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STUDIA MATHEMATICA, T. XLVII. (1973)

Some generalizations of the hypersingular integral operators
by
MICHAEL J. FISHE R* (Missoula Mont.)

Abstract. Estimates are given for hypersingular integral operators, G, with
variable kernel. More general Schwartz distributions inducing operators of the form
G* are considered and estimates are given for the resulting operators. G< is shown
to be continuous on certain spaces with weighted norm. Commutators of certain
G* with muliiplication by certain bounded functions are studied.

1. Introduction. In this paper we shall study several topics related-
to the hypersingular integral operators which were studied in [3], [4].
These operators were first studied in [11] using the Marcinkiewicz inter-
polation theorem and the method of rotation for values of the parameter
in the range 0 < a < 2. In [3], [4] complex powers of operators, as in
Komatsu’s theory [6], were used to evaluate and estimate, the hyper-
singular singular integral operators G° for Re(a) = 0, a % 0, and it was
shown in [4] that the family G* is closely related to the singular integral
operators of Calderén and Zygmund.

‘We shall establish some notation and quote the main theorem from
[3], [4] before discussing the topies of this paper. Let B denote N-dimen-
sional Buclidean space and let dz be Lebesgue measure on E. Let X denote
the unit sphere in X and let do be Lebesgue measure on X. If £

N

= (B1) P2y --+; Bx) 18 a multi-index of non-negative integers, |8| = > B,
N =1
afN for @ = (@, g, ..., By)eH, B! =k]¥ (BzY) and DF
0 L=
= D1 Dl ... DN when D, =
1+Dj Y when Dy 7

of =aoft-al...

. If f i3 & smooth function with com-.
ke
pact support in H, set

D@ (9.

Bl ) @) =flo—y)= > ==

A<k

* Research supported in part by the National Science Foundation grant
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Tet 2 be a complex valued function on ¥ which is homogeneous of degree
zero and integrable over Z. Set

2(y)
@fo) =tim | Rulf 9)0) 7
0 e Y
for k < Re(a) < k+1; G is a hypersingular integral operator of order a.
It [of Q(w)do(w) =0 when |B| =k, then @°g(w) exists when Re(a)
= .

=k> 0 .
Let Pif(w) = Cnf flo—y)t(lyl+15~ @ dy denote the Poisson
b

integral over B and set

Jf(@) = I'(a)™ lin‘i [f Ptf(m)t““le"idt—i-%]

for Re(a) > 03 J° is the ath order Bessel potential over L. J° is an ana-
Iytic semi-group on Ly(#),1<p < o, in |arg(a)| < =2 and a strongly
continuous semi-group on L, (&), 1 < p < oo, in Re(a) = 0. L,(E) (1eno_tes
L,(B, ds); fix p in 1 <p << oo Let Lj(H) denote the range 0'}'3 J* actlgg
on L, (B). I Re(a) > 0, J° is one-to-one and the range of J¢ is n(lense in
L,(E); the norm in Li(E) is defined by Hgllp,« = Il W]’le]-il JS) =

The main theorem from [37], [4] concerning the hypersingular inte-
gral operators is:

TamoreM 1.1. If0 < & < Re(a) < k+1,

G I°f(@) = I(—a) [ (DI (2) 2(w)do(w)

where D¢ is the ath power of the derivative in the direction w. 8, = DLJ*
is an analytie semi-group of bounded operators on L,(B) for 1 <p < o0
in |arg(e)] < =/2 and a strongly continuous semi-group of bounded oper-
ators on L,(®) in Re(a) > 0. If Re(a) = k,if a % k, and if f of Q(w)do(w)
= 0 for each |8| =k, then =

G*J°f (@) = I(—a) [ (D5J)f () Q(w)do(w).
x
¥ a=F%>0 and if [of Qw)do(w) =0 for each || =k, then
P

kL
@ J°f (@) zi«%,L [ 5";(D;:J“).f(xm:kQ(m)ducw).

icm°®
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This representation for G°J* shows that G° is a bounded operator
from Lj(H) to L,(E) for Re(a) > 0, a 7 0. See [4] for the case a = 0,
Calderén—Zygmund operators.

In this paper we shall continue to rely on Komatsu’s series of papers [6]
on complex powers of operators to study the following topics related to
the operators G,: Since the boundedness of G“J* on L,(E) follows from
the properties of D%J% Theorem 1.1 admits an immediate generalization
for certain kernels Q(w, #) and for certain vector valued kernels. In the
third section of the paper we notice that ¢° is determined by the appli-
cation of a certain distribution to the translation semi-group T,.f(®)
= f(z—rw) and we study other distributions which define similar opera-
tors. In the next section we consider modified operators G which-depend
analytically on a parameter v; these operators are used later to study
G° on spaces with weighted norms. In Section. 6 of the paper the commu-
tators of certain G with multiplication by certain bounded functions
are studied. Throughout the paper, we emphasize the operators D%,
DEF® @7 and G5*%, ; an integer, since corresponding results for other
indices a can be made to follow by interpolation.

For analysis on Euclidean space, we use the notation introduced
above. If 7' is a linear operator with domain and range in L,(E), D(T)
denotes the domain of 7 and R(T) denotes the range of 7. M, M(p),
M(p, a), ete. (K,K(p),E(p,a), ete.) denote positive (complex) con-
stants which depend only on the parameters shown and whose values
vary with the occasion of their use. We frequently let O denote a nor-
malizing constant which depends on the dimension of . {f, ¢>
= [ f(t)g(t)dt denotes the dual pairing between L,(E) and L,(#) when

z

1/p+1/g = 1. We shall frequently -let p' denote the index conjugate
to p,1/p+1fp’ =1.

2. Hypersingular integrals with variable kermel. Let Q(y,z) be

a homogeneous function of degree zero in ¥, regard Q as a function from

the unit sphere in B to L,(%), 1 <7< oo, and suppose that [[Q(w, -)|,do (o)
z

< oo, If f is a smooth function with compact support on B, set

Ralf, 9) (@) = flo—y)— mr\; —I—'ﬁpf,ﬁ< —y)
- f' (l;lt)k (%)Mf(m-ty)at
and define
6*f(o) =T [ Blf,0)(0) fﬁj{f\iﬁ)

Jwi>e
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when & < Re(a) < k-+1. Since we may use polar coordinates to write

6f@) = [ [ R(f, ro)yr— "t drQ(w, x)do (),

=

we have that for k< Re(a) < k-+1,

G*f(w) = I'(—a) [ Dif (@) Q(w, 2)do(0);
z

see [4] for a short summary of the theory of complex powers of operators
which was given in [6]. If J* denotes the ath order Bessel potential,
D2J% i an analytic semi-group of bounded operators on Ly, (H) in |arg(a)|
< /2 and DZJ* is a strongly continuous semi-group of bounded operators
on L,(#) for Re(a)> 0. Thus
TamorEM 2.1. If [|Q2(w, l,do(w) < oo, if L/p+1fr =1lq, and if
P

0< k< Re(a)y< k41, then

G°J*f (@) = I'(—a) [ DiT*f(%) R(, ©)do(w).
z

If Re(e) =%=0, if a#k and if [0’Q(0,n)do(w) =0 (a.c.) when
|8l = k&, then =

(=

@ =T [ DL @R, 0)d0(0).
=

k!

In all cases,

l6°T°fl, < M (@, @) [ 12w, ).do(@) |-

Proof. Since the proof is essentially the same as that given for
- the constant valued kernel in [3] for Re(a) 7 k and in [4] for Re(a) = I,
we shall only sketich the development. If 0 < Re(d) < 1, then I'(—8)~

on- (flo—ro)—f(@))t° @t = D%f(x) for smooth functions f and ele-
mentary computations show that if a = k4, ¢ < Re(d) < 1, then

L RBy(f, ro)r~*"tdr = I'(—a) D, Dkf = I'(—a)Djf.

It was shown in [4] that §, = DZJ*is an analytic semi-group on Re(a) > ¢
and that the boundary value group is strongly continuous and consists
of bounded operators. In k < Re(a) < k+1 G°J" has the desired form

icm°®
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and estimate. It Re(a) =k, if @ # %, and ¥ [of Q(w, 2)do(0) = 0 (a.e.)
3 ’
for all |B| =k, then ka(f, ro)do(w) = fR,c_l(f, rw)do{w) and one can
P z
use the fact [4] that

o —1;
D¥f(x) = I’(———iy)'llim[ f j(w——wu)fr"”*ldr—e——y_i(ﬂ]
&0 M vy

and some identities of the_F—function to conclude that G°J° has the desired
form. When a =k > 0 and

[ o @0, 8)do(w) = 0(a.e.)for all | =F,
P

[ DETH(2) 2(0, @) do(w) = O(a.e.),

x

and one can use the fact that )
[(—a) = P+ Q) M(—a) T+ o)™ = —n/(F(1+a)sinma)™
' = —al'(l+a)sinra—sinmk)/(a—k) " (a—k)

and the fact that D2J° is an analytic semi-group to show that

—1)k+t 7]
tim @77 (0) = [ 2 (DI (@) ek (0, ) (o).
ast k4 da
. 0 .0 .
Since —(?—(;—Sa]a=k = —za—y Syt lymo, one uses the formula for the in-

finite smal generator of DY, Theorem 9 of [4], and the fact that
7} .

f D,ffa—J"f(as)]a:kQ(w, #)do(w) = 0(a.e.), to conclude that G*J*f =

z a

lim G°J°f.

a->k

The estimates for the G*J° now follow from the estimates for D5J* [3]
0 o
and for e (D2J% [4], Holder’s inequality, and Minkowski’s integral
a

inequality. This completes the proof.

Several of the generalized forms of the hypersingular integral operators
which are to be discussed in the sequel admit variable kernel generali-
zations. We will not make these generalizations explicit. It is mot hard
to see that the theorem of this section extends to the situation where f
is a Banach space valued function and @ has values in the continuous
linear operators from the range space of f to another Banach space. One
needs to show first that D?J° is an analytic semi-group of bounded opera-
tors with a strongly continuous boundary value group on vector valued
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functions; this can be proved by using the vector valued version of M.
Riesz’s Theorem on the Hilbert transform and by following the argu-
ment in [3] for the constant valued case since the kernel @, for D%J*
depends only on the one dimensional subspace of Z generated by w.
See the argument in the proof of Theorem 4 of [3] for details.

3. Schwartz distributions and hypersingular integrals. The hyper-
gingular integrals diseussed in the introduction and in Section 2 of this
paper arise from the application of the Sehwartz distribution ¢7°~', Re(a)
>0, a # 0, to the semi-group of operators T,f(x) = f(w—tw) when wel
and ¢> 0. From the Theorem 1.1 mentioned in the introduction, one
surmiges that there are other distributions over the positive half-line, B,
which define similar families of operators. It is the purpose of this section
to mention several clagses of these distributions and to investigate the
operators arising from the application of some of these distributions to
the time variable of a semi-group. The distributions which we shall use
are discussed in detail in [5].

If p is & smooth function with compact support in R, 7% is defined
by analytic continuation for Re(a) > 0 and « not a positive integer.
If Re(a) <n+l,

1 0

. o™ (o
5 = [ R, 0t [ pmary Y 0
0 1

& Kl(k—a)

T
when R,(p,t) = @#)— 2 20
o

W If n< Re(a)< n+1,
o 1

[

1557 (g) = [ 177 R, 1) d.
. [

The first formula shows that 17°"! has a simple pole at ¢ = n with residue
(="
n!
17" 'is defined to be

8™ (t), where 6™ denotes the nmth derivative of the d-function.

.,n

o (n)
70 = [ Rty 0 - P 00— |

.0 e
= lim == (n — )17 (p)

where O (x) is the characteristic function of R* and where the derivative

0., .
5a is computed in the sense of distributions. Similarly, one defines

icm°®
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17! for Re(a) =0, a  0; t2°7 (¢) = t3°7'(¢) where ¢(1) = @(—t). Then
one defines [¢|7%" = 7 412", [¢| T Nsgn(t) = 137 —i2 T, I(—a) "t x
X 707, M —a) 127 T(—af2)7 ™Y, and I'((1—a)/2)7 [¢]7" sgn(t)
so that

lim I(—a)"t 5%t = 6™(1),

=1

lm I(—a)~ 2% = (—1) 8™ (1),
a-+n

lm I'(—a/2)[t17*" = ((@m)) 7 (—1)™6*™ () m!,
a—+2m

Jim [t7“Tsgn(t) (=1 eI () (m41)!
wmer D(X—a)f2) (2m—+1)!

If fis a smooth function With compact support in ¥ and if wel,
12T f) (%) = I'(—a) Dfs(x) where —D, is the infinitesmal generator of
T,f() = f(x—1w); i.e. D, is the derivative of f in the direction ©, and

NI ()

= lim % (n— )3 (T,f) () = lim —6%[(%— a)P(—a) Def(x)].

a—-n
The relationship between ¢;°* and D follows from Komatsu’s formula [6]
for D¢ when 0 < Re(d) < 1: ;

Dafte) = T(‘é)"lfr(f(%wtw) —f(@))e=* dt.

Thus it is seen that at integers n > 0 the operator f () 2(w)do(w) with
x

[ 2(w)do(w) = 0 for || = n is needed to insure that G"J" = lim G*“J*

z

a—n

From [5] it is known that the only homogeneous distributions of
degree (—a) are of the form (7% *+0,#=°"" when « is not a positive
integer. If a = m, the most general distribution which is homogeneous
of degree (—m) is of the form C,i=""*4C, 8" (t) where 17"* = 3""'+4
+1=" L if n is odd and "' = 371 —¢2""" if » is an even integer. For
the homogeneous digtributions there is

TaroREM 3.1. Let # be a non-negative integer. If A, is « distribution
over the real line which is homogeneous of degree (—a) with n < Re(a)
< n+1, then if y 5 0 48 a vector in B and if Tyf (@) = f(z—1ty) for smooth
functions f with compact support in H, then

2a(Tf) (@) = D(—a)[0,Dif (@) +Ca( D) f ()]

for complex constanits C1 and Cy. If 3, is a distribution which is Tomogeneous
of degree (—n) over the real line, then when n is even or zero,
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Al Tif) (@) = OLH,D(f) +Co D ()

where H,(g)(w) = lim [ (T,g9(x)—T_ig(x))difs is the Hilbert transform
&0 & -

in the direction y; when n is an odd integer

In(Tef) = O [ 477 By (Tofy )+ R (Tof, —1)) d8+Cy Dif ().

Proof. These formulas follow immediately from the observations
in [5] regarding the general form of the homogeneous distributions over
the real line. The case where » is an even integer containg a statement
which requires explanation. Notice that '

oo

L) = [ R (2, Y

ot

o0 t
= ((n—1)Y)* f g1 f DYUTf—~T_f) (F— w)* "  dudi

"RaL;l (Tlf7 _t))dt

= ((n—1))~ fr fD"(Tmf T_pf) (L — )" dudt
= (%!)“IH,,D’Jf(w

where H,g(z) = L 7N (T,g—T_,9)dt is the Hilbert tramsform in the
0

direction y, a bounded operator on L,(H).

This theorem suggests the following result.

COROLLARY 3.2. If 2 is a compler valued fumction on E which is
homogeneous of degree zero and integrable over Q and satisfies 2(—w)
= (—1)""' Q(w) where n is a positive integer. Then the hy ypersingular in-
tegral operator with kernel Q and order n satisfies

G"f(@) = K(n) [ DLH,f(@) Q(w)do(w)
x
where H, is the Hilbert transform in the direction w. '

Proof. Since Q(—o0) = (—1)""Q(w),

fRn(f? ro) () 2(w)do () = fRn-l(ﬁ 70) Q(0)do (o)
and :
!(—‘Dm)”f(m—rw)!)(a))da(w) = — f(——Dm)”f(aﬁ—-I—W'a))!?(a))da(m).
Thus *
267F (2) —Kff [(=Du)"f (2 —10) — (—D,)"f (@ +r0)]r~* &r2(w) do (o),

which has the desired form for @™

icm°
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Nelson [8] has studied a general class of distributions over B+ which
define functions of infinitesmal generators of semi-groups. Pertaining to
the translation semi-group T,f(#) = f(2—iw), a contraction semi-group,

Nelson studies the algebra of distributions | §"(1) where ¢ is in F"(1)
=0

M=
if for smooth functions f with compact support,

37 () rau
1=1 0

where the w; ave finite Borel measures. The homogeneous distribution
Jay @ DOG 2 positive integer, which were considered above, have the form
of a Nelson functional. One sees readily that distributions from F"(1)
define operators from ILy(H), Re(a) > n, to L,(E). We shall examine
another situation which is more closely related to the homogeneous dis-
tributions.

Many distributions, including derivatives of the ones listed above,
which depend on a parameter o can be expressed in terms of ¢7°7! and

n
-1 e.g., (—da—) 17970 = 7% (—logt,)™ For test functions ¢,
a

155 (—logt,)™( f ¢~ (—logt) "Bl D

if » < Re(a) < n-+1. Bach of these distributions defines an operator
U(D,) when D, is the negative of the infinitesmal generator of the semi-~
-group T,f(®) = f(& —tw) and we expect these operators U(D,) to be
continuous from some L (E) to L,(E).

THROREM 3.3. If o is mot a non-negative integer and if m is a non-
negative integer, then for smooth functions f with compact support

(2 5o = e @i = (5] Tr-w v
If Re(p) > Re(a) and if J* denotes the fth order Béssel potential, then
Via, f, m)f = J* (—jg)mt““"l(l‘tf) exiends to a bounded operator on L,(H).

Proof. Since §, = DiJ% Re(a) > 0, and J°, Re(s) > 0 are analytic
semi-groups, ((j)a )m(D”J“ ) and (—a%-)nJ" are bounded operators on L, (Z)

for all non-negative integers m and n and for positive Re(a ) and Re(a)
Since if f = a- 4 with Re(d)> 0.

m Kl m~k
7 () tre-angin = (3] ro—a 7 (5o D3,

k=0
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it is sufficient to prove that for each integer n < m,

" non g \k A \7
2 - 3 Sl
j=0 =0

where the A;; ave constants. This identity is verified by induction on #.
Ifn =1,

a1 a e 0 o o o () Ja Ju
J H(Ta)ﬂ”(f) =5 (DEI) I (F) —D”(Ta J )J’(f)
. 0 a yay ré a u‘()
=5z D YO (f) =Dy —(;(;Jﬁ(f)-

Agsume that the identity holds for # —1. Then

e (o
— () meen ) (2] 2 (5 )

< 2\ a -
J ((—0—;) D;(%- J") (f)) is a bounded operator as the representation

in the induction assumption shows. By the induction assumption,

) a n
7= (=) o

I

=1 21

i) . Fi] n—1 . 0 k—i»l_ 9 J
Ll ) 3 Sl

=0 I=0

a4 a " -3 :
Thus J ”(E) Dy(f) has the desired representation and extends to

a.bounded operator on IL,(E). This completes the proof.

CorROLLARY 3.4. If Q is homogeneous of degree zevo on E and in-
tegrable over the unit sphere X im B, if o is not a non-negative integer, and
of m is a non-negative integer, then when n < Re(a) < n -1 and fis a smooth

Sfunetion with compact support in B

dy

7(Q, a)f =lim [ (7, D)@ () tog ly )"

0 liise

extends 1o a bounded operator from LJ(H) to L,(B) for each p with Re(p)
> Re(a). :

lm Generalizations of hypersingular integral operaiors 105

Proof. Rewrite the integral in polar coordinates as

r d
(2, a)f = [ [ Bulf, 70)(@)0gn)" <155 Q(0)d0 (o).
o+

p
x
By Theorem 3.3,

=]

d m
[ Rt @) Oogn g = (—1 () = mn @)

Ja
ot

a m
= (—1)" (’5;) (F(—a)D%f)

extends to a bounded operator from L5 (H) to L,(F) when Re(f) > Re(a).
m
The norm of J° (~;—~) (I'(—a)D%f) does not depend on o. Thus
a

JO(Q, a)f = fJﬂ(_a%)m (I'(—a) DEf) Q@) do ()

extends to a bounded operator on L,(E).

The distributions ¢7"'(logi,)™ can also be considered, but these
distributions are not related to the a-derivatives of t7°7%. They are related
to the a-derivatives of the functional

o0

. " (n) (0)
Pttt — [ e B n- L2 P00
0
where © is the characteristic function of E*.
4. Dependence on parameters. Preliminary to diseussing the action
of the hypersingular integrals on spaces with weighted norms, we shall

a\" _— : .
study certain modifications of (?1;) = D" on L,(R), R is the real line.

From [4] we know that for real y
| r ~f (@)
i = I'(—iy)" i ) — S ]
Dos(a) = I(~iptim | [ 2
= I(—iy) 1577 (flo—1)

and

(—Dyf(@) = I(—ip) 457" (f@+1)-
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(—D)¥ is the adjoint of D, For complex numbers § and for non-negative
integers m, define
of (@) = [’ D7 (]| (log |- =)™ f(-)}(@)

and define

(—DYinf(®) = |’ (=D)* (|-~ (log |- [a|)"f (")) ().
For m = 0, write DY = D, ‘

THEOREM 4.1. DY is a y-group of bounded operators on L,(R) for
—1/p <Re() <1/p'; 1DF1lp < [T +i9) 7 (Iy| M (p 5 8)+M ()(Jy|+1)Y).
For each non-negative integer m, D, s a bounded operator on L,(R) if
—1/p < Re(8) < 1/p'. ?

Proof. Assume first that m > 1 and write

Z—

Dinf@) = T(—ip)™ [ (@177 |aft]'( ~log [oft]"f(2)dt

—co
0

= I(—iy)™ [ Ol@—1)(@—)"" o /t|*(—log [wt)™f (1) ds

where © is the characteristic function of R*. Since
|6 (2 —1) (@~~~ )’ (—log o t)™] < o — 1]~ o 1" [loglaft |" = E (a, 1)
and K(x,?) is homogeneous of degree —1,

D f@)] < T —iy)l“‘_ZK(w,t) If@)de = |I'(ey) ™ fK(ly ) [f (@t)] d¢
and Minkowski’s integral inequality implies thmt -
1D (Dllp < M(p, ¥, 8, m) (ﬁf: 27RO 11172 loglt [ at) ],
The integral on the right is finite when —1/p < Re(d) < 1/p".

If m =0 and if § = +iu, consider DY = (D¥ —D? ! i
— Dy D¥. iy
a bounded operator since ]]m]“‘f: 1 and i WD, D i

(DFN=DEWN) = IT(=in)I™ [ @@—0) L/t — o fil*](@—1)=""f () dt.

—c0

Sinee Ky(w,t) = [z —1t|7"||w/t2°® 1| is hom
— ogeneons of degree —1, t
same argument used above on D, S}Jhows that ¢ b e

IDF (f) =D ()ll, < IT(—ip)| ™ fm [ =17t =R —1 =t | ],

©
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and the integral on theé right has finite value M (p, 0) if —1/p < Re(d)
< 1/p'. From [4], we know that HD%’:;H;; < M (p) (¥l +1)211’(1—|—iy)|'1, 80
that DY has the desired estimate for the norm on L,(R). The group prop-
erty for DY follows from the corresponding property for D¥ since Df¥f(x)
= ||’ D7 (|-|7°f () (@)-
TEEOREM 4.2. D, is an analytic function of & in the norm topology
in the strip —1/p < Re(8) < 1/p’ for each real & and for each mon-negative
n
integer m. For mon-negative inlegers i, —ﬁ) g, = (—1)“D}§’(m n)-
Proof. Let [h| be sufficiently small that —1/p <Re(6+h)y<1/p’
and consider A~ (D, sm—Di,) Which by an argument similar to that
used in the proof of Theorem 4.1 has norm

=YD pym—Dim)llp <

T (—ip)] ! f = |h|~1“tl—"—"_1t]—"|lt—l\‘lllog]il]mdt.

B(Jt " —1) converges a.e. to (—logt[) as 7 tends to zero. Set 2 = hlog ¢
so that [[f~"—1] Bloglt)| ™ = [e™*—1] 2|~ < (¢! —1) 2| ™" which is & bound-
ed function for || < & and for [?]| < ¢, Let M be large and suppose that
l#| > ™. Set a = 1/p+Re(8) and set logli| = v; then

hisd n—1, nt+m
=2 8]0 — 16| b (6 —1) 7" [log [} < EC 77 e™™ e

n=1

n!

The integral over M < 1< oo of the right hand side of this inequality
is dominated by

o1 " T+ m 1)

'KZ nlgmtrrt '

n=1

Tf we take |h| < a, the ratio test implies convergence of the last series.
A gimilar result holds for —oo <7< _¢M, Thus the dominated con-
0 . . .

vergence theorem implies that —5—51)3’,’” = —D Fmyy in the norm topology.
The proof of the theorem can now be completed by a simple induction
argument. .

Remark 1. The functions L —t~1(]#~° —1) (log[¢t)™ are in L, (E)
if —1/p < Re(8) < 1/p’ so that the difference quotients used in the proof

of Theorem 4.2 to ecalculate — D¥, f(«) also converge almost everywhere

00
to ”Dgfm+l) f(SG).
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Remark 2. It follows easily from the fact that the adjoint of D¥ is
(—D)" that the adjoint of DF, is (—1)™( —D)¥,,, for —1/p < Re(d) < 1/p’
and non-negative integers m.

Remark 3. If Re(y) > Re(f) > 0 and |z] <1, the hypergeometric
function is defined by ’

Fla, f,y;2) = 3PN — i)~ d

(7) 15_1 _
Ty e A

and for all other values of # and y except y =0, ~1, —2, ... by analytic
continuation. In terms of the distributions discussed in Section 3,

.937—1 i ) _ d By wi—-l(l_‘w);a
f(y)r‘“’ﬂ’y”’”)‘(%) | ]

for Re(y) > Re(f) > 0. This distribution and the derivative on the right
extend by analytic continuation to all values of g and vy except y =0,
—1, —2,... Using tl”iese facts one can study an operator analogous
to Okiliolu’s operator H* for the operators D¥. Set D¥ (f)(#) = 2% D? (f) ().
When —1/p < Re(w), Re(v) < 1/p’, the kernel for the operator D¥D¥
can be. calculated explicitly in terms of the hypergeometric function.

2—

DED? is the singular integral operator [ K,,(z,u)f(w)du with

Iulux;iﬁ—iy——v)—l (m - ,M);iy-—l

K, b)) =
(074 T(=5) T(~33)

I'(—iy—v) I —46+w)
D(—ty—i6—v+w)

xF(1+iy, —id+w, —iy — 6 —v+w; e )
. T—u

if <0 and

P( —i6 + w) uvmzw-—iy—m-—l (m — u);iv-id+w—1

K ==
o (25 %) I'(~i8) I'(—iy—id+w)

7,

&—au

where F = F(v—i—iy—l, —i04w, —i0 —iy +w; ), if w> 0. Note
that Df DY (f)(x) has support in the positive half line. The formula for
Kvw('w, u). can be verified by using the definition of F as an analytic
co.ntmuatlon, replacing —4i4 by o with Re(a)> 0, replacing —iy by p
with Re(f) > 0, and by using the classical integral for I which was men-

tioned above. See' [3] and [12] for treatments of the hypergeometric
funetion.
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5. Weighted norms. In this section we shall estimate the norms
of G” and G°J° on the spaces L,(0). Let 6 be a real number; L,(6) con-
sists of those measurable functions (modulo null funetions) f on E for
which  |Ifllns = 1" %llp = ([ If(®)? j2" dz}* < co. Beecanse the kernel

B
for the operator G“J* has only minimal integrability properties [3], our
results are essentially one dimensional and the most general theorems
follow by the method of rotation. There is an N-dimensional theorem
for the operators G which we shall mention.

a) G¥ on L,(8). If u is a finite Borel measure on B with x#({0}) = 0,

@7f(@) = D(—ip) 1377 | [ Tyfauy)| = [ Dif@)any)
B B
where D¥ is the (iy)-th power of the derivative I, the derivative in the
direction ¥.
Before estimating G on L,(d) we shall first consider the one-dimen-
sional situation and a class of operators which is slightly larger than the
class of G. We know that

d\” . .
(4] @) = D¥f@) = =i 5 (fe—0)

is a strongly continuous group of bounded operators on L,(R) with D%,
< A(p)(ly| F1)2] (1 +14y)|”" We shall consider the related operators

. d\w ;
(iv+D)7f(z) = (iv+—ﬂ) fl@) = T(—iy) 177 fw —1)e™)

which admit the same estimate as D for the norms on L, (R). To prove
that (tv+D)? is a strongly continuous group of bounded operators on
L, (R, 8), it is sufficient to prove that D(y, 8)f(z) = ||’ (iv-+D)?(|-|~°f)(x)
is a y-strongly continuous group of bounded operators on L, ().
THEOREM B.1. If L<p< co and if —1/p <6< 1/p’,(iv+D)¥is
a y-strongly continuous group of bounded operators on L,(d) for each veal
number v.
Proof. We shall show that D(y, 6) is a y-strongly continuous group
of bounded operators on IL,(R). Let F(a) = f(®)e™™ and let g,(f)
= T (i)™t i 1> e and g,(¢) = 0 if ¢ < e. Then
- iy T
(iv+D)" (@) = of“nm[ [ se-nrma— —ﬂ)—]
es0 | v iyl —iy)

and since these operators are bounded on L,,(R), we shall write D(y, é)f(x)
= [D{y, 8)f(#) — ({2 +D)?f(2)]+ (iv +D)?f(x) and estimate the fivst term
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on the right. An argument which is neaxly the same as that used in the
proof of Theorem 4.1 shows that if I, <1

1D, 8)f = (@0 +D)"fllp < IT(—ip)| ™ [ =2 ft —1]=|}¢|~° —1| @t

and the integral on the right has finite value Ap,yo) it —1fp<d<i /p'.
Thus 1D (y, O)l, < (M (p, 6) ly]+I (p) (|y] +1)) |11 —iy)|~* the bound is
uniform on a finite neighborhood of » = 0. Since D (y, Of—f = (D(y, 6)f~
— (10 +DY*f)+((iv+D)?f—f), since (iv +D)” is strongly y-continuous,
and since D (y, f)—(iw+D)? is norm y-continuous because ||D(y, 8)—
~ (W +D)¥||, < |I( —jiy)]“lM(p, 6), D(y, ) is strongly y-continuous on
L,(R). Thus (4v+D)¥ is strongly y-continuous on L,(5).

It was mentioned in [4] that if fis a function with support in the

. . a\ ;
Ppositive half-line, then (%) =I" iy the (iy)-th power of the inde-

finite integral. The next corollary is an immediate consequence of Theorem
5.1.

COROLLARY 5.2. I is q strongly continuous group of bounded operators
on Ly(B*, 8) if —1jp < 6 < 1/p'. .

COROLLARY 5.3. If ¢ is the Fourier transform of a finite Borel measure v
on the line and if

Pl

Urf(w) = I'( *i?)"llei_}llg.[f ety — o f(W)V(R)]

then U is a bounded operator on Ly(8) for ~1fp <6< 1/p" with ||U7||,
< 1D llpallv]l. ‘

Proof. Write g(f) = [ e ™ar(v) so that Uf@) = [ (iv+

+D)?f(2)dv(v). Then Theorem 5.1 and Minkowski’s integral m;oqouality
imply the desired estimate for 12541

Let B denote N-dimensional Buclidean Space and let Q(y) be ho-
mogeneous of degree zero and suppose that O is infegrable over the unit
Sphere in E. It was shown in [4] that

Tf(@) = Ii—ip~tim| [ fo—y) o)y~ gy —
0 iyl
&

— i@ f 2(w)do(w)]
= [ D2f@)0(@)io(0)

when D, is the derivative in ‘the direction c,

icm®
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THBOREM 5.4. Let —1[p < & < 1/p’ and let T"f(z) = [ D¥f(z) 2(w)do
E :

(w) where Q is integrable on the sphere in B. Then T” is a bounded operator

‘on L,(H, 8). T? is y-strongly continuous on L, (2, 6).

Proof. Pirst consider D¥ acting on L,(HE, §). Let f be a smooth
function with compact support and consider [[DZf(-)|- |%|2. Since Lebesgue
measure i rotationally invariant, we may assume that o — €15 63, iy O
is an orthonormal basis for B. Write z = (a4, Tyy .0y By) With respect.

N

to this basis. Since ¢, (#) = |z] ™ 2 |o;|* is° & bounded funection with
j=1

. iZ
bounded reciprocal on E for %> 0, take 6> 0 and write

N
IDGFC) I PIE< M (8) D) [ IDEf ()12 ;1™ deo.
=1 E

‘Write edch of the integrals on the right as an iterated integral with the
integral with respect to @; first. By Theorem 5.1 and Fubini’s theorem,

[ 1D2f @) oy de < Ap, 8, ) [ [f@)P |z do.
B pii

Since ¢, (#)~! is bounded, [].DZ’I’]‘”M < A(p, 8, 9)[Ifllys for 6 > 0. The smooth
functions with compact support are dense in L,(6), so the boundedness
of D¥ on I,(5) is established for 0 < & < 1/p’. Consider D(d,y, o)f(®)
= &’ DI (||| 7°f) (=) ; the adjoint of this operator is D(—8, y, —a) which
must be bounded on L, (E) since D(4,y, ») is bounded on L,(E). By
the above argument, D(—6,y, —o) is bounded on L,(E) for 0 < —6
< 1/p, 80 that D(—é, y, —w) is bounded on L, (B) for —1/p < 6 < 1/p';
1

pl

1
this implies that D(6, v, ») is bounded on L, (#) for —17< 6 <

and DY is bounded on IL,(d).

The operators D(4, y, w) form a y-group on L,(E) and strong con-
tinuity in y follows by an iterated integral argument similar to that used
above for 6 > 0. Since L,(9) is a reflexive space, the adjoint of D(4, y, w)
is also a strongly continuous group in y for —1/p < §< 0. 8o D¥ isa strong-
ly continuous group on L,(8) for —1/p < 8< 1/p’. The bound and
strong = continuity for 7 now follow by Minkowski’s integral ine-
quality.

The next theorem treats a slightly more general operator, and a slight
variant of the argument used in the proof of Theorem 5.4 can be used
to prove it. :

THEOREM 5.5. Let u be a finite Borel measure on B with u({0}) = 0 ‘
and lot @ be the Fourier transform of a finite measure v on R. Set

2 — Studia Mathematica XL VIL2
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V(@) = I'(—iy) 111111[ I f flo—w)apy)] o)t 7@
e>0 L

—1iy

&
~ 5 f@u@(E)-

Then V'f(z) = [ [ (fo+D,)"f(@)du(y)dv(v) and V, is a strongly con-
k oz

tinuous family of bounded operators on L,(d) of —1/p <d<1/p"

Proof. That V” can be written in the second form was proved
in ([4], II). As in the proof of Theorem 5.4, is sufficient to study (i»+.D,)*
and to use Minkowski’s integral inequality to complete the proof. Write
(604D, = |ly|™ (#vllyl|"* +D,)"* where o = ylly~* for y # 0. Then the
same iterated integral argument which was used in the proof of Theorem
5.4 can be used to show that (iv +Dy)"" is a strongly continuous group
of bounded operators on L,(d). This completes the sketch of the
proof.

The range of §’s for which Theorem 5.4 holds can be extended if
we agsume more integrability for 2. The argument used by Walsh ([10],
Proposition 8) for Calderén—-Zygmund operators can be used to prove

THEOREM 5.6, Suppose that 1/¢<1—|6|/N and that —N[p <é
< N/p'. Suppose that QeI Y} n 4 3), thm the operator T in Theorem 5.4
is bounded on L,(d). Here L") is the Lorente space.

b) G*J* on L,(d). Now we can use Stein’s interpolation theorem [14]
to study the operators G*J” of Section 1 on I, (8). The keys to considering
G°J* on L,(3) are the facts that G*J°(f) = I'(—a) [D3J*(f) R (w)do(w)

if a is not an integer and that D} J* is an analytic semi-group of bounded
operators which are very nearly Calderén—Zygmund operators. We ghall
sketich an argument parallel to our argument in [3] to prove that G°J° is
2 bounded operator on IL,(d) for —1/p < d<1/p’.

THEOREM 5.7. D3J" is an analytic semi-group of bounded operators
on Ly,(8) for —1]p < 6 < 1[p’ when |arg(a)| < =/2, and D5J" is a strongly
continuous semi-group of bounded operaiors on IL,(d) if Re(a):=0.

Proof. We shall use Stein’s interpolation theorem [14] to verify the
boundedness of D%J° Consider D¥J™. Theorem 5.4 shows that D¥
is bounded and strongly continuous on L,(d). Sinee J7f(w)
= I'(—iy)™ 7% e ~*P,f(»)) with P,f being. the Poisson integral of f,
and since e"“ is the Fourier tramsform of =~*(1+y*)~%, Theorem 5.5
implies that J7 is bounded and stxongly continuous on L,(d). Since J?

= (1+4)"" where A = (—A)** is the negative of the mimltesma,l gene-
rator of P;, J” is a group on I,(8) because it is a group on L,(B) a8 was
shown in [4].

icm
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The Hilbert transform is a bounded operator on L,(8), —1/p< 6
< 1/p’, by Okikiolu’s theorem [9] and H,f(») =P f flw—tw)dtft, the

Hilbert transform in the direction «, is bounded on L (B, 6) for —1/p
< d < 1/p’ a8 an argument similar to that given in the proof of Theorem
5.4 shows. D,J can be expressed in terms of a double integral of the
Hilbert transform in the directions # as in the proof of Theorem 4.of [3]
and an argument similar to that used in the proof of Theorem 5.5 shows
that D,J is a bounded operator on L,(d) for ~1/p <5< 1/p’.

If f is a smooth function with compact support in E, DLJ*(f) is
an analytic function of « in Re(a) > 0 because Dj, and J* are strongly
analytic. Since DEFEJ*+F = DEJ*DEJ? for non-negative integers % and
since D¥J? is a strongly continuous group of hounded operators on

L, (8), Stein’s interpolation theorem [14] applies and D% J'D?J” = D J*
is a bounded operator for ¢ > 0. If Jarg(a)| < 6 < n/2, lim D J(f) :f
for smooth functions f and since ||Dg,J,, is bounded for 0 Re(a) <

—1<Im(a) <1, D,J" has the required continuity properties; DZ J“ 1s
an analytic semi-group in larg(a)] < =/2 and a strongly continuous semi-
group in Re(a) > 0. This completes the proof.

0
COROLLARY 5.8. — (DgJ®) is a bounded operator on L,(8) for —1/p
a

< d<1/p’ for each a> 0.
Proof. If T° is an analytic semi-group with |79 < Me“™, then
a
TT“ M(|a]+1)|a| e, see [13]. By Theorem 5.7, D°J° is an
a

analytic semi-group on these L,(d).

THEOREM 5.9. G°J* is a bounded linear operator on L,',(B) for —1/p
< 8<1/p’ for all Re(a)=0,a # 0, when Q2 satisfies the assumptions of
Theorem 1.1.

Proof. Tf k< Re(a) < k+1 and if a &,

@) = I'(—a) [ Dad*(f)Q(w)do(w)
: z

and the conclusion follows from Theorem 5.7 and Minkowski’s integral
inequality. When Re(a) = & we need to assume that [w’ Q(w)do(w) = 0
P

for all multi-indices g with [ﬁ} =k as in Theorem 1.1. When a =%k > 0
and [ o’ Q(w)do(w) = 0 for all |f| =% Corollary 5.8, the uniform

boundedness principle, and Theorem 9 of [4] imply that

(_

G TE(f) :—ifﬁ(l)“f‘)(f)l Q(w)do(w)
T A PR =k '
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and Minkowski’s integral inequality can be used to complete the proof
of the houndedness on L,(d), —~1/p < d <1fp".

Remark. The kernel 2, of D,J* was calculated explicitly in [3]
and shown to have even part in Llog™L(}). More integrability for Q,
seems to be difficult to establish. We do not expect a theorem of the
form of Theorem 5.6 for the' general hypersingular integral operators.

6. Commutators. Let a(x) be a complex valued function on ¥ and
let A denote the linear operator A (f)(x) = a(2)f(x). We shall consider
the linear operators

" (f, @) = G+ (AF) —AG(f)

G (f, @) = A(G" (Af) —AG"(f))
when A = (—4)*2 on Lp(E) for 1 < p < co. When a(x) is a sufficiently
smooth function G" and ®, are bounded operators on L,(H) in spite of
the fact that each of these operators involves chffelentmtmn of order a
with Re(a) = 1.
Let u be a finite Borel measure on B with 4({0}) = 0 and set G (f) ()
= F(—iy)“li;'i"—l[Ef Tyfau(y)| Tpf(w) = fle—1ty). From [4] it follows

that if D, demotes the derivative in the direction y, then

and

Dy f(w) =

~w)‘1hm[f flo—ty)t~r-

= I'(—iy) 71577 (f (w — 1))
for y # 0. If, in addition, we assume that y %0, [ |y|d|ul(y) < oo,
E
and that [ <h,y>du(y) = 0 for all heE, then
Fol

@H(f) = T(—1—ip) i W[ Jie—mauw)] = f Dy (f)du ().

We shall begin by studying the operators D(f, @) = DLt (Af)—

—ADLF(f); the expreswons for @” and for '™ given above indicate

that theorems for B*(f, a) are corollaries of the corresponding theorems
for D*(f, a

THEOREM 6.1. Let a(w) be a bounded function with bounded derivatives
and let f be a smooth function with compact support. Then

D111+’27(A_f) ——«AD},H?(f)
3 172 F i E_iy
= I(~1—iy)~ hm[ f Ty f (T a—a) == @5+ 5 fD,/a]
s>0L Y vy

where T, f(z) = f(a—1y).

icm
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Proof. D”‘"‘(Af — A DL (f) =D;’(ija+aD”f)—AD§y(D”f) since
_Z)“l)‘3 .D“*ﬁ 5 ([6], T). Use the integral expression for D;’ to write the
nght hand side of the last equality as

T(—iy)™? lin;[ f 'Tﬂ,((D,,a)f+uD,,f)r1-f?dt—f;;—((Dya)f-paDyf)]

RN PN ; —1is &
—AD(—iy) ’h—{r;[ [ Ty /dt—i—ypi,f]
= DY((Dya)f) +I (i)~ lim [ (Tyya—a)Ty Dy ft7 .
&0

7]
Integrate by parts with -gt-wa = —T,D,f to get

- fm Ty (fDya) 47" dt — (1+iy) F (Tya— a)T,?ft'z‘iydt}
— Dif(Dya)f)—T(~iy)” lim | [ To gD eyt
+e77fDya+ (L +iy) f (Tyya—a) Tt,,ft‘z“'ydt]

since lim [¢~'=%(T,, 0 —a) T, f+ & fD,a] = 0. Thus
>0

w(7,0) = tm F(—1—in] [ (Ba- va]-

THEOREM 6.2. Let a be & bounded function with bounded gradient

and with |Va(z—h) —Va(z)| < e||h|’ for some 6 > 0. Let u be a finite Borel
 measure on B with p({0}) =0, with f hy ydap(y) =0 for all b in B,

and with f Wl @ul(y) < oo. Then G ( f, a) = G (Af) —AGT7(f) emtends

to a bmmded operator on L,(H).
Proof. The discussion preceding Theorem 6.1 shows that with
our present assumptions on p

6"(f, a) = [ (Dy*(4f)

B

—ADG(f))ap(y)-
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If f is a smooth function with compact support and if o

f = yllyl™, con-
gider '

DL (Af) —ADY(f) =

. T s
I(—I—iy)™ hm[ [ Cus—a) Tt va+ fDma] +
&0 p vy
+I(—L—i)" [ (Twa—a) T ft= Vit
1

from Theorem 6.1. The second expression on the right converges abso-
lutely and has p-norm dominated by 2|I'(—L—ip)|™ la]le|lfll,- Write
a(m‘—t'af)—a,(a;) =D, a(x—1tw)+R(a, tw)(z) which because of the differ-
entiability of a and the Lipschitz property of Ve satisfies |R(a, tw) ()]
< o™ for 7 < 8. From [7],

gt

iy ¢ ]

exists a.e. and in IL,(¥) and has p-norm dominated by M(p
1

lﬁl[f —D,a(x—tw)f(@ —1iw)i™ "

MWivl+

+1)2 (3"} Vall|lfll,- The integral f R(a, to) (@) T fi>7d converges

absolutely and has p-norm domma,ted by M(a)|fll,- Since Do

= |yI"**7 D F, D'(f, @) has p-norm dominated by M(p,y, @) llyllfl,-
Minkowski’s integral inequality implies that [|G*(f, a)|, < My(p, 7, @)
Ef fwlldlul (@) 1fll,. This completes the proof.

) Let A = (—4)"*; A is the infinitesmal generator of the Poisson
integral
Pf(x) = Cy ff(w——z)t(tz_l_“zuz)——(NH)]zdz
B

= Cy [ flo—1e)(L+ )~ N1z
E

Furthermore, f oy 2y (Lt-[[o]2)~ W2 gy = 0, and A (f) = Oy f DY f1+
-+ Jl2l12) (N“)/?‘dz, butb f [l (1 -+ [le]2) =¥+ gz = o 50 thatb Theorem 6.2

is inadequate for estlmatmg A (Af) —~AA™?(f). The next theorem
modifies Theorem 6.2 sufficiently so that we can estimate A% (Af)—
— A AI-M:V (f

‘We begin with a lemma.

icm
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= %ZRj_

=1

LeMMA 6.3. As a dlosed operator on Ly (B), (—A)* =

_%26

i, where R; is the j-th Riesz operator

y; 4y

R;f(x) W

= Ky lim f fle—y)
0 wli>e
with Fourier transform ||&|7"§;.
Proof. 4 = (—4)** iz the infinitesmal generator of the Poisson
0
integral and T is the infinitesmal generator of the translation semi-
s

group Tf (%) = f(z+1e;), {e }, V. is the standard basis for L’ Thus A

0 i}
and 6_0';3 are closed and densely defined operators and a,g Ry o2

a closed and densely defined operator since the R; are bounded. For
smooth functions f wmh compact support, Fourier transformation shows

“”y Jawf 27’

closed, the 1dent1ty holds for a.ll fin the domain of 4. fis in the domain

that A(f R ;- Since all three operators are

0
of each of the opera,tors - if and only if f<I(H), the range of (1 At

with the inherited norm; [1] I, () is easily seen to be equivalent to the
domain of 4 when this domam is equipped with the graph norm. Thus
the three operators in question have a common domain and each of them
is closed.

TEEOREM 6.4. Let Q(y) be homogeneous of degree 0, bownded, and
have bounded gradient. Set

.Q(y)dy e
U = I(—ip) 1 flo—p L T Qda(w)]
Jiﬁ‘[w,,[,, W™y
- fD’i}’f(m)Q(w)do(w).

Lot A(x) be a bounded fumction on B which is differentiable and whose gra-
dient is bounded and satisfies o Lipschitz condition of order 6> 0. Then
if A= (=AY A(AT?(f)—T"(Af)) and AT?(Af)— T (AAf) extend to
bounded opemtors on L, (B).
Proof. Since the adjoint of D¥ is (—D,)”, and since 4 is self-adjoint,
A(AT?(-)—TU"(4-)) and AU“’(A y—U%(A4A-) are essentially a.d]omts)
U™(4-)
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N
is a bounded - operator on L,(H). By Lemma 6.3, A = iz-ag—lfj and
0.
j=1 77
since the R; are bounded operators on L,(H), we need only show that

a . .
5;(AU”'(~)—U”‘((A-)) is a bounded operator of j =1,2,...,N. If f
j

is @ smooth function with eompact support,
AU (f) (@) —U? (Af) (%)
T Q
= =iy [ flo—y)(4(0) A (0—g)) 2D
0 yii>e 17| i
Since f is smooth and has compact support, this last integral and its
derivatives converge pointwise and in L, (H). Since -31 (A(z—y)—A ()
Ty,

is a bounded function,

2 Q(y) ay
P — ) —[A () —A (1 — )] =2 L 27

is a bounded operator on L, by [7] with norm at most M D,y 2)[|VA| .
Thus we need only consider the integral

2 12(y)dy
ny.,>a[6w T '”)]( @ =4 o=0) s

i 0 0
for ¢ > 0. Write 6—f(a9—y) = —>—f(@—y) and use Green’s formula
. Ly, 0y
[2] to integrate by parts. The last integral is

[ 1e-ia@ —o-) 20 2o

llvll=e

0 . 2()
+ ~A4(o—
[ fw—9) ayk[[*‘(””) Ao y)]%——]dﬂ/

e Hyly+

where 1, is the direction cosine of the outward normal to the surface of
the sphere |y|| = ¢, and where the first integral is the swface integral
over the sphere of radius ¢ about ¥ = 0. The differentiability of A guaran-

tees that the first integral tends to zero with e For the second integral,
write

N

livli>e e<|lyli<t livl>1
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Since 4 is differentiable with Lipschitz derivatives, the Taylor expansion
of order 1 for 4 is of the form A(z)—A (x—y) = (VA (z—y), ¥v>+R(z, y)
with |R (%, ¥)| < M[y]'*? for 5 < 6. Thus

Flo—9) B, y) > [—f'i(iJL] ay

w<iivii<t oyl Tyl

converges absolutely as does

o1 2
(@—9) (A (2) —A4 (2 — _[_—,]d )
1<\lvl|<oaf ? y)( ) 0=y 0y l|yHN+W v

Q(y)

flx—1y) a—a-A (x—1) hesa dy is a bounded operator by [7] with
Yr Y :

1lyli>oo
norm at most M(p, y)|2LIVAl., 12k Zﬁflg(w)ldd(w)- For each j -
=1,2,..., N, :

o D sy, 0[R2
| i oy A8 [uynNW]dy

RS 0z

is a bounded operator on L, by [7] since y,ai.[”_ﬁ%] is homo-
yln Y

geneous of degree — (N +44iy). Since smooth functions with compact
support are dense in I,(F), this completes the proof of the theorem.

COROLLARY 6.5. If A and U™ are as in Theorem 6.4, if h is a non-
zero vector in B and if D, denotes the derivative in the direction h, then
D (AT (-)—T¥(A-)) and (AU?(Dy)—U%(AD,-) evlend to bounded
operators on Ly, (E).

Proof. Since the operators in guestion are essentially adjoints of
each other, it is sufficient to consider the second operator. For smooth
functions f with compaet support, D,f = KAR,f = KR,Af with

N

R, = > I;R; where R; is the jth Riesz operator and k; is the jth coor-
i=1

dinate of % with respect to the standard basis in E. Since R;, is a bounded
operator on IL,(#), Theorem 6.4 implies that the operators in the state-
ment of the corollary are bounded on L,(ZE). :

COROLLARY 6.6. Let A satisfy the assumptions of Theorem 6.4 and
let A = (—A)V2 Then o (f) = A7 (Af) —AA™7(f) entends to a bounded
operator on L, (B).

Proof. Since A(Af) = (Af) 4 + (44)f and since A? ((AA)f) is & bound-
ed operator on L,(E), [4], we need only consider AP (A Af) — A A (Af).
For smooth functions g with compact support A™(g) = I'( —iy) 137" 1(P,g)
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where P,g is the Poisson integral of g. As was mentioned above, A% (g)
can be rewritten as
A%(g) = Cy [ DY (g)(L+lyl[2)~ ¥ +0Eay.

B

Write D¥(g) = |ly*D¥(g) and rewrite the last integral in polar coor-
dinates so that

A%(g) = K (n, 7) [D(g)do (o).
x

Tf we set 2(w) = 1, A” has the form of U™ of Theorem 6.4 and A7 (4.4-)—
—AA"(A-) extends to a bounded operator on L,(E) by Theorem 6.4.

Remark. It should be possible to extend Theorem 6.4 by assuming
only that 4 is in L}(E) for some r in 1 < r < co. The conelusion should
read that G, (f, a)l,< M(p,y, 44| lfl, when 1/p+1fr = 1/q. This
conjecture is suggested by the fact that A(Af)—~AAf = (AA)f extends
to a bounded operator from L, to L, with [|4(Af) —AAf|, < |44}, fl, and
by the fact that imaginary powers of derivatives' do not decrease the
smoothness of a function. No assumption on 2 beyond integrability
over > should be necessary. Imaginary powers of derivatives do alter
the support of a function, however, and this may adversely influence
the conjectured result. To verify the last = statement, calculate

iy
(ﬂ) (Xg)(w) where X, is the characteristic function of a compact

interval [@, b] in the real line.
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