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ExamprE 2. Let B be a Banach space with a basis {»,} such that
the closed linear subspace [f,] of B* spanned by the coefficient function-
aly {f,} is of characteristic 1, i.e. [3],

(12) ] = suplf(@)] (weH);
~ 1elt,
Iii=1
guch o basis ig e.g. the unit vector basis in I = ¢, or I == 1P, L < p ‘;\ o:
Furthermore, let F =X and define » by (9). Then, ag above, w"(F™)
is a norm-dense subspace of [f,] and hence, by (‘12),

(18) loll = sup |f(@)] (weR).
Jeus(I)
il
On the other hand, since « is one-to-ome, whenever the equation
w(®) =y has a solution #,, we have in].f o) == (lzoll. Consequently (2),
Je2d
u(e)=y

and hence (1), is satisfied, although «(#) is not closed.

We wish to thank to S. Rolewicz for reading the mamuscript and
making valuable remarks.
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A trace inequality for generalized potentials*
by
DAVID R. ADAMS (Houston, Tex.)

Abstract. In the spirit of the Sobolev~Il'in inequality, the trace or restriction
of generalized potentials of I, functions to arbitrary measurable sets in Euclidean
space are studied. When the potential kernel is homogenous, then necessary and
sufficient conditions are given for the trace inequality to hold.

Introduction. In [1] the author showed that the necessary and
sufficient condition for the continuous imbedding of L,(R"1,) into
LYR" »), L <p < g < oo via the Riesz potential operator T': f — h,*f(®)
= [le—y|""f(y)dy, 0 < a < n, is that the maximal function of » of dimen-
gion d, 0 < d<m, be bounded (d/g = n/p—a), i.e.,

M,(v) (@) = supr=»(B(a, 7))

>0

is a bounded function of ». Here B(x,r) = {ycR": |z—y| <r} and
L,(R" v} denotes the usual Lebesgue pth power summable functions
on R" with respect to the Borel measure ». I, = Lebesgue n-dimensional
measure on R". When d is a positive integer, this result hag, as a corollary,
the well known Sobolev-Il'in theorem concerning the restrictions of Riesz
potentials of L, functions to smooth manifolds in R™ of dimension. d.
That is, the trace of the potential belongs to L, on the manifold with
respect to some d-dimensional measure with a bounded d-dimensional
maximal function, e.g., surface meagure. See [5].

The purpose of this note is not only to extend this result to a more
general class of potentialy, but to give a much more direct and simplified
approach than presented in [1], even in the case of Riesz potentials. Fur-
thermore, the method of proof allows for a much more accurate estimate
of the norm of the operator 7' than known before. In particular, we get
NTpq = sUpP,M4(») (@)% see corollary to Theorem B,

* This research was partially supported by National Science Foundation Grant
GP — 33749,
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We shall consider potentials of the form & (fu, 4) = [%(w, y)f (@) du (@),
where & is a non-negative function on the product space (X X X, u Xv),
y o-finite, and find conditions on the measures u and » such that the linear
mapT: f->k(fu, ) is continuous from X,(u) = L,(X, ) into X,(»)

= L,(Y, %), p <g, Theorem A. These conditions are expressod in terms
of a & dependent maximal function of the measures and the methods
used also allow for cases when the maximal functions are not necessarily
bounded. When % is a homogenous kernel, necessary conditions on »
are obtained for 7's X, (1,) - ¥,(») which agree with the sufficient condi-
tions of Theorem A, Theorem B. In particular, these results extend the
theorem of [1] to the parabolic Riesz potentials, i.e.,

Tfy, ) f f (s-—i)(“‘”“z)/"exp( f’( ))f(m t) dwdt,

—co |n

0 <a<n-2 See for example [6] for various properties of parabolic
potentials.

Finally, in Section 4 we remark about some special cases of potentialy
on the half space R%™ where a positive result in the limiting case p = ¢
is known.

1. Preliminaries. Let (X, %, ) and (¥,®B,) denote two measure
spaces with » o~finite. Functions on X or ¥ will always be assumed extended
real valued and measurable. Throughout, & (w, y) will be a non-negative
extended real valued UAxPB measurable function. X,(u) will denote
Ly(X, %, p) with norm X,(f; u) = {[If(@)?dp (@)}, 1< p < co. X3(p)
is weak-X,(u), p >0, i.e., f such that supt,a({X (@) > 1}) 1/"< oo

Fu is the signed measure 7 w)d/,z(w) on X, Io(f,u, 9) = [k{w, y)f (@) du(w)

Similar notation is used for ¥,(»), Xp(») and integration over ¥. X, o () O

NX,(u) is the Banach space with norm X,(-; Fu)+X,('; ), F>=0.
£ T: f—k(fu,-) we denote the continuous imbedding‘of X, (Fu) 0

NX,(u) into Y, (v) by

T: Xy (Fp) 0 Xp(u) ~ Ty(v)
and similarly for X (Fu) X, (p) into Xj(»). In each case, the norm of
thé operator T is indicated by [|T|l,, or |7k,

If 6, = {(w,9): k(w,y) > A}, then ¢,(») and 6,(y) are the o and ¢-
sections of ¢;. The generalized maximal function of u (of order r > .0)
with respect to k is

M, (w) (y) = S o)

Similarly, M,(») () is defined using the z-section of ¢,. Note that when
k=lo—~y|"™ 0<a<n, on R"xR" and » = n/(n—a), then M,(u) is
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just the usual Hardy-Littlewood—Wiener maximal function of p. Also
when X is a locally compact group and & = k(z—y) on X xX, then the
condition “M,(u) is bounded” means that %(x) and all its translates
belong to X () uniformly. This is always the case if, for example, u is
a Haar measure on X and ke X (u).

2. Trace inequality. With the above notation, we are in a position
to prove

TrmorEM A. () Tt Xy(M,(») u) NXy(p) > Xi(v), provided s> 1.
170G < ma:x(g_l_ ,1). (i) If M. (u) (y) < A < oo for all y, then

T: Xy (My(v)-p) 0 Xy () > Ty(v),

pmmded 1<p<g< oo slq=rptl—r HTHM\ 4 g max( ?; ) 1).
? =p/p-1) =P

COROLLARY. Under the assumpiions of Theorem A (i) or (ii):

(a) If M, (-u) () < B < oo for all w, then T': X,(u) - X,(»), p>1;
T: Xy(u) > Y00), p = 1.

() If M,») @) =b>0 for all m, then T: X,(M,(»)-p) > ¥, (w
p>1; Tt Xy(M,(0)-p) — X500, p = 1.

The corollary is an obvious consequence of the theorem. In proving
Theorem A, we give only the argument for (ii) which is a consequence of

Lemua 1: If M (u) (y) < < A < oo for all y, then

2
M) @S A T X ML) WP 0
where By = {y: (|fIp,y)> 1}, 1> 0.

Proof. The fact that »(Z,) < co, > 0, when the right side of (1)
ig finite is part of the conclusion of the lemma. But since ¥ is o-finite,
there are sets Y;eB, ¢ =1,2,... with »(X;) < oo, and ¥;} Y. IHence
establishing the lemma for H, replaced by H,NY; and letting ¢ — oo
implies that at the outset we can asyume »(H,) < oo for ¢ > 0. (As simple
examples will show, the o-finiteness of » is & necessary condition for (1)
to hold.) With thig done, we estimate as follows:

(1) < [ f@){ [ (@, ) dni(e)} du (o)
= f { [17(@)I»fea(@)) dp (@)} 2

fo dm—f( V@A =T+ 1y,
[
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where », denotes » restricted to #, and ¢ > 0 is to be specified later. Writing

v(ex(@)) < wiex (2))"2 M, (v) ()P 2002,
we have .

Xo(fs 'Ms("’)',“)f (f"’t(@;,(m))dﬂ(w))]/p’A‘alde'
But [v(er (#))du(@) < »(By) A~ sup, M, (u) (#). Hence

Y v P4 =)
X, (f3 M, () ) A ”v(E) Tk

provided p < g. Also

Li< X,(f; w2 (@) [ ( [ wlor(a) dp (@)™ az

< X, (f; wpr (B4 L ote

provided ¢ < co.

For t> 0 such that »(#,) > 0 choose ¢ = ¢(t) so as to minimize
the sum of the estimates for I, and I, in ¢. An elementary calculation
shows that the proper choice i a constant (in t) multiple of » (B,)~*"* which
when substituted for ¢ gives (1). Finally, (1) trivially bolds when »(H,) = 0.

(ii) of Theorem A now follows easily from Lemma 1 by first applying
Young’s inequality (a’s'~’ < 6a+(1—6)d,a,b>0,0< 0<1) and inter-
polating in p and ¢ in the sense of Marcinkiewicz. (See for example [4]
and [8] — the arguments given there can easily be adapted to the present
setting of the sum of two I, norms.)

3. Homogenous kernels. We now consider some necessary conditions
on » by restricting to the case of homogenous kernels & on R™ Let n: R,
~Z(R", R"), (ie., a continuous linear map of the positive real numbers
into the linear transformatmns of R" into R") satistying

(1) #(An) = m(u)m(A), m(1) = I = identity,
®) 0<2a<L, =<4, )] =norm in ¥ (R R").

It is well known that m; = m(2) == exp(Ulogd), U a real » X n thatrix
(the infinitesimal generator for the group).

DrrFInNiTIoN. A function % (a) 5% 0 and locally summable on R* gat-
isfying

(1) k(mw) = 2""Vh(x), » £ 0, 0 < <1, and

(2) k(@) -0 a8 @ — oo,
is called a homogenous kernel for the group {m,}. tr U = trace of U.

icm°
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When f = 1, the reader might refer to [7] where the corresponding
gingular integrals for homogenous kernels are studied. The cage when =;
is a diagonal matrix, 0 < § < 1, corresponds to the semi-elliptic potential
kernels — e.g., the Riesz potential kernels, elliptic and parabolic.

Lot Q,(a") = {we R": |w;—af|<a, ¢ =1,...,0%}, a>0 and 2°< R™
Both 1, and dw refer to Lebesgue m-meagure.

LeumA 2. If T X, (1,) — X, (), then

v (e, @1 (a°)) f (@) do < 27 || Tl "V

7,Q1(0)
for all 9> 0 and o< R"
Proof. Let f(#) = indicator function of =,Q,(»"), then with a little
matrix theory
X, (3 b) = la(m,Qa(a"))® = 277 g0,
Also ‘

@ Y (xfi0r= [
nan(mo) neQz(n:o)

But for ye @, ("), m,@1(¥y) = m,Q4(2°), hence the right side of (2) always
exceeds

b (y — ) da;)qdw ).

»aQua)( [ k(@ do)
7Q1(0)
and the conclusion follows from the imbedding.
TueorEM B. If k ig & homogenous kernel for the group {m;}, then
T: X,(1,) = Y (v) implies M,(v) (x) is bounded, s = ¢(r/p+1—7r), r = 1/.

. I
Proof. From Lemma 2, »(m,Q,(a")} < og“m’(p +6-1) for all o > 0 and
o’c R" gince

[ hoyaw = [ k(=)™ dy
gy (0) @0

- chUu»--ﬂ) f k() dy
Qo)
Here (f == 2”“”]|Ty|m(0 [ hdy)e.
(©

To conclude, we show {y: k(y—a) > A} = @,Q.®), 4 = p~"*Y, for
all 2> 0 and gome a > ¢ independent of @ and A. To see this, first note
that we need only consider the cage w = 0. Hence if y = m,z, then we need
{n,,z k(2) > L} & m,@,(0) or {s: k(s) > 1} = Q4(0) for some a > 0. But
gince %(2) — 0 a8 # ~» oo, the set where ¥ > 1 is bounded. Thus we have

M,(3) (0) < O|| TS, for all o.
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COROLLARY. If % is @ homogenous kernel (f = 1[r), then
T: X, (n)»Y(v) l<p<g<oo ,8lg == r[p+L—r
if ami o%ly if
‘ M,(») ©8 bounded.
Fuﬂhermore, there is a constant O independent of v suoh thai
o1 supM (#) ()M Tl pg < OsupM (v) (m)Ma,

Proof. For the upper estimate on [1[||m, refer to (15 which now
gives

t"’(Et) OSUPM (v )(m lla_X (S5 1)

Applymg the Marcmklewmz 1nterpolat10n theorem of [8] (where the
interpolation constant iy carefully estimated), we get the desired result,

4. Remarks. We now' consider two special kernels on the half space
R = {(#,1): we R", 1> 0}, namely
v (e, t)y = t(u_'n_z)lzexp(‘;_ lwlz/‘“): 40,
05 0<a<n+2 And
TP (0,1) = t(|oP )90 g5 g

and P, =0,1<0;0 < a<n-+1. P,is the Poisson kernel for the Laplace
equation in R%*' and I is the fundamental solution of the heat equation
in R
Lot P,(t)*fly = [P,(y—a, , D (@) dw and similaxly for I',(¢ )*f(J
TurOREM C. l}et Y = R and v a Borel measure on Y. Suppose that p
and q satisfy 1<p < q< oo, dlg -—'n/_'p—l—2-a, 0<d< n—l 1, then the
necessary and . sufficient condition for ,
(3) T (Pl )4 f3 ) < OX, (5 1)
or all feX,, O independent. of f is that

sde'_Ot

4 sup pet-o)-4 f [t May(y, 1) < oo
>0 A
s -ly—at<r

Slmllarly, if P, is replaced by I',, (4) is replaced by

: : TR
(5) -~ supste-a- ey, 1) < oo,
y—al|<r

- 40RP
0<d< n+t2. ‘

We outline the proof The necess1ty of (4) or (B) follows a8 in Lemma 2,
while the sufficiency is a conséquence of Theorem A taking du = dwds,(t),
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8, = Dirac measure at zero. Writing j(#,?) = **P,(s,?) and assum-
ing (4) bolds for a fixed p,, g, such that 1 < p, < g < o0, d/gy = n/ps+
+2—a, the homogeneity of P, together with Theorem A then implies
that (3) holds for all p and ¢ such that 1 < p < g < 00, gy/¢ = p,/p. The
result for I, is even easier.

The purpose in pointing out Theorem O is that when d =mn, we

have n(% - —;—) = a—2 and 2 < a < 2+n/p, and the limiting case p = ¢

(which is not & congequence of Theorem A) is an important result of Oar-
leson—Hormander involving the theory of maximal functions. See [37].
In the same vein, Theorem A also gives:

Yo(Pu()*f59) < 0[%)@(]‘; M, (L) + (1 —%—)Xp(f; m]

11
L<p<qg< o0, 8§ =n[(n+2—a), %(?_-q—) =g —2.

Again the limiting case p = ¢ is known, [2]. Unfortunately, 0 =
1
here.
0(a~—2) ere
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