed by bornivores. We may now present our principal theorem.

THEOREM 7. Let F be a complete discretely valued field whose residue class field k has nonmeasurable cardinal. Then C(T, F) is F-bornological if and only if T is a \hat{Q} -space.

Proof. First assume that T is a \hat{Q} -space. To prove that C(T, F) is F-bornological, it suffices to show that if V is an absolutely F-convex set which absorbs all intervals [f, g], then V is a neighborhood of 0. Consider then such an interval absorbing absolutely F-convex set. A closed-hence compact-subset K of $\hat{\beta}(T)$ is a support set for V if when f vanishes on an open superset of $K \cap T$, it follows that $f \in V$. Clearly $\hat{\beta}(T)$ itself is a support set for V. Since for any $a \in F$ there is a scalar $b \in F$ such that $[0, ak_T] \subset bV$, it follows that for some r > 0, sup $|f(T)| \leq r$ implies that $f \in V$. If we show that there is a support set for V which lies in T then, by Prop. 7, V is a neighborhood of 0.

Let $\mathfrak H$ be the collection of all support sets for V. It is readily shown that if $L, K \in \mathfrak H$ and $L \cap K = \emptyset$, then C(T, F) = V. If $L \cap K \neq \emptyset$ and $L \cap K \subset S$ where S is a clopen subset of $\hat{\rho}(T)$, then L and $K \cap CS$ are disjoint. Thus there is a clopen set $U \subset \hat{\rho}(T)$ such that $L \subset U$ while $K \cap CS \subset CU$. Let $f \in C(T, F)$ be a function which vanishes on $S \cap T$. Since $fk_{U \cap T}$ vanishes on $(S \cup CU) \cap T$ and $K \cap T \subset (S \cup CU) \cap T$, if follows that $fk_{U \cap T} \in V$. Similarly $fk_{CU \cap T} \in V$ and therefore $f \in V$. Thus it follows that $L \cap K \in \mathfrak H$.

It is clear that $L=\bigcap \mathfrak{H}$ is a support set for V. It will now be shown that $L\subset T$. Let $s\in \hat{\rho}(T)-T$. Since T is a \hat{Q} -space, it follows that there is a sequence (W_n) of clopen neighborhoods of s in $\hat{\rho}(T)$ such that $\bigcap W_n\subset \hat{\beta}(T)-T$. We may assume that $W_{n+1}\subset W_n$ for all n. For each n suppose that f_n vanishes on $(\hat{\beta}(T)-W_n)\cap T$ and $f_n\notin V$. Let $\mu\in F^*$ be such that $|\mu|<1$ and consider $g=\sup(\mu^nf)$. Since $\bigcup T-W_n=T$ and f_k vanishes on $T-W_n$ for all $k\geqslant n$, it follows that $g\in C(T,F)$. Since $[0,g]\subset aV$ for some $a\in F$ and $\mu^nf_n\in [0,g]$ for every n, then $f_n\in V$ for every n such that $|a|/|\mu|^n\leqslant 1$. This, however, contradicts the way in which the f_n were chosen and it follows that $\hat{\rho}(T)-W_n\in \mathfrak{H}$ for some n. Thus $s\notin L$ and $L\subset T$.

To prove the converse suppose that T is not a \hat{Q} -space. Then there is some $s \in \hat{v}(T) - T$. By the results of Theorems 4 and 6, every function $f \in C(T, F)$ can be extended to $\hat{f} \in C(\hat{v}(T), F)$. By the Tietze-Ellis extension theorem ([4]) or the results of [3], the mapping $h(f) = \hat{f}(s)$ is a discontin-

uous homomorphism of C(T, F) into F. If it can be shown that h is bounded, it follows that C(T, F) is not bornological.

If $X \subset C(T,F)$ is bounded and h(X) is unbounded, there must be a sequence (f_n) from X such that $|\hat{f}_n(s)| \to \infty$. Letting $W_n = \{s' \in \hat{v}(T) | |\hat{f}(s')| \ge |\hat{f}_n(s)| - 1\}$, $s \in \bigcap W_n$ and since $s \in \hat{v}(T)$, it follows that $\bigcap W_n \cap T \neq \emptyset$. Thus there exists $t \in \bigcap W_n \cap T$ and since $|f_n(t)| \to \infty$, X is not bounded and the proof is done.

DEFINITION 8. A closed set $X \subset T$ is relatively F-precompact if all functions in C(T, F) are bounded on X.

PROPOSITION 8. A closed subset X of T is relatively F-precompact if and only if $\operatorname{cl}_{\hat{\eta}(T)}X \subset \hat{\nu}(T)$.

Proof. Suppose first that there is a point $s \in C\hat{\nu}(T)$ such that s is in the closure of X. Let (W_n) be a descending denumerable sequence of neighborhoods of s such that $\bigcap W_n \cap T = \emptyset$. Choose $a \in F$ such that |a| > 1. Let $S_n = (W_n - W_{n+1}) \cap T$ and $f = \sum a^n k_{S_n}$. It is clear that f is unbounded on X and therefore X is not relatively F-precompact.

Suppose conversely that X is not relatively F-precompact. Let $f \in C(T, F)$ be unbounded on X and $S_n = \{t \in T \mid |f(t)| > n\}$. Consider a set $Y = \{t_n \in T \mid t_n \in S_n \cap X\}$ where with no loss of generality we may assume the relationship $t_j \neq t_i$ if i < j holds. As $\hat{\beta}(T)$ is compact, there exists $s \in \hat{\beta}(T)$ such that $s \in \text{cl}_{\hat{\beta}(T)} Y$. Thus, of course, $s \in \text{cl}_{\hat{\beta}(T)} X$. However, $s \in \text{cl}_{\hat{\beta}(T)} S_n$ for all integers n and therefore S_n belongs to the z-ultrafilter Z(M(s)) for each integer n. Since $\bigcap S_n = \emptyset$, it follows that $s \in \hat{Cr}(T)$.

From the preceding result it can be seen that relative F-precompactness of X is independent of the field F and we may therefore refer to X as relatively precompact.

Proposition 9. If T is a \hat{Q} -space, then every relatively precompact set is compact.

Proof. To prove this it must be shown that X is closed in $\hat{\beta}(T)$. However, since $T = \hat{\nu}(T)$ and $\operatorname{cl}_{\hat{\beta}(T)} X \subset \hat{\nu}(T)$, the proof is seen to be complete.

In [2], [3] it is shown that if F is complete and discretely valued, then C(T, F) is F-barreled if and only if every relatively precompact subset of T is compact. R. L. Ellis proved this result for spherically complete fields and never published it. By the result of Proposition 8 we see that the property of T which is necessary and sufficient for C(T, F) to be F-barreled (F a spherically complete field) is entirely dependent on T and its relationship to $\hat{\beta}(T)$. Thus we have the following result.

THEOREM 8. Let F and K be spherically complete fields. Then C(T, F) is F-barreled if and only if C(T, K) is K-barreled.

Proof. We apply Theorem 7, Proposition 9, and the comments following Proposition 9.

References

- [1] G. Bachman, Introduction to p-adic numbers and valuation theory, New York
- [2] —, E. Beckenstein, L. Narici, Function algebras over valued fields and measures I, II, Atti Accad. Naz. Lineci Rend. Cl. Sci. Fis. Mat. Natur. Nov.-Dec. 1971, to appear.
- [3] E. Beckenstein, G. Bachman, L. Narici, Function algebras over valued fields. Pacific J. Math., to appear.
- [4] R. L. Ellis, A nonarchimedean analog of the Tietze extension theorem, Indag. Math. 29 (1967), pp. 332-333.
- [5] L. Gillman and M. Jerison, Rings of continuous functions, Princeton, N. J.
- [6] E. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64 (1948), pp. 54-99.
- [7] J. Kelley, General topology, Princeton, N. J. 1955.
- [8] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), Providence, Rhode Island.
- [9] L. Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci. U.S.A. 40 (1964), pp. 471-474.
- [10] L. Narici, E. Beckenstein, G. Bachman, Functional analysis and valuation theory, New York 1971.
- [11] T. Shirota, On locally convex spaces of continuous functions, Proc. Japan Acad. 30 (1954), pp. 294-298.
- [12] J. van Tiel, Espaces localement K-convexes, Indag. Math. 27 (1965), pp. 249-

ST. JOHN'S UNIVERSITY
NOTHE DAME COLLEGE
STATEN ISLAND, NEW YORK
POLITECHNIC INSTITUTE OF BROOKLYN
BROOKLYN, NEW YORK
ST. JOHN'S UNIVERSITY
JAMAJOA, NEW YOLK

Received May 24, 1972

(536)